
 

Abstract— This work focuses on the overall effect of blade posi-
tions in a wind farm. Assuming that there are no synchronization 
forces in a wind farm, the distribution of blade position of the 
turbines of a wind farm is derived. The crossing of blades in front 
of its turbine tower is modeled as a Poisson Process. The variabil-
ity of the wind farm power output due to tower shadow and the 
probability of extreme conditions (such as simultaneous tower 
shadow events at all turbines of a wind farm) are estimated in the 
time domain. 

Index Terms—wind power, flicker, power fluctuation 

I.  INTRODUCTION 
ast fluctuations of power output can be divided into cyclic 
components (tower shadow, wind shear, modal vibrations, 
etc.), weather dynamics and events (connection or discon-

nection of the turbine, change in generator configuration, etc.). 
The influence of blade position in a single turbine power 

output has been widely analyzed in the literature [1]. Accord-
ing to [2], very steady wind, very uniformly distributed and a 
weak electrical network is necessary for the synchronisation of 
blade position on the turbines of a farm. Experimental meas-
ures [3] showed that the synchronisation of blades is unusual.  

If the turbines blades are not synchronized, the cyclic uncor-
related fluctuations due to rotor position have random phases. 
As wind characteristics are similar inside the farm, the magni-
tude of the cyclic components would be similar in all turbines. 
The phase difference among turbine blades i and j  is ,i jϕ  and 
it is uniformly distributed in [ ],π π− + . Therefore, phase dif-
ference of harmonic k in turbines i and j  is ,i jk ϕ . 
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II.  WIND FARM PERIODIC FLUCTUATIONS IN THE TIME DOMAIN 
 The power dips due to blade position will be considered as 
negative power pulses distributed uniformly in time t ∈ [0, T], 
where T is the period of the pulses (the period in Fig. 1 is T = 
1s). For a turbine of three blades, the period in seconds is 

= Ω20/ rotorT , where Ωrotor is the rotor in r.p.m. and the con-
version factor is 60 s/min divided by 3 blades in the rotor, 
equal to 20 blades/r.p.m. The effective period of a wind farm –
whose turbines can have different Ωrotor – is the average of the 
periods of its turbines. 
 Since the occurrence of pulses is not correlated, usual tech-
niques for the computation of the sum of identically distributed 
independent random variables are applicable. They involve 
iterative computation of convolutions or inverse Fourier trans-
form of the characteristic function to the power N.  
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Fig. 1:  Power output at a single turbine with blade rate 1 Hz, depth of tower 
shadow α = 0,06 p.u. and average power loss = /Tα τ = 0,0075 p.u. (the 
power dip shapes are rectangular, triangular and Gaussian). 
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Pace of Tower Shadow Fluctuations  
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 Tower shadow of shapes rectangular, triangular, cosine and 
Gaussian have been compared to test the shape influence in 
overall behavior of the farm. 
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where α is the depth of the pulse, τ is the characteristic width 
and μ is the time position of the pulse. For convenience, the 
origin of time will be chosen in the center of the pulse (μ=0). 
Tower shadow duration is from 1/8 (according to [1]) up to the 
tower shadow period and α depends greatly on inertia, type 
and control of the generator.  

A.  Experimental tower shadow at a 0P =750 kW wind turbine 
(squirrel cage induction generator and stall regulation).  
 The tower shadow shape in the turbines with squirrel cage 
induction generator and stall regulation has been measured by 
the authors at Valdecuadros wind farm [3]. Fig. 2 shows the 
typical behavior for wind speeds around 6,5 m/s. Tower 
shadow resembles a  sinusoidal fluctuation of average ampli-
tude modulation around 0P /15  superposed to slower fluctua-
tions due to wind evolution. 

