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Resumen en espanol de la tesis

Wind Power Variability In The Grid

(Variabilidad De La Potencia
Edlica En La Red FEléctrica)

La presente tesis ha analizado las principales caracteristicas de la variabilidad de la
energia edlica. Esta tesis se ha centrado en proporcionar un marco teérico para el
analisis sistematico de la variabilidad de la energia e6lica en el tiempo y en el espacio.
El enfoque es principalmente empirico, basado en el procesamiento de datos y el
concepto de viento equivalente. Junto con los modelos, se han realizado programas para
el tratamiento de los datos registrados —véase, por ejemplo los graficos en los anexos—.
El nudcleo de la tesis es el analisis de datos experimentales y su modelizacion, con
especial énfasis en la variabilidad de la potencia edlica generada.

Algunos modelos de la estructura del viento en el espacio y el dominio de la frecuencia
son extensiones de algunos modelos disponibles en la literatura. Las variaciones
estocésticas han sido analizadas en el dominio de la frecuencia y en el dominio del
tiempo.

La representacion de la frecuencia de las fluctuaciones del viento facilita la estimacion
de la potencia de suavizado debido a la estructura de la turbulencia y las caracteristicas
ciclicas. Por una parte, la representacion ortogonal de un proceso estocastico normal es
su transformada de Fourier. Por otra parte, el enfoque de dominio del tiempo esta mas
relacionado con la integridad estructural, el sistema de control, la evolucién del tiempo,
eventos excepcionales como rachas y el error de la prediccion. Cuando ha sido posible,
se ha combinado el andlisis temporal y frecuencial utilizando espectrogramas.

El programa WINDFREDOM ha sido desarrollado para comprobar el grado de
aproximacion de algunos modelos empiricos de la variacion del viento a lo largo del
tiempo y el espacio.

El programa EQWIGUST ha sido desarrollado para estudiar las variaciones extremas
del viento equivalente. Puesto que las fluctuaciones del viento muestran un
comportamiento de la multiplicacion, se proporcionan dos transformaciones simples
para compensar el comportamiento no Gaussiano del viento.

La variabilidad de la energia generada depende principalmente de la turbulencia y la
evolucion del clima. Ademas de la turbulencia y de las desconexiones, las vibraciones
mecanicas y a las oscilaciones eléctricas producen fluctuaciones rapidas de potencia.

Estas peculiaridades han sido caracterizadas a partir de mediciones, pero los resultados
son especificos para el modelo de la turbina y las condiciones atmosféricas
momentaneas. Por lo tanto, el analisis puede ser sistematizado, pero las conclusiones de
las mediciones son dificiles de generalizar.
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La prediccion del viento y la desconexion intempestiva de la turbina son fendmenos
muy especificos, fuera del &mbito de la tesis. Sin embargo, la distribucion del error de
prediccion y la probabilidad de una desconexion de la turbina son consideradas en el
modelo propuesto de la variabilidad de la energia edlica, basado en cadenas de Markov.

La caracterizacién fundamental de la variabilidad del viento se presenta en el segundo
capitulo. Las fluctuaciones del viento medidas con un anemdémetro habitualmente se
caracterizan por la variacion en la densidad espectral del viento. La estructura espacial
de las fluctuaciones del viento suele ser descrita por la coherencia de viento, que es el
coeficiente de correlacion en el dominio de la frecuencia espacial.

La estructura espacial de las turbulencias afecta al par aerodinamico de torsion
experimentado por la turbina. Las oscilaciones del par de torsion debidas a la
turbulencia pueden estimarse a partir de la estructura espacio-temporal del viento.
Varios modelos de fluctuaciones se han obtenido y comparado con la literatura.

De hecho, la gran superficie barrida por las palas implica que las oscilaciones
turbulentas muy localizadas afecten poco al par de la turbina, aunque pueden excitar
modos de vibracion de la maquina. En general, la dimension espacial de las
fluctuaciones del viento parece ser inversamente proporcional a su frecuencia. Por lo
tanto, la relacion entre las oscilaciones medidas con un anemometro y las oscilaciones
de torsion aerodinamica puede estimarse. Ademas, el viento equivalente se define como
el que produce los mismos efectos que el campo vectorial de viento real. Las
variaciones del par en funcién del viento se han calculado con la teoria de elementos de
pala en el anexo C.

