
 

 

Abstract— The classification of states can be based on power 
output, “unperturbed wind speed” and wind speed prediction, 
depending on available data and aim of the wind farm model. The 
performance matrix in Standard IEC 61400-12-3 can be used as 
emission matrix to relate wind and power in a wind farm using a 
Hidden Markov Model. The wind farm model can be used also as 
time interpolation between horizons of wind prediction or to ac-
count switching events such as sudden disconnection of the farm. 
The basic workflow to compute a stochastic power flow based in 
Markov Model is presented. A simplified, steady state, quadratic 
model of the wind farm is shown for justifying the approximation 
of networks to PQ nodes and the interpolation between states. 
This quadratic model can be used also to estimate the reactive 
power for steady state. 

I.  MARKOV MODEL BASED ON WIND PARAMETERS 
The consideration of wind speed and direction along with 

wind power output can give further insight in wind farm dy-
namics than using only power output. However, it is usual to 
have only limited data (only wind parameters or only power 
generation). 

Power Flows require the active and reactive power of all 
generation and consumption nodes. This subsection discusses 
the modifications needed to use a Markov Model based on 
wind and power parameters or only wind characteristics. 

If the aim of the Markov model is to work with wind fore-
cast, the state number can be defined based on mean wind 
speed and direction at the wind farm. The power output can be 
derived from the conditional probability of power output given 
wind speed and direction. 

Standard IEC 61400-12-3 [1] shows a detailed method to 
compute the wind farm power output from “unperturbed wind 
speed” of the wind farm. The wind farm power curve consists 
of performance matrix M indicating the expected power output 
from wind speed and wind direction values. In Markov jargon, 

the state space can be built from wind speed and direction. The 
emission probability matrix can be the performance matrix M 
if the bins of IEC 61400-12-3 are elected as Markov states. 

Moreover, Hidden Markov Models (HMM) can cope with 
more complex dynamics when system state is not directly ob-
servable (for example, if important information like turbine 
malfunctions and maintenance work are not available). 

A model should be simple enough to avoid over-fitting or 
over-fluctuations. Even more, the use of very complex models 
with many parameters need big amounts of data to be adjusted 
and its interpretation becomes tougher. 

 
Fig. 1:  Schematic relationship between measures (observations) and estimated 
states when they can not be derived straightforward from measures (from [2]). 

II.  IMPROVING MARKOV MODEL WITH WEATHER FORECAST 
Weather forecast is a widespread tool to characterize wind 

farm power trend from 6 hours ahead.  Meteorological physical 
models are much more precise for assessing power evolution 
for long horizons, whereas Markov Chains are more adequate 
for assessing power variability for short and medium horizons 
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and for optimize network policy. Therefore, a model that com-
bines weather forecast and a Markov Model is more suitable 
than just trying to use a more complex statistical distribution (a 
semi-Markov model has fewer theoretical properties, it in-
creases model complexity and it does not account the complex 
weather dynamics).  

The influence of meteorological dynamics can be incorpo-
rated using the weather forecast as another parameter. If 
weather forecast is not available, a Hidden Markov Chain 
(HMC) can be used for accounting the meteorological stability 
(an unobservable parameter). Other approach is the inclusion 
of the weather forecast and the farm availability in the classifi-
cation process. 

To sum up, if the time span of the estimation is bigger than 6 
hours, weather forecast must be used to increase the accuracy 
of the wind power variability model. 

III.  DISCERNING SWITCHING EVENTS FROM CONTINUOUS 
OPERATION 

Switching events are difficult to detect if there are no mete-
orological data available. Switching events can be guessed dur-
ing high wind with a statistical hypothesis test based on maxi-
mum change of wind. If power has changed above the confi-
dence level for the previous power output, the operation is not 
continuous up to a significance level.  