 
Fig. 2: Active power of a NTM 750 kW wind turbine for wind speeds around 

6,5 m/s during one minute. 
 For simplicity, it can be characterized as a sinusoidal fluc-
tuation at the blade frequency with random amplitude. How-

ever, the shape and the amplitude vary and they are quite ran-
dom. To test this, the power spectrum density (PSD) of power 
during 5 minutes have been calculated [4], showing an expo-
nential decay (a line in the log-log plot) for wind and power, 
superposed to a wide amount of spectral fluctuation around 
tower shadow frequency 1/T, rotor frequency 1/(3T) and half 
blade frequency 2/(3T). The harmonics of tower shadow are 
very sharp but their power content is much lower than the fun-
damental component. Therefore, tower shadow harmonics can 
have structural concerns but their associated power is small. 

B.  Distribution of the fluctuation 
 The first step is the computation of the distribution of the 
pulse. If the pulse is symmetrical about its mass center, its PDF 
is the inverse function divided by half the pulse energy. Then, 
the CDF can be computed, taking into account the symmetry of 
the pulse and taking the positive branch (t >0) of the inverse 
function of fpulse(t). 
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pulse centered in time origin), the general formula is:  
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 From (10), the distributions of fluctuations of a single tur-
bine due to triangular, rectangular and Gaussian pulses are: 
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where U states for the Heaviside unit step function and δ for 
the delta of Dirac. 
 The characteristic function ( )wφ  is the complex conjugate 
of the continuous Fourier transform of  pulsePDF ( )y : 

*
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 Since the tangent of the pulse is horizontal at some points 
(at least at the maximums and minimums), pulse( )PDF y  con-
tains essential singularities and its transform should be com-
puted analytically. 
 The pulsating power of a wind farm with N turbines is the 
sum of individual power pulses, supposed identically distrib-
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uted independent random events. The corresponding character-
istic function is ( )N

turbine wφ  = ( )wind farm wφ . Thus, the PDF of 
the wind farm deviation can be computed as inverse Fourier 
transform of the complex conjugate of  ( )wind farm wφ : 
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 The characteristic function of a wind farm with rectangular 
power dips shown at Fig. 1 corresponds to a binomial distribu-
tion. This makes sense since the number of simultaneous pulses 
in a wind farm is the probability of the number of successes in 
a sequence of N independent “pulse” / “no pulse” experiments 
with success probability p = τ / T (the relative width of the 
pulse). Therefore, the instantaneous fluctuation in the wind 
farm follows a Binomial distribution: 
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where 1 /TI τ−  is the regularized incomplete beta function. 
 The average tower shadow effect in a wind farm is 

/y y N pα α α= = . Its standard deviation is: 

/ (1 ) 1y y N p p N
T Tα
τ τ

σ α σ α α= = − = −  (18) 

which scales with N  instead of being proportional to the 
number of turbines N.  
 Fig. 3 shows the CDF of the relative deviation of power 
output at a wind farm due to tower shadow effect. Pulse sum 
(p.u.) is /y Nα , the ratio of the experienced power deviation 
y  relative to the maximum deviation, Nα , which corresponds 
to all tower shadows happening simultaneously. 
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Fig. 3:  CDF of pulses at a wind farms of 1, 3, 5, 10, 20 and 50 turbines (start-
ing from upper part at zero fluctuation). The parameters of the pulses corre-
spond to Fig. 1 and rectangular shape (p =τ / T = 0,125). The discrete CDF  
(17) has been evaluated at midpoints to account that real pulses are continuous 
and derivable. 
 The probability of simultaneous tower shadows events at 
most turbines is very low, as can be seen in the figure, 

pulseCDF (3 ) 1y ≈ . The probability of exceeding a certain 
amount of power dip is the complementary CDF: 
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y y
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 The average power loss due to tower shadow is y  (there 
are exactly N pulses in a period T). 
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Since turbine rotor angles are independent random variables, 
the variance of wind farm power output due to turbine blade 
position, 2
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C.  Rate of tower shadow events 
The alignments of blades with their tower axis are [tower 

shadow] events whose time occurrence can be modeled as a 
stochastic process. The number of tower shadow events in the 
period T is the number of turbines in a wind farm, N. 