La velocidad equivalente del viento contiene: una componente estocastica debido a los
efectos de la turbulencia y una componente rotacional, debida a que las palas barren un
viento variable con la altura y con la perturbacién provocada por la presencia de la torre
de la turbina. Segun la aplicacion en la que se utilice la velocidad equivalente del
viento, puede ser necesario incluir componentes adicionales debido a las vibraciones
mecénicas y eléctricas presentes en la turbina.

La comparacion entre las mediciones de la turbina y las simulaciones es complicada por
la incertidumbre de la distribucién del viento. Normalmente la velocidad del viento se
mide en un solo lugar, por lo que no se puede comparar directamente las medidas y las
simulaciones de la turbina. Sin embargo, las densidades espectrales de las varianzas del
proceso medido y simulado si se pueden comparar directamente porque son propiedades
estacionarias del proceso.

El viento equivalente puede considerarse una version filtrada del viento medido con un
anemdmetro. El par de torsion aerodindmico real no puede ser reconstruido a partir de
una medida de un solo punto debido a la naturaleza estocéstica del viento y a las
complejas vibraciones de la torre. Sin embargo, las principales caracteristicas
estadisticas del par -o del viento equivalente- si se pueden predecir.

El concepto de viento equivalente se puede extender a un parque eélico o incluso a un
grupo de turbinas de viento. El filtrado equivalente del parque se puede definir a partir
de las densidades espectrales de la varianza de la potencia del parque y de una turbina
significativa. Este filtro estima el suavizado debido a la diversidad espacial de la
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turbulencia a través de un parque edlico. El filtro equivalente de un conjunto de parques
también se define de forma anéloga al filtro de parque.

Un concepto interesante es el viento de suavizado en un area. Si existen varios parques
edlicos distribuidos mas o menos uniformemente en una zona, el nivel de suavizado
puede estimarse a partir de las dimensiones de la region y los parametros de la
turbulencia.

Si bien las fluctuaciones lentas de la potencia generada por turbinas estan
fundamentalmente relacionadas con el viento, las fluctuaciones rapidas se deben en gran
parte a las vibraciones de la turbina y del generador con su control electrénico.

Dado que las vibraciones de la turbina y del equipo eléctrico varian notablemente de un
modelo a otro, el cuarto capitulo de esta tesis propone una metodologia para caracterizar
las oscilaciones observadas experimentalmente. Los fundamentos de la metodologia se
explican en el capitulo cuatro y se dan algunos ejemplos en el anexo B. También se
presenta una revision de la literatura sobre la densidad espectral de potencia (PSD) y los
periodogramas de la potencia edlica.

Las fluctuaciones de potencia entre la frecuencia de la primera torre (por lo general
algunas décimas de hercios) y la frecuencia de la red dependen de las caracteristicas
especificas de cada maquina. La prediccion realista de estas fluctuaciones requiere un
modelo muy completo de la turbina, que suele ser confidencial y privado. Incluso
disponiendo de un modelo completo de la turbina, la validacién de modelo con medidas
experimentales no es trivial.

Una contribucion de este capitulo es la caracterizacion experimental de las fluctuaciones
de energia de tres turbinas comerciales. Las variaciones de potencia durante la
operacion continua de las turbinas son caracterizadas experimentalmente en intervalos
de tiempo que abarcan desde el periodo de la red hasta minutos. Se presentan algunas
mediciones experimentales en el dominio conjunto tiempo-frecuencia para comprobar el
modelo estocéstico.

La admitancia del parque edlico se define como el cociente de las oscilaciones de un
parque eodlico frente a las fluctuaciones de una sola turbina, suficientemente
representativa del funcionamiento del resto del parque. Un modelo frecuencial vincula
el comportamiento global de un gran ndmero de turbinas a la operacion de una sola
turbina.

