
 

Abstract—A novel technique to account wind variability is pre-
sented based on Markov Chains and classification of observations. 
This model describes the power system status through combina-
tion of cases or “snapshots of the network” obtained from the 
clustering of observations.  

The occurrence and variability of each case is modeled by a 
Markov Chain. This approach models the non-linear conventional 
behavior of the farms but also events that rarely happens but that 
they have a high impact in system reliability and stability (such as 
sudden disconnection of generators due to grid perturbations, 
swift change in wind during storms, etc). 

This model requires running just as many power flows as 
states has the system and it allows to derive easily and rigorously 
the probability of events. Moreover, the regulation of spinning 
reserve or reactive control can be easily optimized using Markov 
Decision Processes. 

The use of network snapshots allows to use a full model of the 
grid (instead of linear models). Intermediate cases are interpo-
lated using fuzzy clustering, reducing the required number of 
states for a given accuracy.  

To explain adequately the foundations and to show the poten-
tial applications of this approach, this work has been divided in 
three parts. In this part, the theoretical foundations and an over-
view of the method are presented. The second part shows the es-
timation of Markov Parameters for a system with three wind 
farms. The third part illustrates the stochastic power flow of the 
three wind farms and introduces the possible optimization 
through Markov Decision Processes. 
 

Index Terms— wind power, Markov chain, variability, power 
quality, spinning reserve. 

NOMENCLATURE 
aij[k] = probability of having observed a transition from state i 

to j at instant k. 
β = confidence level 

Fi = observed occurrences of state i 
Fij  = observed transitions from state i to j 
m=number of states of the Markov chain. 
P = [pij] = transition matrix of the Markov chain. 
pij = forward transition probabilities from state i to state j of the 

Markov chain. 
ˆ ˆ[ ]ijp=P = estimate of transition probability of the Markov 

chain. 
P  = [ ijp ] = backward transition probabilities. 
π = [π1, π2, …, πm] = the stationary distribution of the Markov 

chain. 
s = number of wind farms whose power output is measured. 
x[k]=[x1[k], x2[k], …, xs[k]] = vector of wind farm power out-

put at instant k.  
u[k]= most likely state for the observation x[k] 
 
v[k]=[v1[k], v2[k], …, vs[k]] = vector of wind farm power out-

put in the canonical basis of left eigenvectors of  P̂  at 
instant k.  

z[k]=[z1[x[k]], z2[x[k]], …, zm[x[k]]] = output of the fuzzy clas-
sification representing the state probability at instant k. 

I.  INTRODUCTION 
IND speed fluctuations are usually analyzed through 
linear mathematical tools such as frequency spectrum 

and time series. The Van der Hoven’s wind spectra [1] show a 
gap between 3 minutes/cycle and 5 hours/cycle that separates 
fast fluctuations from slow fluctuations. Nevertheless, this di-
vision is not so clear at some locations [2, 3, 4].  

On the one hand, slow fluctuations are mainly due to mete-
orological dynamics and they are widely correlated spatially 
and temporally. Slow fluctuations in power output of near 
farms are quite correlated and wind forecast models try to pre-
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dict them to optimize power dispatch. On the other hand, fast 
wind speed fluctuations are mainly due to turbulence and mi-
crosite dynamics [5].  

 
Fig. 1: Van der Hoven’s spectral model (from [1]). 

II.  STEP CHANGES IN POWER OUTPUT 
Wind turbines can cause a periodic behavior if they experi-

ence repetitive connection and disconnections due to difficult 
operating conditions (wind speed near cut-in or cut-out, high 
temperatures, high turbulence, etc.). In Fig. 2, the active power 
output of a single turbine has extreme variations due to a com-
bination of high ambient temperature and high wind, yielding 
to high temperature alarms at gearbox oil. In that situation, the 
power output of the farm is not so abrupt because even though 
this behavior was common to many turbines, the disconnection 
and connections of the turbines were not synchronized. 
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Fig. 2:  Power output of a single turbine experiencing 24 repetitive stops due to 

over temperature in 20/07/1998 (24 h). 
 

The repetitive connection and disconnection of up to two 
turbines is a reduced portion of the total active wind farm 
power output expressed in p.u. (see Fig. 3).  

