
 

 

Abstract— In this article, the model described in the first part 
of the series is applied to a system with three wind farms. The 
model is adjusted from one year data and some measures of the 
goodness of the fit are shown. In particular, the exponential dis-
tribution of the permanence time in states is contrasted with real 
data. The uncertainty of the transition probabilities and the esti-
mation of uncommon events are also studied. Some theoretical 
properties obtained from the model are also checked with experi-
mental data. 
 

Index Terms— wind power, Markov, variability. 

I.  INTRODUCTION 
Six wind farms totaling 251,3 MW are connected to a PCC 

at transmission level (220 kV). However, only data from 2/3 of 
the wind generation was available for this study. Therefore, 
short-circuit impedances at PCC have been scaled proportion-
ally to account that the other farms at PCC will probably have 
an output similar to the measured ones (per unit short circuit 
impedance at PCC is computed based on installed wind power 
instead of measured wind power). The equivalent layout is 
shown in Fig. 1.  

The effect of wind power variability is investigated on the 
voltage and the number of tap changes at the main transformer. 
The only available data is the active and reactive power output 
of the wind farm at connection buses. In case reactive power is 
not available or it is a parameter to be optimized, it can be de-
rived from a wind farm model.  

II.  MARKOV MODEL OBTAINED FROM  
CONVENTIONAL CLUSTERING 

Fig. 2 shows the array of all the bivariate scatterplots be-
tween active power of the tree farms, along with a univariate 
histogram for each active power. The classification of each 

point is codified with different colors in the scaterplots. Table I 
show the values of the centroids of each group (i.e., their mass 
center). Due to the fact that the wind farm power output is 
highly correlated, only eight states have been used in the clus-
tering algorithm obtaining 0.011 p.u. average classification 
error.  This example shows that if there is a high degree of 
correlation between variables, clustering can decrease notably 
the number of states to be considered (compare 8 to 43=64 es-
tates). In [1], an example of  power classification 14 wind 
farms from an area of about 100 km of diameter is shown.  

The input of the clustering process can be only the active 
power or also the reactive power of the wind farms. Generally, 
the inclusion of the wind farm reactive power Q does not de-
crease the performance of the clustering process since P and Q 
are usually highly related. For a fixed power factor regulation, 
the reactive power Q can be computed from the active power P 
with acceptable precision. 

If Q is controlled according to network parameters or a 
scheduled planning, a suitable approach is to model such rela-
tionships directly in the power flow run. Occasionally, Q can 
depend greatly on unmeasured parameters or unknown control 
policies and it must be statistically characterized. In those 
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Fig. 1: PSAT model for the tree wind farms, modeled as PQ nodes con-

nected to the PCC 



 

situations both P and Q are the inputs of the clustering process 
at the cost of increasing the number of groups to maintain the 
classification error. 

 
Fig. 2: Scatterplots between active farm power P and their histogram (classes 

are shown in blue, green, magenta, red, black and dark blue). 
 
Table I is the result of a conventional clustering algorithm 

whose inputs are the active P and reactive Q powers measured 
at the billing meter of three wind farms. If only active powers 
are used for the clustering process, the output is very similar 
because P and Q are highly related in this case. 
 

TABLE I 
CENTROIDS OF  P AND Q VALUES P.U. OF  THREE WIND FARMS 

# P1 Q1 P2 Q2 P3 Q3 Freq. 
1 0.0112 -0.0036 0.0119 -0.0100 0.0124 0.0009 37.9%
2 0.1092 -0.0061 0.1083 -0.0205 0.1156 0.0040 15.14%
3 0.2385 0.0024 0.2199 -0.0154 0.2402 0.0114 10.12%
4 0.4026 0.0206 0.3621 -0.0045 0.3995 0.0280 8.00%
5 0.5409 0.0435 0.5641 0.0203 0.5850 0.0587 5.97%
6 0.8152 0.1012 0.3269 -0.0035 0.6356 0.0702 1.77%
7 0.7624 0.0922 0.7238 0.0465 0.7711 0.1011 6.74%
8 0.9199 0.1354 0.8941 0.0781 0.9268 0.1437 14.37%

 

 
Fig. 3: Color graph of centroids of  P and Q powers of table I. 