La naturaleza de la turbulencia y de las vibraciones son diferentes. La turbulencia es un
proceso estocastico de amplio espectro sin frecuencias caracteristicas. El equivalente de
las fluctuaciones del viento, debido a la turbulencia son procesos estocasticos de banda
ancha sin frecuencias caracteristicas. Sin embargo, las vibraciones y oscilaciones
eléctricas son procesos estocasticos casi cicloestacionarios, generalmente con varias
frecuencias caracteristicas de oscilacion.

Las variaciones de potencia medida son el resultado de la turbulencia, las vibraciones
mecanicas y las oscilaciones eléctricas, que son procesos estocasticos con propiedades
diferentes.
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Sin embargo, un pargue edlico tiene normalmente mas de cuatro turbinas y la suma de
las potencia de mas de cuatro turbinas converge aproximadamente en un proceso
Gaussiano, a pesar de la naturaleza del proceso.

Una demostracion visual del fendmeno de cancelacién parcial de oscilaciones se ha
desarrollado, basado en la rotacion de las turbinas. Se suele asumir que la presencia de
la torre produce un descenso de par aerodinamico cuando la pala esta delante de la torre.
Este fendmeno es complejo, ya que la perturbacion de la torre interacciona con las
vibraciones de la turbina. Por conveniencia, ese déficit momentaneo de potencia se
representa en el quinto capitulo como un pulso periddico y determinista.

Dado que la velocidad de la turbina varia ligeramente de una a otra, las posiciones de
las palas no se sincronizan. Como mucho, varias palas pueden pasar delante de su torre
de forma casi simultanea de forma eventual. El paso de las palas delante de su torre se
ha modelado como un proceso de Poisson. La probabilidad de las variaciones de
potencias debidas a este fendmeno en un parque se deriva en el quinto capitulo.

De hecho, las vibraciones y las oscilaciones eléctricas tienen una naturaleza casi
cicloestacionaria, relativamente deterministas y periddicas. No obstante, la potencia
agregada converge a un proceso de Gauss en un amplio rango de frecuencias. En un
parque edlico tipico, la densidad espectral de varianza se agrega cuadraticamente en el
rango de un centésimo de Hertz hasta la frecuencia de la red. Por lo tanto, la amplitud
de las oscilaciones de la potencia, relativa a la potencia media del parque, es
inversamente proporcional al nimero de turbinas en esas frecuencias.

En el rango de frecuencias muy bajas, las oscilaciones son dominadas por turbulencia
relativamente  coherente, que tiene un comportamiento fundamentalmente
multiplicativo. Las variaciones de potencia de baja frecuencia en el parque tienen mayor
amplitud porque estas oscilaciones presentan una menor variabilidad espacial. Ademas,
las desviaciones lentas tienen una distribucion aproximadamente laplaciana mientras
que las variaciones de mayor frecuencia tienen una distribucién mas gaussiana. Este
comportamiento laplaciano se representard mediante una transformacion biyectiva de un
proceso normal.

Un modelo flickermeter aproximado en el dominio de la frecuencia se presenta también
en el quinto capitulo para demostrar la poca relevancia de la emision de flicker a nivel
del parque. En las mediciones del parque, el nivel de parpadeo es muy bajo debido a la
cancelacion parcial de las oscilaciones y a la fortaleza de la red en el punto de conexién.

La densidad espectral del viento determina el comportamiento estocastico del viento,
siempre que se pueda considerar un proceso Gaussiano estacionario. En el sexto
capitulo, esta densidad espectral se usara para analizar las caracteristicas de las
variaciones del viento en el dominio del tiempo y para sintetizar las muestras de viento
equivalente.

Los mecanismos que generan la turbulencia son analizados pues estan estrechamente
relacionados con la forma de las rachas y la distribucion de las variaciones de velocidad.
Las diferencias de viento respecto de la media tienen, aproximadamente, una
distribucion de Laplace, que indica que hay un cierto efecto multiplicativo implicado en
las desviaciones extremas.
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La generacion estocastica de rafagas es una valiosa herramienta para obtener muestras
aleatorias de viento con ciertas caracteristicas. El fundamento de este método es la
simulacion estocéstica condicionada de los procesos, que se basa en las distribuciones
condicionales. Una transformacion biyectiva se define para obtener la distribucion
experimental. Algunas transformaciones mas sofisticadas pueden ser utilizadas para
mejorar el ajuste de la forma y la probabilidad de ocurrencia de los datos
experimentales. Por ejemplo, en algunos estudios se ha observado que la rampa frontal
real de la rafaga es, en promedio, mayor que la rampa de cola. Sin embargo, las rafaga
predichas son simétricas cuando se visualizan hacia delante y camara atrés.