The event rate or event  intensity λ(t)  is the number of 
events per unit time and its average can be computed as λ0 = 
〈λ(t)〉  = N/ T since in one period exactly one blade of all tur-
bines of the wind farm passes in front of its tower (provided all 
turbines were spinning approximately at the same speed). The 
event rate λ0 can be thought of as the probability that a blade 
alignment occurs in a specified interval.  
    1)  Prior probability distributions 

Since there is no explicit time origin and there are no 
appreciable synchronizing forces, the event can occur at any 
instant with the same likelihood and λ0 is constant. This implies 
that the time between consecutive events (called interarrival 
times) are independent random variables. The only interarrival 
time distribution with constant hazard rate is the exponential. 
The waiting time Δt until the first occurrence is a continuous 
random variable with an exponential distribution (with 
parameter λ0). This probability distribution may be deduced 
from the fact that 
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For exponentially distributed events, the Poisson distribution 
is the probability distribution of the number of events that 
would occur within a preset time t. 
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The Erlang distribution describes the waiting time until k 
tower shadow events have occurred when inter-event time is 
distributed exponentially. The probability density function of 
the Erlang distribution is (24) 
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    2)  Including periodicity in probability distributions 
During normal operation, turbine speed fluctuates slightly. 

Multi-megawatt turbines spin at Ωrotor = 8~20 rpm, implying 
blade periods T = 1~2,5 s. During a short time interval, the 
turbine speed can be considered constant and the time interval 
between two consecutive tower shadow events of the same 
turbine is (approximately) T. If all turbines of a wind farm 
rotate at the same approximate speed Ωrotor , each turbine must 
experience one and only one tower shadow event in the inter-
val (0, T] with uniform probability.  
 The implications of periodicity can be included in the prob-
ability of the number of tower shadow events in a time interval 

tΔ   using Bayes’ theorem, provided 0 t T≤ Δ <  and 
0 k N≤ ≤ : 
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The PDF of the number of tower shadow events in an inter-
val t is a binomial distribution of N trials, k events and event 
probability p = t/T. (This equation is equivalent to (16), where 
the pulse width τ has been replaced by the interval time t, and 
the depth ratio of the power dip at the farm y/α has been re-
placed by the number of pulses, k).  

The probability density of the waiting time tk  until the kth 
occurrence can be computed using Bayes’ theorem, provided 
0 t T< <  and 0 k N< < : 
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The PDF of the waiting time t  resembles the binomial dis-
tribution of N-2  trials, k-1 successes and success probability p 
= t/T, multiplied by a normalizing factor.  

D.  Modulation of the pulse density at the wind farm with ran-
domly distributed pulses. 

The interarrival time between pulses k and k+1 will be de-
noted Δt(k) = Δtk,k+1. The interarrival times are not constant, 
but it has a mean value 〈Δt(k)〉 = Δt 0 = T/N.   

  The expected number of tower shadow occurrences during 
the time unit is the inverse of the mean interarrival time, 

λ0 = 1/Δt 0 = N /T  and λ0 is also the average frequency of 
occurrence, measured in hertz, and the average blade rate of 
the wind farm. At an instant t  between pulses k and k+1, the 
instantaneous frequency λ(t) of tower shadow events at the 
wind farm output can be computed as λ(t) = 1/Δtk,k+1. In Pois-
son process theory [5], the event rate λ(t) is the parameter of 
the process, whereas the interarrival time Δt(k) is an outcome 
of the process. When the number of wind turbines is big 
(N > Τ/τ or λ0 τ > 1), the density of blade events λ(t) is more 
significant than the interarrival time Δtk,k+1. 

At an instant between pulses k and k+1, the instantaneous 
angular frequency w1 of tower shadow at wind farm output can 
be computed as w1(t) = 2 π λ(t) = 2 π / Δtk,k+1. The angular 
frequency will oscillate around its average value 〈w1(t)〉 = 2π 
λ0 = 2πN /T. 