Fig. 3 is a color graph representation of the centroids of the 
eight patterns obtained from the clustering process.  

Fig. 4 is the histogram of the eight patterns obtained from 
the clustering process from data of a year measured every 15 
minutes. The no-load and low load states are the more frequent 
(37.9% and 15.14%) followed by full load (14.37%). This is 
typical of low wind resource wind farms. The clustering algo-
rithm has selected the pattern #6, which corresponds to high 
generation at the first one, low generation at the second wind 
farm and middle generation at the third one. The selection of 
this pattern decrease the total classification error, even though 
it represents only 1,77 % of time operation. 

 
Fig. 4: Histogram of the states in data from a whole year operation. 

 

 The study of the transition rates for 15 minutes interval data 
reveals that the more stable states are the first and the last (full 
and no generation), whereas a transition to immediately upper 
or lower states are noticeable. However, transitions to non-
adjacent states are very low except in states 6 and 7 (these 
states correspond to different wind directions, which are very 
steady in the zone).  

The probability transition matrix P̂  is estimated from real 
data in Table II. Fig. 5 shows that transitions with immediately 
upper and lower states are relatively frequent (light gray), but 
jumps to far states are scarcely probable (shades of white). 
Note that the rows correspond to the initial state and the col-
umns correspond to the state of the next interval. Thus, the 
probability of going from state 5 to state 7 in one step is stored 
in row number 5 and column number 7. 

State 6 reflects the operation of farm #2 at unusual low 
power (only 1,77 % of occurrences from Fig. 4). The probabil-
ity transition matrix shows that jumps between states 5 and 7 
states are more probable than jumping to the adjacent state 6 
(unusual low power at wind farm 2 and high power at farm 1).  

The unobserved transitions from state i to j of Table I, 
Fij = 0, can be due to real unfeasibility or to the limited avail-
able data (for example, infrequent transitions of sporadic 
states). An improved estimation can be employed if unob-
served transitions are feasible even though they have not been 
observed because they are very rare events and data record, 
short. 

     P1               Q1             P2             Q2               P3             Q3 (p.u) 



 

If Fij = 0, the transition probability îjp  is bound to [0,1–
( )

1
1 iFβ− ) with confidence level β (Fij is binomially distrib-

uted) [2]. Thus, the null elements of îjp could be substituted by 
a value in the interval [0, ( )

1
1 1 iFβ− − ) and the rest of the 

elements rearranged to make 1ˆ 1m
j ijp=Σ = . However, the use 

of a random point in the interval introduces bias in the estima-
tion (usually, pessimistic overestimation of extreme variabil-
ity).  

The unbiased estimation of  îjp  is zero for unobserved tran-
sitions, but its uncertainty is inversely proportional to the num-
ber of occurrences of state Fi because their transition probabil-
ity îjp  is bound to [0, ( )

1
1 1 iFβ− − ) ≈ [0, ( )1 1iF Ln β−− − ) 

with confidence level β.  

 
Fig. 5: Color map representation of transition matrix P̂ . 

 

TABLE II 
INITIAL PROBABILITY TRANSITION MATRIX P̂  

to 
 

From 
state 

1 2 3 4 5 6 7 8 

1 0.9510 0.0472 0.0015 0.0001 0.0002 0 0 0 
2 0.1201 0.7646 0.1074 0.0064 0.0006 0.0006 0.0004 0 
3 0.0025 0.1693 0.7004 0.1156 0.0068 0.0034 0.0014 0.0006
4 0.0011 0.0057 0.1565 0.6899 0.1216 0.0181 0.0057 0.0014
5 0.0005 0.0005 0.0110 0.1760 0.6419 0.0324 0.1359 0.0019
6 0 0.0016 0.0144 0.0674 0.1124 0.6116 0.1541 0.0385
7 0 0.0017 0.0008 0.0051 0.1284 0.0363 0.6755 0.1521
8 0 0 0 0.0004 0.0010 0.0044 0.0721 0.9221

 

Characteristic times of the system (eigenvalues of P̂ ) and 
limiting distribution of states are continuous functions of ma-
trix elements and the effect of almost zero elements are not 
important. But a rare transition can have very high cost associ-
ated in the optimization algorithm (for example, a sudden loss 
of all wind generation which can cause a blackout in an island). 
Therefore, a rare transition might dominate optimization. 