Las réfagas tipo pico y tipo rampa se sintetizan en el dominio de la frecuencia utilizando
la expansion de Karhunen-Loeve y la teoria de la simulacion condicional de los
procesos normales. Un método aproximado se presenta para evitar dificultades
numéricas que aparecen cuando se generan muestras de gran longitud.

El concepto de la rafaga de viento equivalente se puede extender a un area geogréafica y
puede servir para calcular la maxima variabilidad de la potencia esperada en una region.

El programa EQWIGUST genera rafagas de viento equivalente y estima su frecuencia
de ocurrencia.

La variabilidad de la velocidad del viento puede ser modelada durante intervalos cortos
con la teoria clasica de procesos normales estacionarios, que se ha presentado en los
capitulos anteriores. Sin embargo, el viento es un proceso no estacionario y esto es
necesita ser considerado para horizontes mas de una hora.

Dado que las variaciones del viento muestran un comportamiento bastante
multiplicativo, el método de Aproximacién de Markov es adecuado para modelar el
comportamiento estocastico no lineal del viento. Esta técnica es una poderosa
herramienta para optimizar el control del sistema, especialmente si la distribucién del
error de las predicciones numeéricas del tiempo estan disponibles. En caso de que no se
disponga de predicciones metereoldgicas, las cadenas de Markov se pueden utilizar para
generar predicciones probabilisticas basada en el comportamiento del sistema observado
previamente.

Muchos dispositivos en la red son discretos y su control no puede ser linealizado porque
su conmutacion innecesaria puede producir su desgaste prematuro o perturbaciones
evitables en la red. El disefio y el control dptimos se pueden alcanzar mediante la
asignacion de costos a la permanencia del sistema en el mismo estado y al salto a otros
estados.

Un procedimiento para discretizar el sistema generando un nimero reducido de estados
se presenta en el capitulo 7, basado en un sistema de agrupacion y clasificacion de las
observaciones.

Una aplicacion potencial de este método se encuentra en el calculo probabilistico de
flujo de cargas. Otra aplicacion es el disefio 6ptimo y el control de un sistema aislado
con generacion renovable y almacenamiento.
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Contribuciones originales de la tesis

Algunas de las contribuciones provienen de la experiencia adquirida en el disefio,
construccion, instalacion y analisis de un registrador de datos multipropdsito que, a dia
de hoy, esta disponible comercialmente. El trabajo realizado en el desarrollo de este
registrador de datos se puede ver en algunos de los articulos citados en la seccion de
publicaciones al final de la tesis. El desarrollo de un analizador de redes basado en un
PC en el afio 1998, que ademas almacenaba de forma sincronizada datos meteorolégicos
y de la turbina o del parque eolico, fue un logro. Aunque hoy en dia el registrador de
datos es bastante diferente del original, la experiencia adquirida con los primeros
prototipos, desarrollados durante los primeros afios de esta tesis, ha sido fundamental
para que el registrador multifuncional AIRE estuviera disponible comercialmente.

El tercer capitulo calcula el suavizado del viento equivalente a partir de las dimensiones
del area considerada y de los parametros de la turbulencia. El viento equivalente ha sido
utilizado también en la simulacion de modelos de conjuntos de parques edlicos. Sin
embargo, la estimacion del suavizado del viento equivalente de un parque edlico o de
una zona geografica a partir de la coherencia del viento es una contribucion importante
de esta tesis.

Una nueva metodologia para la caracterizacion de las oscilaciones medidas en la
potencia de una turbina de viento o de un parque e6lico ha sido propuesta en el capitulo
cuatro.

El quinto capitulo muestra la convergencia a un proceso gaussiano de las oscilaciones
globales debido a las vibraciones, la turbulencia y las fluctuaciones eléctricas. Este
modelo también muestra la poca relevancia de la emisién de flicker de los parques
eodlicos.