Moreover, if the variability of power output during normal 
operation is characterized through a Hidden Markov Model, 
the Viterbi algorithm can be adapted to estimate the most likely 
sequence of states from measures. 
 The effect of switching events range from voltage variations 
to frequency drifts in smalls systems or tie line overloads in big 
systems [3]. For example, the sudden disconnection of big 
amounts of wind power in Spain can overload tie lines with 
France [4]. The sudden disconnection of such big amounts can 
be due only to severe network disturbances that are spread 
along the grid. These events are unpredictable. 

The disconnection due to extreme weather is more gradual 
because of geographical diversity of turbines. Some wind 
farms will experience greater wind speeds. Inside a wind farm, 
the more exposed turbines would shut down first. Moreover, 
extreme wind can be forecasted with some accuracy and the 
spinning reserve can be appropriately increased [5, 6]. Some-
times, the maximum and minimum power in the interval is also 
measured. This extra information is very valuable to discern 
switching events from very fast changes in wind. 

IV.  STOCHASTIC TIME INTERPOLATION 
Sometimes, wind or power forecast is given only at some 

time horizons and the power output should be computed at 
intermediate instants between actual data and forecasted value. 
Time interpolation can be performed using maximum a poste-
riori probability criterion according to a Markov Model. 

The sequence of power output or wind speed and direction 
analyzed “as time goes by” is called the forward Markov proc-
ess and it has a probability transition matrix usually denoted by 
P and its elements pij, the transition probabilities from state i to 

state j. However, the sequence ordered in reverse time direction 
is another Markov process [7] with backward transition prob-
ability matrix P  and its elements, ijp the reverse transition 
probabilities from subsequent state i to the preceding state j: 
 /ij j ji ip pπ π=  (1) 

where iπ is the stationary distribution of the models and can be 
computed as the eigenvector for the unity eigenvalue of matrix 
P  (or P ) or alternatively, as any row of the limiting distribu-
tion for long time horizons, lim N

N→∞
P . 

A.  Input data 
x[0] = [x1[0], x2[0], …, xm[0]] = row vector of initial probabili-
ties of all m states. 
xforecasted[N] = [x1[N], x2[N], …, xm[N]] =  forecasted probabili-
ties of all states for time horizon N. 
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The expected system evolution is the weighted sum of a for-
ward and a backward Markov Process. In absence of relevant 
information, the weighting of the forward and backward proc-
ess at point k can be proportional to the distance to the initial 
and end of the time interval. Accordingly, the following formu-
lae expressing the probability of each state (P  is supposed 
invertible in wind power applications): 
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 The latter formula can be expressed more compact as: 
 

( )[̂ ]= [0] [ ] [0]N k
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N
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x x x P x P  (5) 

 If the interpolation between the measured and the forecasted 
values is done geometrically instead of arithmetically, a similar 
formula can be derived. 

The probability of any sequence of generation states can be 
computed as in chapter 7 of [8] (for example, probability of the 

(2)

(4)



 

sequence: full generation to no generation and then to full gen-
eration in successive time intervals). 

V.  STOCHASTIC POWER FLOWS 
Probabilistic power flow is a term that refers to power flow 

analysis methods that directly treat the uncertainty of electric 
load, generation and grid parameters. 

Classical approaches usually rely on simplifications such as 
linearization and independence of random variables. In many 
algorithms, the loads at each bus are assumed independent and 
normally distributed [9], which is quite unrealistic for renew-
able energy and consumer loads. However, dependence of sys-
tem parameters should be identified by principal component 
analysis and correlated random variables can be transformed 
into independent variables. Some authors [10, 11] proposed a 
linear approach with a rotational transformation to convert 
variables correlated into uncorrelated.  

In Monte Carlo time simulation, a large number of power 
flows should be run to achieve a good precision. The system 
optimization (spinning reserve, reactive power, optimal plan-
ning,…) usually requires an lengthy iterative process. 

VI.  MARKOV CHAINS IN STOCHASTIC POWER FLOW 
One important contribution of this article is the use of cases 

for describing distributed generators with non discrete opera-
tional states. In wind or solar energy, it is not practical to take 
into account each single wind turbine in the simulation of a big 
power system. The use of cases along with its frequency of 
occurrence is a compact way to condense the information of 
turbines’ operational point due to an uncontrollable primary 
energy, geographically related.  