There is a tradeoff between the number of classification 
states and the uncertainty of transition matrix. The use of a 
bigger number of states decreases classification error but in-
creases uncertainty of infrequent transitions. 

If there is a bottleneck or an important topological change 
when an atypical generation pattern occurs, then a big number 
of states is advisable because increasing the uncertainty in P̂  is 
acceptable. If there are no bottlenecks or violations out of the 
ordinary and the main purpose of the study is the effects of 
exceptional events (for example, assessment of contingencies, 
optimization of the spinning reserve allocation,…), then a re-
duced set of states can be enough.  

The unobserved transitions are in italics in Table II and 
Table III. Their bounds range from 16p̂ ∈ [0, 2·10-4) to 61p̂ ∈  
[0, 48·10-4)  for 95% confidence level. For a better estimation 
of such uncommon events, similar transitions can be joined 
(for example, estimate together the transition form low power –
states 1 or 2– to high power –states 6, 7 or 8–). Therefore, tran-
sition probability from states {1, 2} to {6, 7, 8} would be as-
sumed to be the same. The transitions which are similar can be 
inferred from the cluster dendrogram. Note that the numbers in 
italics are estimates of unobserved transitions based in avail-
able knowledge and some other elements have been adjusted 
for each row to sum 1. 

TABLE III 

PROBABILITY TRANSITION MATRIX P̂   
(ADJUSTED JOINING SIMILAR INFREQUENT TRANSITIONS) 

to 
 

From
state

1 2 3 4 5 6 7 8 

1 0.9510 0.0472 0.0013 0.0001 0.0001 0.0001 0.0001 0.0001
2 0.1201 0.7643 0.1074 0.0064 0.0006 0.0006 0.0003 0.0001
3 0.0025 0.1693 0.7004 0.1156 0.0068 0.0034 0.0014 0.0006
4 0.0011 0.0057 0.1565 0.6899 0.1216 0.0181 0.0057 0.0014
5 0.0005 0.0005 0.0110 0.1760 0.6418 0.0324 0.1359 0.0019
6 0.0001 0.0015 0.0144 0.0674 0.1124 0.6116 0.1541 0.0385
7 0.0003 0.0015 0.0008 0.0051 0.1284 0.0363 0.6755 0.1521
8 0.0001 0.0001 0.0001 0.0002 0.0010 0.0044 0.0720 0.9221

 

III.  SYSTEM DYNAMICS AND EQUIVALENT STOCHASTIC 
DIFFERENTIAL EQUATIONS 

The use of Discrete Time Markov Chains, (DTMC) implies 
that the permanence time in a state is distributed geometrically 
or as an exponential random variable if the time is considered 
continuous (Continuous Time Markov Chains, CTMC).  

For DTMC, the probability of being in state i during k meas-
uring intervals before changing to other state is a geometric 
random variable with parameter p = 1 - pi,i , where pi,i is the i 
diagonal element of the probability transition matrix P̂  of 
Table III. The number of intervals k in a time interval t is k = 
t·f, where f  is the frequency of the recorded data. 

The probability of permanence in state i more than k measur-
ing intervals (k = t·f) is the complementary cumulative den-
sity function of a geometric random variable: 

/
, ,Pr ( X[ ] , 0,..., | X[0] ) itk t f

i i i ij i j k i p p e τ−= = = = = =  (1) 
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Fig. 6:  Probability of permanence more than a given time in each state (com-
plementary cumulative distribution function of permanency time) (x axis scaled 
to the characteristic time iτ = 1/ln(pii) ). 