Las réfagas de viento equivalente se calculan en el sexto capitulo, y pueden servir para
calcular la méxima variabilidad de la potencia e6lica esperada en una region.

El séptimo capitulo presenta la aplicacion del método de Aproximacion de Markov para
optimizar el disefio del sistema y el control en dos casos.

El anexo A se muestra un modelo estadistico simplificado para representar a un parque
edlico en un estudio de flujo de cargas, teniendo en cuenta la variabilidad de la potencia
edlica.

El anexo B muestra algunos ejemplos de los anélisis de los datos experimentales
obtenidos con el registrador de datos multipropdésito. Algunos efectos observados en los
datos como la medicién de las oscilaciones son bastante dificiles de predecir utilizando
unicamente simulaciones.

El anexo C presenta un modelo aerodindmico para calcular la influencia de la
componente determinista del viento (variacion del viento con la altura y la perturbacién
de la torre) utilizando el coeficiente del par y las dimensiones de la turbina.
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La representacion de un parque eolico requiere conocer la distribucion de las
velocidades del viento y de las turbulencias a lo largo de un parque e6lico. EI modelo
incluido en el anexo D permite, ademas, probar diferentes modelos de estelas.

Otra contribucidn de esta tesis es el programa que descarga, representa y analiza los
datos de la red de estaciones meteoroldgicas que suelen utilizar los organismos
meteorologicos para la prediccion del tiempo.

El manual del usuario del programa WINDFREDOM con el andlisis de tres
emplazamientos ha sido incluido para demostrar el uso potencial de este programa.

Otra contribucidn de esta tesis es el programa que genera rafagas de viento equivalente
con ciertas caracteristicas y estima su probabilidad de ocurrencia.

En resumen, esta tesis ha intentado aportar una metodologia para el estudio de las
variaciones de potencia e6lica, basdndose en la distribucion espacio-temporal del viento
y en el andlisis de medidas experimentales. Ademas, proporciona un marco para el
disefio y control 6ptimo de sistemas afectados por la disponibilidad del viento.
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Chapter 1:

Introduction

1.1. Background

he installed capacity for wind power is increasing
Tsubstantially in response to the worldwide interest in
low-emissions power sources and a desire to decrease

the dependence on petroleum.

The European Union directive 2009/28/EC [1] enforces the
mandatory target of a 20 % share of energy from renewable
sources in overall Community energy consumption by 2020
and a mandatory 10 % minimum target to be achieved by all
Member States for the share of biofuels in transport petrol
and diesel consumption by 2020. These targets may require
between 30 and 40 % of the electricity in the European Union
to come from renewable energy sources by 2020.

In the U.S., the world's top wind producer [2], wind
currently makes up just one percent of the energy supply.
Wind power generation share is expected to grow up to 20%
in the USA by 2030 Moreover, many U.S. states have
legislated similarly ambitious renewable energy portfolio
standards.

These goals were set without regard for the fact that many
in the scientific community have concluded a theoretical wind
penetration limit of only 20% due to the degradation of
system reliability [3] The Department of Energy states that
there is no fundamental technical reason why 20 percent of
wind energy cannot be assimilated into the grid by 2030. To
help make its point, the agency debunks the reliability myth
in its fact sheet on Wind Energy Myths [6]}

According to S. Feldman the renewable output could
leap to 40 percent of the Irish electricity share; in Denmark to
33 percent; in Portugal to 28 percent; and in Germany and
Greece to 25 percent. After 2020, a higher proportion may be
needed. A significant amount of this renewable electricity is
likely to come from wind, and the variability of this power
needs to be managed.

With this amount of wind generation, the future electricity
markets could be very different to those of today: instead of
thermal power stations dominating the system, the market
could be dominated by large amounts of price-insensitive
nuclear and wind power, combined with highly intermittent
output from the wind farms .