When N > Τ/τ  (or equivalently λ0 τ > 1), the effects due to 
the sharp shape of the pulse diminish and the main contribution 
to wind farm fluctuations is due to the possible concentration 
of tower shadow events in a part of the period Τ.  

In a real wind farm, the pulse rate λ  is not constant in the 
period. Fundamental harmonic (m = 1) measures how much 
the pulses are concentrated in half period. The order 2 har-
monic (m = 2) measures if the tower shadow events occurs 
preferably every T/4 seconds. 

The event density at a given time t  is λ(t) (this will be used 
in the next subsection for computing the modulation of power 
output). 
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Fig. 4:  Individual tower shadow pulses with Gaussian shape and random blade 
position corresponding to a wind farm with N = 20 turbines spinning at Ω = 20 
rpm (1 blade/s). 

    1)  Estimation of coefficients of Fourier series of random 
pulses 

The rate of tower shadow pulses is the number of blades di-
vided by the mean rotor speed, / rotorbladesλ = Ω . The in-
stantaneous power due to tower shadow and wind shear has 
period 1/T λ= . In general, the pulse is not centered at the 
time origin and the Fourier coefficients will be complex num-
bers except the DC component (term of zero order). 

If turbine speeds are equal, power is cyclic with period T 
and there are N tower shadow events in each cycle. Therefore, 
power can be decomposed in its Fourier series of harmonics of 
fundamental angular frequency 2 /1w Tπ= . As power is a 
stochastic magnitude, the coefficients of Fourier series are sto-

(26) 

(27) 



 

chastic complex values (coefficients are not real since instanta-
neous power is not symmetric with respect to origin). 
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The distribution of the complex Fourier coefficients mc
JJG , 

0m ≠ , can be estimated taken into account that: 
• Fourier transform is linear and, thus, the transform of wind 

farm output is the sum of the transform of the individual 
turbines:  
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• The Fourier coefficient for a single turbine whose tower 
shadow event coincides with time origin can be obtained 
from ( )single pu lseF w , the continuous Fourier transform of a 
single pulse centered in time origin. 
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• The tower shadow can occur at turbine i at any time iμ with 
equal probability. Hence iμ  is uniformly distributed in the 
period [0,T]. 

• The circular time shift property of Fourier transform im-
plies that { } { }pulses pulsesf ( ) f ( )ijw

it e tμμ −− =F F , where 
pulsesf ( )t  is the pulse train centered in the time origin, 
pulsesf ( )it μ−  is the pulse train displaced iμ  time and w  is 

the angular frequency.  
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 Therefore, the module of the Fourier transform of a pulse is 
independent of its position and can be easily calculated: 
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• Since iμ  is uniformly distributed in [0,T], the argument of   
{ }pulsesf ( )it μ−F  is also uniformly distributed in  

[-π,+π]. Thus, the angles 2 /i Tπμ  and 2 /k Tπμ  at which 
pulses i and k occur are independent random variables.  

2
[0, ] [0, 2 ]i iUniform T Uniform

T
π

μ μ π⇒∼ ∼  

• If 0m ≠  and m ∈ ` , 2 /ij m T
e
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modulus and random argument. For the usual number of 
turbines in a wind farm ( 4N > ), the sum of these phasors, 
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π μ∑ , is approximately a complex normal random 
variable with zero mean and standard deviation /2N  
(see [4]). 
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• If 0m ≠ , mc
JJG is the sum of N phasors of random argument 

and fixed module. 
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• Summarizing, the complex Fourier coefficients mc
JJG

 are, 
approximately, complex normal random variables with zero 
mean and standard deviation cmσG . 

 (0, )m cmc N σG
JJG ∼ ^  
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The argument of mc
JJG  is uniformly distributed in [-π,+π] and 

the modulus | mc
JJG | has a Rayleigh distribution with parameter 

cmσG . 
The zero order coefficient 0c

JG  or 0c  is twice the DC compo-
nent of the signal (i.e., twice the average wind farm power). 