 
The average permanency time iμ  in state i can be computed 

using (2)  
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Wind power measures are the average value during a time 
interval. But if instantaneous wind power is considered, wind 
power and time are continuous variables. Therefore, the mean 
value computed with continuous time is  (2)  
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The characteristic time iτ  can be seen as the average time 
spent in a state i before leaving it or, alternatively, as the time 
where the probability of remaining in state i  at time t = iτ  is 
1/e = 36,79%. 

( ) ( )1
, , , ,

=Pr (X[ ] ; X[ ] , 0,..., 1 | X[0] )

· 1 · 1/ 1k k
i i i i i i i i

Probability (staying exactly k intervals in state i)
k i j i j k i

p p p p−

=
≠ = = − = =

= − = −

 (4) 

The expression (4) can be rewritten approximately in terms 
of characteristic time of the state iτ  

( ), ,
1· 1/ 1 exp exp 1

1exp ln exp 1

k
i i i i

i i

i i

Probability (staying exactly k intervals in state i)

kp p
f f
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f f

τ τ

τ τ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − = − − =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
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 Therefore, the graph of the relative occurrences of staying k 
intervals in state i is a straight line in a semi-logarithmic plot 
with slope ,1/ ln( )i ip−  and intercept with vertical axis 

,1/ 1i ip −  . In order to check the goodness of the fit, Fig. 7 
shows the probability mass distribution of permanency time in 
each state with the horizontal axis is scaled by ,1/ ln( )i ip−  and 
with the relatives occurrence scaled by ,1/ 1i ip − . In Fig. 7, the 
exp(-t) function (a straight dashed line) has been included to 
compare experimental data with theoretical distribution. Since 
states 1 and 8 have long characteristic times and experimental 
data is limited to one year, the occurrence of long periods with 
the same states is scarce and it shows a high variability (for 
example, the permanence during exactly 80 quarters of hour in 
state 1 can happen from 0 to 3 times in a year). 

 
Fig. 7:  Probability mass distribution of permanency time in each state (x axis 
scaled to 1/ln(pii) and y axis scaled to 1/pii-1). 

 P̂  contains much more information than just the distribution 
of time permanence in states. The rest of this section will look 
into the dynamics of the system. Note that states are not 
sharply defined and time is not discrete because wind farm 
power output is a continuous varying property.   
 In the discrete case, a DMTC corresponds to the forward m 
order difference equation (6) with the initial probability distri-
bution x(0) = [x1(0), x2(0), …, xm(0)] as initial condition. P 
is the one-step transition probability matrix [3]. 
 ( 1) ( )k k+ =x x P  (6) 
 Therefore, the probability distribution k instants later can be 
computed as: 
 ( ) (0) kk =x x P  (7) 

The stochastic matrix P has a dominant eigenvalue λ1= 1 
and it is irreducible, recurrent and acyclic in wind farm charac-
terization. Since P̂  is the matrix P estimated from data, the 
probability of P̂  having two or more eigenvalues exactly the 
same tends to zero for increasing sets of data (eigenvalues are 
continuous functions of matrix elements). Therefore, P̂  is di-
agonalizable in practice.  
 The solution (7) can be easily expressed in the coordinates 
specified by the left eigenvectors Y of 1ˆ ˆ( )idiag λ−=P Y Y , 
where ˆ( )idiag λ is the diagonal matrix containing the eigenval-

(2)

(3)



 

ues îλ of P̂ .  The first eigenvalue is 1̂λ = 1 and the rest are 
smaller.  