The extent of uncertainty and variability in wind generation
makes this resource different from the traditional,
dispatchable generation resources, with the result that wind
power generation cannot be readily integrated into standard
system operating procedures [9]. At relatively low levels of
installed capacity, wind turbines and the output from large
wind farms can essentially be absorbed into traditional system
operations without degrading system reliability. At the
current higher projected levels of penetration, wind power
requires more sophisticated mechanisms to maximize its

participation in the power system without penalizing it for the
unavoidably intermittent nature of its resource([10]

In some real time markets, and at low levels of penetration,
wind is treated as negative load [24]. But the perception of
wind power is changing from being considered a negative
load to a capacity resource. Wind power can be integrated
into system and market operations as a generating resource
that could provide not only energy but also capacity and

ancillary services|[11]

1.1.1. Relationship between wind power
variability and its forecast

Wind varies in space and in time. The forecasts try to
predict this variation from climate dynamics and from the
systematic behaviour of the weather.

The inherent uncertainty and availability of the
meteorological data decreases the accuracy of the next day’s
wind generation forecast |[[12] The issue of uncertainty in
wind generation can be addressed by improving the accuracy
of forecasting the wind resource. In addition, advances in
wind forecasting and turbine controls suggest that wind
power can participate in ancillary service markets.

The simplest forecast of a stochastic process is the
persistence principle: the expected value during next period
[t, t+At] is the average value of the previous period [#-At, t].
The mean square error of the persistence prediction is just the
variance of the average process during the interval [¢-At, t].

Thus, the ratio of the forecast root squared error to the
standard deviation of the variable predicted is just the
performance of the forecast relative to the persistence model.

Usually, numerical weather prediction significantly
outperforms persistence for horizons longer than 6 hours. For
shorter horizons, statistical methods can be more adequate
due to the lack of a dense network of weather sensors near the
wind farms. In such cases, the characterization of wind power
variability is essential.

1.1.2. Influence of the wind variability
on the grid

Wind power presents the most economically viable renew-
able solution, apart from hydro power The utility system
is designed to accommodate load fluctuations, which occur
continuously. This feature also facilitates accommodation of
wind plant output fluctuations when wind penetration is low.

In order to make the long-term growth of wind generation
possible, the variability and the intermittency of wind power
must be managed [[13]] In Denmark, Northern Germany, and
parts of Spain, wind supplies 20% to 40% of electric loads
without sacrificing reliability.


http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF
http://www.guardian.co.uk/environment/2008/jul/30/windpower.energy
http://www.uwig.org/windrpt_vol 1.pdf
http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf
http://www.ucalgary.ca/~keith/papers/72.Decarolis.2005.Threshold.e.pdf
http://www.ucalgary.ca/~keith/papers/72.Decarolis.2005.Threshold.e.pdf
http://www.nrel.gov/docs/fy05osti/37657.pdf
http://solveclimate.com/news/20090717/wind-power-variability-myth-gets-debunked-again
http://www.ilexenergy.com/pages/Documents/Reports/Renewables/IntermittencyMethodologyv1_0.pdf
http://www.uwig.org/IEA_Report_on_variability.pdf
http://dx.doi.org/10.1016/j.jup.2008.07.001
http://www.nyserda.org/publications/wind_integration_report.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4438882
http://www.scribd.com/doc/21280161/Renewable-Electricity-and-the-Grid-The-Challenge-of-Variability

2 Wind Power Variability in the Grid — Chapter 1

Generally, wind power forecast are targeted to optimize the
hourly power dispatch. However, the electric system has to
cope with instantaneous variation of load, generation and
equipment trips. Such variations are usually unpredictable
and they are usually considered deviations from the expected
power tendency.

The variability of wind power has several negative effects
on the reliability and system operation of the electric grid as
well as wind project economics . The stability of the
electric grid depends upon reliable and consistent power gen-
eration that is balanced to the load through unit commitment
(interhour), economic dispatch (intrahour), and regulation
(intraminute), and wind power is counterproductive towards
that effort. Due to its stochastic nature, wind generation is not
dispatchable and therefore cannot be called upon to serve
load. As a result, the capacity credit of a wind farm is very
small—even as low as 8% of nameplate capacity according to
a probabilistic loss-of-load analysis [13].