The sudden wind change can also cause variations in power 
output of the farm in minutes, as can be seen at Fig. 4. At 
17:25, the power output of a farm was 0.21 p.u. and ten min-
utes later was 0.96 p.u. due to a storm. 

In general, power variations as extreme as Fig. 4 are 
smoothed in the total generation of a bigger area. However, 
even in a wide area such as Spain with 8000 MW of wind 
power installed, a variation rate of 1000 MW/hour approxi-
mately can be seen in Fig. 5 [6]. 
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Fig. 3:  Active power output of a wind farm with 26 turbines experiencing 
repetitive connection and disconnection of up to two turbines due to internal 
errors in 7/02/1999 (mean speed at meteorological mast was around 14 m/s). 
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Fig. 4:  Active power output of a wind farm experiencing high variability in 
9/02/1999 due to a sudden change in the weather at 17:30. 

 

 
Fig. 5:  Active power output (MW) of Spanish wind farms experiencing high 

increase in 18/01/2005 between 12:00 and 15:00. 
 

The worse case is when the circuit breaker disconnects a 
wind farm. The Spanish Ministerial Order of 5-9-1985 [7] or-
dered that the protection relays of wind substations were ad-
justed very strictly (for example, instantaneous trip for voltages 
under 0,85 p.u. or over 1,1 p.u.). This caused a number of un-
justified disconnection of wind farms at network contingencies. 
In Fig. 6, recovering normal production from wind farm ener-
gization lasted three minutes (with Vestas Opti-Slip 600 kW 
turbines). Nowadays, the relays are adjusted more selectively 



 

and the turbines are rewarded for fault riding capabilities (even 
though [7] hasn’t formally repealed, up to now).  

To sum up, some events in the wind farm produce step 
changes in the output and they are very difficult to model using 
frequency or time series analysis. 
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Fig. 6:  Active power output of a wind farm experiencing a disconnection in 
3/02/1999 due to a trip of the homopolar protection relay between 21:05:24 and 
21:10:55. Three minutes later, the output reached normal values. 

III.  TIME-AVERAGED VS INSTANTANEOUS VALUES 
Most SCADA, data loggers and energy metering devices re-

cord average power and other variables in five to fifteen min-
ute intervals. The standard time interval is 10 minutes for 
power curves and flicker [8, 9] and 15 minutes for reactive 
power billing [10] (a suitable integrating period for both task is 
5 minutes and its integer fractions). 

Due to lack of detailed data, the change rate between two 
consecutive time intervals would be computed with (1) from 
recorded data. 

 log log log

log

( ) ( ) (( 1) )( ) P kT P kT P k TdP t
dt t T

Δ − −
≈ =

Δ
 (1) 

Change rate is equal to (1) only if change rate is constant –in 
other cases, (1) would be the mean rate of change–. That is a 
reasonable approximation during continuous operation.  

However, data from power loggers are ambiguous at switch-
ing events. According to the Nyquist–Shannon sampling theo-
rem, the highest frequency that can be reconstructed with 
measures logged each time interval Tlog is fNyquist = 1/(2·Tlog).  In 
other words, the maximum frequency of fluctuations that can 
be analyzed is half of the logging frequency. 

The moving average can be regarded as the convolution of 
the instantaneous power of the wind farm with a pulse of width 
Tlog (see  Fig. 8). Afterwards, the moving average is sampled 
with Tlog period. The continuous transfer function of the aver-
age power in an interval Tlog is shown in Fig. 8, up to the log-
ging frequency of the power analyzer, log log1/f T= : 
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where ( )F f  is the frequency response (i.e. the attenuation of 
frequencies due to discrete logging of parameters). 
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Fig. 7:  Model of the wattmeter of the wind farm. 

0 0.2 0.4 0.6 0.8 1
Normalized Frequency Hf TlogL

0

0.2

0.4

0.6

0.8

1

ycneuqerF
esnopseR
@p

.u
.D

 
Fig. 8:  Plot of frequency response of the network analyzer. 