If the state probabilities are expressed in the canonical coor-
dinates specified by basis Y : ( ) ( )k k=v x Y , then the dynam-
ics of the system are much simpler: 

[ ]1 2(0), (0), ..., (0)ˆ ˆ( ) (0) ( ) ( )m

k k
i iv v vk diag diagλ λ⎡ ⎤= =⎣ ⎦v v  (8) 

 In other words, the dynamics in these coordinates can be 
expressed in independent scalar equations corresponding to 
first order systems of characteristic time îτ  : 

 ˆ ˆ ˆ( ) (0) (0) (0)·exp( / )k t f
i i i i i i iv k v v v tλ λ τ= = = −  (9) 

 1ˆ ˆlni
if

τ
λ

−
=  (10) 

The first row of Y  is the limiting probability, 1π  or just π  
(eigenvector corresponding to unity eigenvalue). When the 
initial probability distribution is 1π , the distribution doesn’t 
change in time ( ˆ 1/ 0iτ = = ∞ ). The rest of distributions iπ  
decay with characteristic time îτ  (at ˆ3· it τ= , the probability 
distribution iπ  has faded away to 5% of the initial value). 

The forward equations of a CMTC correspond to the Chap-
man-Kolmogorov Nth order differential equation (11). Q is the 
generator matrix of the CMTC. Q can be estimated as Q̂  = f 
ln( P̂ ) ∼ f ( P̂ -I), ln is the matrix natural logarithm, I is the 
identity matrix and f  is the frequency of recorded data. 

 ( ) ( )d t t
dt

=x x Q  (11) 

Its solution is ·( ) (0) (0)t f tt e= =Qx x x P , where teQ  is the 
exponential of matrix Q t. If P̂  is diagonalizable, Q̂  is also 
diagonalizable and it has eigenvalues ˆ ˆln 1/i if λ τ=  and the 
same eigenvectors than P̂ . Therefore, the equations of con-
tinuous time dynamics in the canonical coordinates of Q̂  (12) 
are equivalent to (9), the discrete case [4].  
 ˆ ˆ( ) (0)·exp( ln ) (0)·exp( / )i i i iv t v t f v tλ τ= − = −  (12) 

Therefore, DMTC and CMTC are equivalent. The computa-
tional burden is smaller for DMTC and discrete data is better 
suited for P̂  estimation. CMTC gives deeper insight on system 
dynamics, mimics better its continuous behavior and it can be 
used to derive easier some properties of the system. Moreover, 
CMTC approach is more familiar for control engineers.  

Note that other numerical approaches (different from eigen-
value calculus) can be computational more efficient in some 
applications [5]. 

IV.  PERMANENCE TIME IN A STATE 
The use of Markov Chains implies that the permanence time 

in a state is distributed geometrically if time is discretized or, 
equivalently, as an exponential random variable if the time is a 
continuous variable.  

Fig. 8 confirms the assumption that a Markov Chain can ap-
proximately model the behavior of the system since the distri-
bution of permanency time in one state approximately corre-
sponds to a geometric random variable (for DMTC) or expo-
nential random variable (for CMTC). This can be checked in 

Fig. 8, where the probabilities of remaining in the same state 
versus time shows an exponential relationship (i.e. distribution 
is approximately a straight line in a semi-log plot whose slope 
corresponds to the inverse of the standard characteristic time).  

 
Fig. 8:  Probability mass distribution of permanency time in each state (normal-
ized scaling time by state characteristic time). 

 

The main discrepancies are at the distribution tail in rare 
long-lasting periods at full or no generation (states 1 or 8) due 
to very stable meteorological situations. For example, period of 
almost 7 days in state 1 (calm) have occurred in one year data. 
These outliers caused states 1 (calm) and 8 (full generation) 
have overestimated characteristic time. 

The geometrical distribution is a special case of negative bi-
nomial distribution with parameter r = 1. A negative binomial 
distribution has been adjusted and parameter r ranges from 0,5 
to 3,5, depending on the state number (the 95% confidence 
interval did not include r = 1). The negative binomial distribu-
tion is an alternative to the geometric distribution when the 
occurrence frequency (or transition probability) varies in time.  