Greater reliance on wind power requires more ancillary
services, especially responsive reserves, to match the lost
generation and ramp rate of wind turbines when the wind dies
down. One study of a typical wind farm indicated ramp rates
up to 4.4% of capacity per second [T6]] implying a large
burden on ancillary services. In fact, an empirical analysis of
increasing wind penetration in the Pacific Northwest U.S.
demonstrated that reserve requirements increased with the
square of installed wind capacity, and the need for total
reserve capacity doubled after just 2500 MW of installed

wind capacity [17].

In some applications, the estimation of wind power
variability can be as important as its prediction. The
forecasted values are usually the hourly wind or the hourly
power generated by one turbine or a cluster of them. Most
forecast models predict only the average hourly wind or wind
power and they are intended for the requirements of the
electricity markets. Only a few models characterize the
uncertainty of the forecast and quantify the instantaneous
fluctuations inside the time period.

The main applications which benefit from variability
assessment are:

e  The control of wind turbines and wind farms, where
the short timescales involved makes forecasting
unpractical.

e Automatic generation control, automatic voltage
control or changes in automatic taps on transformers,
more concerned with interhourly variations, that are
quite difficult to predict.

e Improving the power quality, more related to voltage
variations and hence, instantaneous power
variations.

e Optimum sizing of storage devices or of running
reserves in isolated or weak systems, where
electricity must be supplied even in the worst case
scenario.

e In risk assessment and the safe operation of the grid.
The system must cope with unexpected outcomes
when the forecast has big uncertainty.

1.1.3. Geographic diversity on wind
power

Both the generated power and the forecast error decrease as
more wind power producers are aggregated. Due to the
geographic dispersion of wind generators, some power
variations and prediction errors can be partially cancelled by
other errors in other locations.

On the one hand, the forecast errors can be very low in
wide geographic areas. The power balance can be met
provided the electricity transmission networks are strong
enough to carry the undispatchable generated power from
remote areas E

On the other hand, many quality parameters of the grid
must be met locally and the reinforcement of the electricity
networks is costly and, sometimes, it is not feasible. In
islands, the power balance cannot rely on geographical
diversity and other measures are required to counteract the
wind power variability.

The weather conditions may remain stable for relative long
periods among shift weather changes. Quick local turbulent
fluctuations are tougher to predict in time and place than
some smooth weather evolution. In fact, a good parameter of
the accuracy of the prediction is the error relative to the
variance of the random variable to be predicted.

However, the wind power forecast accuracy is usually
referred to the total installed wind power considered in the
prediction. These figures must be considered with caution:

e A 15% prediction error of the hourly power one day

ahead of a single wind farm can be an accurate
forecast

e A 15% prediction error of the hourly power one day
ahead in a big system is a poor forecast[[22]]

The variance of the wind power decreases when increasing
the time period of the measure or the spatial diversity of the
wind generators. Therefore, increasing the time or space
horizon of the predictions lowers the absolute prediction
error. The standard deviation to mean ratio, called coefficient
of variation (CV) is also sensitive to the geographic,
the time averaging and the prediction horizon, as can be seen
in Table 1.

The table 1 compares output at the start and end of the
indicated time period in terms of the percentage of total
generation from each turbine group. Std. Dev. is the
abbreviation for standard deviation. CV stands for coefficient
of variation, the ratio of standard deviation respect the mean
of wind power.

The power spectral density identifies which frequencies of
variation are contributing to the variance . The coherence
indicates the degree of partial cancellation of the oscillation
among the turbines at different frequencies . These two
magnitudes can explain the effect of the geographic and time
averaging. In the spatial domain, high frequencies smooth out
a wind farm’s aggregate power output since the coherence of
the turbines’ outputs is low, while low spatial frequencies
cause a coherent variation in the farm’s turbines.
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Table 1: Wind generation variability as a function of the number of
generators and time interval (from “20% wind energy by 2030: Increasing
Wind Energy” [4

14 61 138 250+
Turbines | Turbines | Turbines | Turbines
(%) (%) (%) (%)
1-Second Interval
Average CV 0.4 0.2 0.1 0.1
Std. Dev. 0.5 0.3 0.2 0.1
1-Minute Interval
Average CV 1.2 0.8 0.5 0.3
Std. Dev. 2.1 1.3 0.8 0.6
10-Minute Interval
Average CV 3.1 2.1 2.2 1.5
Std. Dev. 52 3.5 3.7 2.7
1-Hour Interval
Average CV 7.0 4.7 6.4 53
Std. Dev. 10.7 7.5 9.7 7.9