IV.  STATISTICAL APPROACH TO VARIABILITY 
Linear stochastic tools such as time series or frequency 

analysis are very popular for characterizing the farm output 
despite casual individual turbine disconnections. However, 
Markov chains will be used in this work since: 
– The behavior at low or high wind is very different from 

middle wind. Such behavior is highly non-linear. 
– Some stochastic models do not model adequately that 

power output is constrained from zero to full generation (0 
to 1 p.u.). The long run probability of the power output is 
bimodal, showing more steady operation at full generation 
or at no generation [11]. The output can vary suddenly 
from 0 to 100% in wind park switching events. 

– Grid disturbances can trip a great amount of wind power, 
which can be hardly characterized with stochastic linear 
models based on time series or frequency analysis. Big 
fluctuations such as disconnection of a whole park or a 
group of farms are not suited for spectrum neither time se-
ries analysis because abrupt changes involve high compo-
nents in all frequencies. In contrast, the probability of a 
sudden change can be modeled easily with Markov 
Chains. 

– The linearized model of an electrical system is not ade-
quate for severe perturbations. 

This work will focus in a non-linear stochastic characteriza-
tion of power output through a finite number of states.  

Markov chains have been chosen for this work due to its 
simple mathematical treatment and its superior theoretical 
properties for stochastic dynamics. This model is also well 
suited for stochastic power flows and for understanding system 
dynamics. 

 A stochastic process can be modeled by a Markov model 
if the evolution of the system is only dependent of the present. 



 

In other words, a Markov model implies considering the proc-
ess memoryless. The utilization of regular Markov Chains im-
ply that the permanence of the system in a state is distributed 
statistically exponentially (or geometrically in the case time is 
discretized). To override the memoryless characteristic, the 
tendency of the system during the last hours or the wind fore-
cast for a given horizon can be included as another parameter 
of the states (at the cost of a bigger number of states). 

V.  CHARACTERIZATION OF POWER VARIABILITY OF WIND 
GENERATION WITH MARKOV CHAINS 

Markov chains have been used in modeling physical, bio-
logical, social, and engineering system such as population dy-
namics, queuing networks and manufacturing systems. One of 
the main advantages of using Markovian models is that they 
are general enough to capture the dominant factors of system 
uncertainty and, in the meantime, it is mathematically tractable. 

Most dynamic systems in the real world such as meteorology 
are inevitably large and complex, mainly due to their interac-
tions with numerous subsystems. Since exact or closed-form 
solutions to such large systems are difficult to obtain and they 
would require extensive measures, one often has to be con-
tented with approximate solutions. Take the optimal control of 
a dynamic system such as spinning reserve in a power system 
due to wind power. Because the precise mathematical models 
are difficult to establish, near-optimal controls often become a 
viable, and sometimes the only alternative. Such near optimal-
ity requires much less computational effort and often results in 
more robust policy to attenuate unwanted disturbances [12]. 

Wind power show different prevailing dynamics when it is 
analyzed for a few milliseconds or for a daily horizon. It can be 
thought that electromechanical dynamics used different time 
scale from the weather evolution.  

The division between fast and slow dynamics makes easier 
large-scale optimization of wind energy. If all the important 
factors are included in a Markov Model, it would lead to a 
large state space with many parameters to estimate and an ex-
haustive and extensive measuring system. To reduce the com-
plexity, a hierarchical approach is suggested, which leads to a 
multi-resolution formulation. The hierarchical approach relies 
on decomposing the states of the Markov chains (all the possi-
ble combination of power output of wind farms) into several 
recurrent classes (typical patterns of generation observed in 
power output of wind farms). The essence is that within each 
recurrent class the interactions are strong and among different 
recurrent classes the interactions are weak. 

Traditionally, Markov chains have been applied in Electrical 
Engineering for the study of queues [13] and power system 
reliability given rate of failure and reposition times of its com-
ponents. In Markov Chain Monte Carlo (MCMC) simulations, 
Markov Chains are employed as random number generators 
with particular characteristics [14], not in the way they are util-
ized in this paper. 

A.  State selection 
In this proposed methodology, each Markov state can be 

seen as a case that characterizes a typical operational mode of 
the wind farm (or a group of wind farms). Full generation, no 
generation and partial generation are candidates for Markov 
states. If partial operation near cut-in wind speed is notably 
different from partial operation near rated wind speed, they 
should be considered as distinct Markov states. Fig. 9 shows 
this discretization and the arrows indicate a transition from a 
state to another one. 