The deviation of permanence time from geometrical distri-
bution is due to: 
o The state transition rates depend physically on meteoro-

logical conditions and on wind farm availability. For ex-
ample, meteorological stable conditions at calm or high 
winds can eventually last long periods. 

o The “hard” classification of a measurement into a solo 
state increases observed transitions in the state, especially 
if the measurement is near two cluster borders. This can 
explain that permanence times of states 2 to 7 decrease 
steeper than exponential model (r ranges from 2 to 3). 

o The estimation of system characteristic times with formu-
las (4) to (1) is an oversimplification. In fact, the Markov 
Chains are “centrifugal” in the sense that when the system 
is at partial generation, the system tends to evolve to the 
first (calm) or last (full power) states. This can explain 
why the first and last states show a slower decrease of 
permanence times compared to exponential (geometrical) 
distribution.  

o The permanence time in a state is a concept easy to visual-
ize but it does not correspond to the physical behavior: the 



 

power output of the farms is continuously evolving. Fig. 8 
shows the time that power output is bound to cluster area, 
but system dynamics is more complex. 

o The concept of permanence time is not straightforward in 
fuzzy clustering. The membership level of an observation 
to a state can increase or decrease from an instant to the 
next. Therefore, the system can be though to stay in the 
state with probability equal to the minimum of the pre and 
post membership levels. Thus, a consistent stochastic 
measure of time permanence must be defined (for exam-
ple, the time interval where the membership is above a 
threshold level can be considered the permanence time 
with probability equal to the mean value of the member-
ship to that state).  

o An adequate test to check if Markov Chain is a suitable 
model must employ full dynamics, not only the perma-
nence in a state that is physically evolving. 

 
TABLE IV 

AVERAGE PERMANENCE IN STATES (IN HOURS) 

St
at

e Maximum 
likelihood 
estimation 

Lower 
95% con-
fidence 
interval 

Upper 
95% con-
fidence 
interval 

Equation 
(2) 

( ),

1
1 i ip f−

 
Equation 

¿¿??? 

1 5.1066 4.7362 5.5224 5.1066 5.3839 
2 1.0621 1.0056 1.1235 1.0621 1.1834 
3 0.8345 0.7866 0.8870 0.8345 0.9544 
4 0.8065 0.7555 0.8628 0.8062 0.9276 
5 0.6981 0.6507 0.7508 0.6981 0.8122 
6 0.6436 0.5696 0.7331 0.6436 0.7357 
7 0.7705 0.7188 0.8280 0.7705 0.8838 
8 3.2029 2.9084 3.5448 3.2112 3.4453 

 
An alternative to check model accuracy valid for “hard” 

clustering is to compare the theoretical and observed distribu-
tion starting from each state for various time spans (the error 
measure can be the mean squared difference of theoretical and 
observed histograms). When fuzzy clustering is used, each 
time the system is in a combination of states up to a certain 
degree and there is not possible to compute histograms in the 
usual way.  

A measure of fit goodness that works even with fuzzy clus-
tering is to compare the transition matrix for a time span of k 
measuring intervals computed from the one-step transition ma-
trix P̂  power k times and estimating a new matrix kP  based 
on transitions from initial states to states k intervals forward. 
The measure error can be ˆ| ( ) |/k

k s−P P   
However, the system stays occasionally long time in full or 

no generation due to stable meteorological conditions which 
are maintained for long time. Moreover, if the wind farm is 
unavailable for long time, it can distort the distribution of no 
generation. This is the reason that the actual permanence times 
are somewhat different from the times computed from transi-
tion matrix. 

Fig. 9 shows the residence times, where it can be seen that 
zero and full generation are the most stables states. In fact, the 
permanency time in such estate is computed as it were a Pois-
son process (permanency time exponentially statistically dis-
tributed). This is characteristic of the Markov chain approach 
used to characterize wind variability. 

 
Fig. 9: Average permanency time in each state (in hours) from (2).  

V.  CONCLUSIONS 
The solution to a Markov Decision Process can be expressed 

as a policy (PI), which gives the action to take for a given wind 
farm state, regardless of prior history. Once a Markov decision 
Process is combined with a policy, this fixes the action of the 
control for each state and the resulting combination behaves 
like a Markov chain [6, 7]. The design and sizing of ancillary 
services can also be optimized. 
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