Markov chains are very adequate for handling transitions be-
tween states (for example, the change from available to un-
available operational state and vice versa). The main drawback 
of using only a reduced number of cases is that they must be 
chosen so that all significant operational states are included in 
the set. Some cases must be included because they happen very 
frequently (states with high probability) whereas others can be 
rare but they can harness system stability. Therefore, no-
generation and full generation should be included as states. 

 Each combination of system states can be solved with a 
regular power flow and its probability and time variability can 
be obtained from the DTMC (Discrete Time Markov Chain). If 
the final grid state is dependent on the previous state, a con-
tinuation power flow should be run for each realizable state 
transition (squaring the number of required power flows). 

The joint probability distribution of random variables is im-
plicit in transition matrix P, which is estimated from real data 
or from physical models. This is a desirable feature, since 
many statistical grid methodologies [12] suppose that random 
variables are not correlated (independent variables) whereas 
renewable generation is quite correlated in small geographic 
areas and loads are also quite correlated. 

If each load and generator are discretized, for instance, into 

four states, the number of combinations are 4n, where n is the 
number of stochastic variables considered. If the number of 
stochastic variables n is big, grouping highly related observa-
tions is necessary. 

The combined use of discretization and cluster analysis al-
low to reduce the number of power flow runs compared to 
standard Monte Carlo Simulation [13]. The discretization and 
classification errors decrease considering more states. 

 
Fig. 2: Work flow for the proposed model . 

 
Some statistical computer packages select the number of 

cases comparing the decrease ratio of the classification error 
when the number of states m are increased (i.e., including a 
new group in the data clustering process) [14]. Therefore, the 
number of states can be selected depending on the desired clas-
sification precision, the non-linear behavior of the electric grid 
(plausible topological changes in the grid, voltage collapse) 
and the data available to adjust the model parameters. 
 If there is enough data, the system state can encompass load 
and generation. Load is very weakly correlated with wind and 
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wind generation and load can be regarded as independent ran-
dom variables. The load is dependent of daylight and therefore, 
solar power is partially correlated to load. In the example of the 
following part, load and generation would be modeled as non-
related Markov Chains and classified independently. The pos-
sible combinations of load and wind generation states are 
Nload·Nwind and tensor algebra can be used to compute effi-
ciently the properties of the total system (see chapter 9 of [15]). 
Note that if load and generation are expressed in their respec-
tive canonical basis, the combined matrix is a diagonal with the 
eigenvalues of load and generation. Since P̂  is the matrix P 
estimated from data, the probability of P̂  having two or more 
eigenvalues exactly the same tends to zero for increasing sets 
of data. Therefore, P̂  is diagonalizable in practice. Thus, the 
space requirements are proportional to the number of states and 
the matrix operations are trivial. 

Since states of power generation are treated as Markov 
Chains, the variability of the load will be modeled with 
Markov States also. Therefore, the generation and consumption 
patterns are classified in a limited number of states, which are 
equivalent to transform a multidimensional continuous system 
into a discrete one. This makes the system tractable and it al-
lows to obtain not only the probability density functions, but 
also the time variability. Therefore, it is possible to estimate the 
number of changes in tap changers, in capacitor banks and in 
the topology of the network. 

To sum up, this model requires running just as many power 
flows as states has the system and it allows to derive easily and 
rigorously the probability of events. Each case can be solved 
with a standard power flow, considering non linear elements 
such as topological changes in the grid that depend on the sys-
tem loads and generators. 

The moments of random variables such as line power flow, 
generation and voltages can be computed directly from the 
probabilities of the cases. The continuous distribution of the 
network can be easily obtained from the cumulative density, 
adjusting an interpolating function to the case points (the prob-
ability density function is the derivative of the interpolating 
function). 

Moreover, the allocation of spinning reserve due to wind 
power can be done using a Markov Decision Process. These 
processes can compute the optimum spinning reserve policy 
from the probability of wind generation variation, the cost of 
running the reserves and the eventual cost of insufficient re-
serve.  