Fig. 9 is a priori arrangement, but the election of states can 
be optimized using a clustering algorithm which minimizes the 
classifying error and selects the optimum number of states [15, 
16]. This is crucial when classifying data from several wind 
farms. Therefore, the clustering is used as a mathematical tool 
to transform a continuous multivariate space s (the active 
power output of s wind farms) into a discrete and finite (num-
bered in ) state space to use Discrete Time Markov Chains 
with convenient matrix algebra instead of functional analysis. 

 
Fig. 9:  Discretization of power output of one wind farm into a number of states 
(four in this figure). Only transitions from states 1 and 2 are shown for clarity. 

The use of different states allows to use a full model of the 
grid (instead of the classical small-signal model) and the state 
weighting describe intermediate cases reducing the required 
number of states, m. The combination of matrix algebra and 
state probability imply the (linear) interpolation between the 
centroids of the states for describing intermediate cases. 

B.  Estimation of P  from conventional clustering. 
Time Markov chains are a powerful tool to cope with states 

and transitions between states. The dynamics of a system such 
as a wind farm or a group of them are characterized by a transi-
tion matrix P  = [ pi,j ]. The dynamics of the system are charac-
terized through the transition probabilities from state i to state 
j, pi,j , which are estimated from actual data. The probability of 
staying in the same state the next interval is pi,i.  The residence 
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time in a state (time during the system is at state i) is distrib-
uted exponentially and its characteristic value can be derived 
from transition matrix. 

P̂  is an estimate of the transition matrix P . If the output of 
the classification algorithm for each sample k is just the state 
number u[k], one can find the transition occurrence Fij in the 
sequence by counting the number of transitions from state i to 
state j  in one step.  
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Then the one-step transition matrix P can be estimate as fol-
lows: 
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The elements of ˆ ˆ[ ]ijp=P can be computed according to (6) 
(from 6.4.2 in [17]) 

observed transitions from state  to 
ˆ

ocurrences of state 
ij

ij
i

Fi j
p

i F
= =  (6) 

 Since states represent typical operational conditions, all 
states eventually occur in the sample set (Fi > 0). 

 For observed transitions (Fij > 0), the standard error of îjp  
is approximately: 

 
( )ˆ ˆ1ij ij

i

p p
se

F
−

=  (7) 

The unobserved transitions (Fij = 0) can be due to real un-
feasibility or to the limited available data. If Fij = 0, the transi-
tion probability îjp  is bound to [0, ( )

1
1 1 iFβ− − ) with confi-

dence level β (Fij is binomially distributed). In part II of this 
paper, the estimation of rare events will be revised. 

C.  Improving state estimation 
A further refinement is to quantify the similarity of real data 

to each cluster. For example, fuzzy classification computes the 
similarity of each observation with each state and the fuzzy 
membership degree can be interpreted as the probabilities that 
the measures corresponds to the states of the Markov model 
[18]. This approach improves the performance of the Markov 
Model since wind farm output is continuous and there is not a 
definite division or separation between clusters. 

There are powerful clustering algorithms where any real ob-
servation is classified into a group with an error that can be 
controlled. Since Markov Chains poses a probabilistic discreti-
zation into states and the cluster boundary is blur in wind char-
acterization[19], fuzzy c-means clustering is a suitable cluster-

ing algorithm. In fuzzy clustering, each datum has a degree of 
belonging to clusters, as in fuzzy logic, rather than belonging 
completely to just one cluster [20]. Thus, data on the boundary 
of a cluster may be in the cluster to a lesser degree than points 
near the centroid. For each observation of the s wind farm out-
puts x[k]=[x1[k], x2[k], …, xs[k]]  we have a coefficient zi(x[k]) 
giving the degree of membership to the ith cluster (1 ≤ i ≤ m). 
Usually, the sum of those coefficients is defined to be 1, 

( )1 [ ] 1m
i iz k=Σ =x , so that zi(x[k]) denotes a probability of be-

longing to cluster i and z[k]=[z1[x[k]], z2[x[k]], …, zm[x[k]]] is 
the probability vector. The obtained clusters implicitly model 
the relationship among random variables whereas its probabil-
ity is computed from occurrence frequency of real data. 