0 2 farmc P=  
    2)  Root Mean Square (RMS) value of the power fluctuations 
due to tower shadow and wind shear at the wind farm output 

The Root Mean Square (RMS) value of the power fluctua-
tions, farmRMS , is a figure that characterizes the overall oscil-
lation of a the wind farm output due to tower shadow and wind 
shear. It is the standard deviation of the sum of power pulses or 
the root of the squared sum of the modulus of Fourier coeffi-
cients. The calculus of farmRMS  from Fourier coefficients can 
be derived using Parseval’s Theorem. 
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 The RMS value of fluctuations can be also equivalently 
derived for any single pulse shape using the following relation-
ship: 
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Mean value of squared farmRMS  for rectangular, triangular 
and Gaussian shape of pulses as defined in (1) to (8) is: 
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Where the constant k  depends on the pulse shape 
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 The distribution of 2
farmRMS  can be derived from the dis-

tribution of wind farm power output. 
2 ( )RMS PfarmCDF xΔ  = ( / )Pwind farmCDF x N Tα τΔ +  (44) 
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(37) 
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(38) 
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(34) 

(41) 

(43)
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where ( )Pwind farmCDF xΔ  has been computed for rectangular 
in (17). 

 In farms with a many turbines, the distribution of farm  out-
put y due to tower shadow converges asymptotically to a nor-
mal distribution with mean /y N Tα τ=  and variance 

22 2( ) PfarmVar y y y RMSΔ= − = . Thus, the modulus 
of the fluctuation, PfarmRMSΔ , is distributed as a Rayleigh 
random variable with scale parameter equal to standard devia-
tion of the underlying cyclic stochastic process [6]. 
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N
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The average of farmRMS  is a bit smaller than the squared 
root of the 2

farmRMS  mean since quadratic averages weigh up 
larger values. 
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Mean farmRMS  for rectangular, triangular and Gaussian 
pulses is shown bellow.  
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Since usually 1 / 6 10T τ ≈� ∼ , the fluctuation is also 
proportional to the square root of the relative width of the pulse 

/Tτ , approximately. 
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Notice that PfarmRMSΔ  is proportional to the pulse power 
dip amplitude α  and to the square root of the number of tur-
bines N  and the relative width of the pulse, /Tτ . 

    3)  Distribution of the gradient of power (time derivative of 
power) due to tower shadow effect 

The derivative of farm power is a measure of the variability 
of farm output with time. Whereas farmRMS  only account the 
deviation from the average of the power output, the distribution 
of time gradient of power /farmdP dt  measures how quickly 
are the oscillations due to the position of the turbine blades.  

The distribution of the gradient of power (time derivative of 
power) can be computed using properties of Fourier transforms 
in a similar fashion to the previous section.  
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The sum can be transformed using (37): 
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Notice that square pulses presents infinite derivative at 
flanks and its quadratic average is infinite (real pulse are con-
tinuous functions). For triangular and Gaussian pulses, the 
RMS value of the time derivative is: 
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The RMS value of the derivative of farm power is propor-
tional to turbine pulse height α and to the square root of the 
number of turbines N . Notice that the time derivative of 
farm power is inversely proportional to square root of the 
product of turbine time constants. If the turbine pulse is sym-
metric respect its peak, as all the pulses presented in this work, 
the distribution of power gradient is also symmetric respect to 
zero level. 

III.  CONCLUSIONS 

The power fluctuation when a blade passes in front of the 
tower can be represented by a power dip event. The number of 
simultaneous tower shadows happening at an instant is a bino-
mial random variable.  

Tower shadow events are characterized as a generalized 
Poisson process and its average frequency is N  times the 
tower shadow frequency of a single turbine. Notwithstanding 
this fact, the standard deviation of the wind farm power output 
due to tower shadow and its effective gradient are proportional 
to N . 

The tower shadows at a wind farm can be eventually com-
pensated if the turbines could be controlled to distribute their 
rotor angle evenly. However this is not practical because this 
control would impose the same rotor speed at all turbines.  
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