VII.  SIMPLIFIED MODEL OF A WIND FARM TO ACCOUNT ACTIVE 
AND REACTIVE LOSSES INSIDE THE FARM 

The wind farm model employed in this section is based in 
[16, 17], where a fourth-pole equivalent representation is ob-
tained from the electrical elements, the distributed layout of the 
turbines, the stochastic nature of power output and small-signal 
analysis of the grid.   

In this paper, an approximate representation with a shunt 
admittance and series impedance will be used to simplify the 
analytic expressions . 
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Fig. 1: Original and concentrated model of a MV circuit in a wind farm. 
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Fig. 2: Model of the farm using a fourth pole realization. 

 
In the analyzed wind farms, the wind turbines are operated 

at a constant leading angle near ϕ0 ~ 0 at low voltage (LV) side 
to increase reactive bonus. Therefore, the reactive power Q 
show a quadratic relationship with active power P due to series 
inductances and shunt stray capacitance of cables. 
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Where  
Σ PWT = sum of active power of all turbines (positive when 

generating) 
Σ QWT = sum of active power of all turbines (positive if genera-

tors behave inductively) 
PPCC = Active power injected at PCC 
PPCC = Reactive power injected at PCC 
Rseries and Xseries are the real and imaginary part of Zseries, i.e. the 

resistance and reactance of the series equivalent. 
Gshunt and Bshunt are the real and imaginary part of Yshunt, i.e. the 

shunt conductance and susceptance. 
For instantce, Fig. 3 shows the quadratic PQ relationship for 

a wind farm during one year (15 minutes measures). Its series 
inductance is about 16 % p.u. due to cable impedances and 
turbine (Ucc=5,8 %) and farm transformers (Ucc=7,5 %). The 
graph is scattered since UPCC was variable and the value of ϕ0 
was adjusted at the end of each month to obtain the maximum 

(6)
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reactive bonus according to Spanish tariff. The other two wind 
farms show similar relationships.  

 
Fig. 3: PQ relationship of a wind farm at 220 kV node during one year 

 
Even though the voltage inside the farm varies, it is expected 

to be near to assigned value at normal operation (Uturbine ~ 1 
p.u.). This simplification is only a small source of uncertainty 
of the model since Zseries  are expected small p.u. (around 0.12 
p.u.) and Yshunt is expected to be big (at least 20 p.u.). Standard 
UNE 206005 [18] assess the reactive power ability of wind 
farms at Uturbine = 0,95 p.u., 1 p.u. and 1,05 p.u.  
 The parameters Rseries, Xseries, Gshunt and Bshunt of  (6) and (7) 
can be derived from measures or from simulations at calm (PWT 
= 0, QWT = 0) and full power with unity power (PWT = 1 p.u., 
QWT = 0) with 1 p.u. voltage at PCC: 
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 Taking into account the lines that connect the wind farms 
and the present unity power factor regulation at low voltage 
generator output, the reactive power of the three wind farms at 
PCC is: 

2
2 WT

PCC PCC WT 2
PCC

PQ 0,008 U + 0.0057 P +0.1537
U
Σ

≈ − Σ  (9) 

where Σ PWT  is the average per unit power of the wind turbines 
of the three farms. Note that (9) is estimated from nominal val-
ues of wind farm project whereas Fig. 3 (and similar graphs for 
the other two wind farms) are measured. The discrepancies are 
due to differences on real parameters compared to the values 
assumed, voltage at nodes of the wind farm bellow 1 p.u., op-
eration of wind turbines with power factor below unity and 
model approximations. 
 Stand-by losses are smaller than the resolution of a standard 
power meter, making it difficult to guest from measures. 
Therefore, active losses are computed from network and trans-
formers parameters. 
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 In this case, the equivalent parameters of the wind farm 
interior network are: 
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VIII.  ESSENCE OF THE NEW APPROACH TO 
PROBABILISTIC POWER FLOW 