If operation of a farm or a cluster of farms are significantly 
influenced by other factors, those features can be included in 
the classification process but at the cost of increasing the data 
requirements. Therefore, each state can be classified mainly by 
its power output and secondary, by other parameters such as 
average wind direction, meteorological stability or wind pre-
diction for a given horizon. 

At a given time, the best classification of a big system into a 
reduced set of states can be challenging. The best procedure for 
estimating the system state depends of available data, aim of 
the analysis and philosophical implications of each approach.  

Consider the following example: near cut-off wind speeds, 
some turbines are stopped whereas others remain at full power. 
The overall situation will correspond to full generation in a 
portion and no generation in the rest. That intermediate situa-
tion can be represented by the probability of pertaining to full 
and no generation states (if the number of generating and in-
stalled turbines are known, the probability of full generation 
status can be interpreted as their ratio –frequentist interpreta-
tion of probability–). Using the Bayesian interpretation of sta-
tistics, the probability of full or no generation is the degree of 
belief that the real situation corresponds to each state. Using 
the interpretation of fuzzy logic, the possibility of each state is 
the membership grade to a fuzzy set. From the mathematical 
theory of approximating functions, the state probability can be 
regarded as interpolating coefficients used to represent piece-
wise functions such as expected values and voltage or power 
flow profiles at some nodes. In Hidden Markov Processes, the 
real state is not observable usually but it can be inferred from 
observations trough Viterbi algorithm and the emission matrix 
which relates measured parameters and unobservable states.  

D.  Estimation of P  from fuzzy clustering. 
On one level, the average power at an interval can be near 

the classification boundary of two states and the instantaneous 
state could be considered as a partially corresponding to adja-
cent states. The instantaneous state can vary inside the time 
interval and the output of the classification process will be sto-
chastic. If the classification of two consecutive periods is the 
same, the system would be regarded as “continuing” in the 
same state (although the actual process is more complex). On 
another level, if the states are very similar a fuzzy classification 



 

is required to avoid overestimating transitions due to sharp 
cluster boundaries. 
 The classification algorithm is the level of membership to 
each state zi[k]= [z1(x[k]), z2(x[k]), …,  zk(x[k])],  measured in 
observation k (equivalent to the Bayesian interpretation of 
probability of the occurrence of state i at observation k). The 
output of the classification algorithm is normalized, therefore: 

 
1

[ ] 1
m

i
i

z k
=
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where m is the number of states in the system. 
In fuzzy classification, the estimation of transitions from 

state i to j depend on some assumptions taken. Since wind is a 
meteorological spatial property which experience gradual 
changes, it is sensible to select the estimation that minimizes 
state variability. With this assumption, the P̂  can be estimated 
as follows. 
aij[k] = probability of having observed a transition from state i 

to j at instant k. 
First, estimate the probability of continuing in the same state 

at instant k: 
 ( )[ ] min [ ], [ 1]ii i ia k z k z k= +  (9) 

Then, the probability of jumping to a different state at instant 
k  is estimated as the ratio of  state probability variation in con-
tiguous instants to the probability of not continuing in the pre-
vious state: 
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Finally, estimate ˆ ˆ[ ]ijp=P  from observations: 
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If the states are not directly observable, the Viterbi algorithm 

can be modified to estimate the most probable hidden state 
based on the fuzzy classification. 

E.  Considerations on P̂ . 
Since the probability of state transitions is estimated from 

real data, this approach can handle abrupt behavior of the farms 
along with events that rarely happens but that they have a high 
impact in system reliability and stability (sudden disconnection 
of generators due to grid perturbations, swift change in wind 
during storms, etc). 

The obtained Markov Chain is irreducible because starting 
from any state i, it is possible to enter state j in finite number of 
transitions. This property will be assumed in the following sec-
tions. Moreover, if all transitions îjp  have non-null probabil-
ity, the Markov chain is said also regular. 

VI.  CONCLUSION 
In this first part of the article, the theoretical foundations and 

an overview of a method to quantify uncontrolled generation 
variability have been outlined. Moreover, this model is well 
suited for probabilistic power flows and for stochastic optimal 
power flow through Markov Decision Process. The method is 
further explained and put into practice in parts II  and III. 
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