In essence, stochastic load-flow (SLF) studies assumes that 
the long-term nodal generation and load vector varies about an 
expected operating point. The SLF algorithm is easily built 
from existing state-estimator algorithms [19], but the drawback 
of the SLF is that it handles only Gaussian  nodal probability 
density function (PDF) data for practical system sizes. 
 Another approach, commonly referred to as the probabilistic 
load-flow (PLF) algorithm, uses linear or quadratic approxima-
tions of the network behavior. For realistic system sizes, inde-
pendence of nodal power injections must be assumed in order 
to be able to apply convolution techniques [20]. 
 The new approach proposed in this paper does not rely on 
convolution, independence of random variables or linear be-
havior of the power system. The new method does rely on the 
fact that power injections are (highly) related and some pat-
terns can be noticed. 
 The parameters that affect demand curve are well established 
(week day or bank holyday, season, time of the day, weather 
temperature, type of consumers, …). Wind generation and 
other types of dispersed generation show strong links due to 
geographical and meteorological links. Therefore, the load and 
the disperse generation can be classified into a (reduced) set of 
behavior patterns. 
 Each combination of load and generation patterns represents 
the typical operation of the power system during some periods. 
Therefore, a standard (deterministic) power flow can be em-
ployed to solve each typical operation. Afterwards, a statistical 
analysis can be carried out to measure system performance and 
to optimize the control or the design of the system. 
  The essence of this new method is a Monte Carlo analysis 
where the cases are not randomly generated. First, data is clas-
sified to select the most representative cases to be simulated, 
giving further insight in the relationship of the players of the 
power system (i.e. data mining). Then, a conventional power 
flow is run with the values of the center of the class (if the pre-
vious state of the network is influential, a continuation power 
flow can be run for each pattern transition). Finally, the results 
of the simulation are statistically analyzed (usually, to optimize 
the design or the operation of the network). 
 Since there are very powerful classification algorithms that 
can handle efficiently very large amounts of data, the number 
of time-consuming power flow runs are highly decreased, re-
sulting in an important reduction of computing burden com-
pared to conventional Monte Carlo. Usually, the number of 
patterns is small enough for all cases to be simulated. 



 

 Other advantage of the proposed method is that electrical 
engineers are used to the simulation of cases (worst scenario, 
typical seasonal scenario,…). Therefore, this analysis is more 
familiar to them. 
 If the generation is not correlated at all, the procedure is still 
valid but the computing savings decrease. The number of cases 
to represent the operation of N generators with a given accu-
racy when they are not related is proportional to N2 and the 
method degenerate in conventional Monte Carlo. Recall that if 
the random variables were independent and the system behav-
ior were sufficiently linear (no parameter violations, bottle-
necks or topological changes in the network are expected) 
techniques such as convolution and two point estimates would 
be preferable [21]. 

The modelization of the system variability through Markov 
chains allows to obtain not only the static system performance 
but also its slow-dynamic behavior (slow enough for the alge-
braic power flow equations to remain valid).  
 Markov chains, in the way they are applied in this paper, can 
be thought as a system of stochastic differential equations 
which mimics the measured evolution of loads and generators. 
The network response to loads and generation evolution is 
computed based on the power flow equations. 

In fact, accounting the previous system state makes possible 
to include the system operator action, provided it can be speci-
fied mathematically (for example, with a set of fuzzy rules 
based on expert knowledge). 

IX.  CONCLUSION 
The classification of states can be based on power output, 

“unperturbed wind speed” and wind speed prediction, depend-
ing on available data and aim of the wind farm model. The 
performance matrix in Standard IEC 61400-12-3 can be used 
as emission matrix to relate wind and power in a wind farm 
using a Hidden Markov Model. The wind farm model can be 
used also as time interpolation or to guess if there is an outlier 
in the state (a switching event). 

The basic workflow to compute a stochastic power flow 
based in Markov Model using a regular program is presented. 
A simplified, steady state, quadratic model of the wind farm is 
shown for justifying the approximation of networks to PQ 
nodes and the interpolation between states. This quadratic 
model can be used also to estimate the reactive power for 
steady state. 
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