1.1.4. Demand response and wind
variability

To a large extent, load exhibits similar characteristics —
uncertainty and variability— to wind power Load
patterns though, have been more extensively studied for many
years and so are better understood and more accurately
forecasted than the wind resource. The purpose of this effort
in load modelling is to understand load patterns well enough
to operate the power system through the control of individual
generation and transmission facilities, in order to serve load
and maintain system reliability.

Thus, load is extensively modelled and other facilities are
controlled to serve load, with relatively little effort made to
control load itself. This trend is not absolute, as there are
traditional utility mechanisms, such as interruptible contracts
and direct load control, to reduce load at times when system
reliability would otherwise be threatened. There is also
persistent interest in developing mechanisms for more
dynamic load response for both reliability and economic
purposes.

Recent efforts to allow load to be more responsive to
system conditions and a more active participant in electricity
markets arise for multiple reasons In addition to giving
customers incentives to decrease their demand in the short run
to improve system reliability during times of system peak,
demand response can be used in the long term to decrease
required capacity expansion and lower total costs. Demand
response is also an important and essentially absent element
in electricity markets. If it were to be more widely
implemented, market efficiency would be likely to improve.
Many efforts are beeing made to demonstrate the feasibility
and the convenience of smart grids.

1.1.5. Estimated cost of wind power
variability
The estimated cost of the uncontrollability of the wind

resource has been widely researched from governmental
policy makers to Independent System Operators . An

understanding of the impacts of the variable sources of
renewable energy must take into account the wider issues
associated with managing electricity systems|[27].

Modern integrated networks are designed to cope with
‘shocks’ such as the sudden loss of large thermal power
stations and with uncertainties in consumer demand, such as
those caused by televised sports events. As the tools to deal
with these are already available, the key question is the extent
to which the introduction of large amounts of wind energy
will increase the overall uncertainty in matching supply and
demand. This extra uncertainty means that additional short-
term reserves are needed to guarantee the security of the

system[[28]

The variability of wind power also adversely affects wind
project economics. A stochastic power source like wind is
inherently less valuable than a deterministic source. Net
payments to wind generators are reduced by balancing-costs
to compensate for unfulfilled obligations to generate power
29]

The study determined that net payments in the USA to
wind farms vary from $32/MWh for very small wind farms to
less than $10/MWh for farms larger than 2000 MW.

The reponstates that at wind penetrations of up to
20% of gross demand (energy), system operating cost
increases arising from wind variability and uncertainty
amounted to about 1~4 €/MWh. This is 10% or less of the
wholesale value of the wind energy.

The cost of grid reinforcements due to wind power is very
dependent on where the wind power plants are located
relative to load and grid infrastructure. The grid
reinforcement costs from studies vary from 50 €/kW to
160 €/kW in the report|[19]} The costs are not continuous;
there can be single very high cost reinforcements, and there
can also be differences in how the costs are allocated to wind
power.

According to D. Milborrow , the extra cost in the UK
of these reserves —with wind providing 20% of electricity
consumption— is unlikely to be more than £1.20/MWh on
electricity bills (a little over 1% on domestic bills). With 40%
of electricity provided by wind, the corresponding figure
would be £2.80/MWh.

A second costs of wind variability is the backup cost for
periods of very low wind resource along extensive
geographical areas. Recharge reported in that the
calculations made by Oxford University Environmental
Change Institute showed that between 1970-2003, low wind
speeds all across the whole UK —those too slow to generate
energy— occurred simultaneously in the country only one
hour per year on average. In other words, the total wind
power in the UK varies, but a 0% generation is quite unlikely
event. According to D. Milborrow[[3T], wind energy does not
require the introduction of special back-up provisions in the
UK and its back-up costs are modest. Though the UK was the
focus of the study, the results are relevant worldwide, as
characteristics of wind are broadly similar everywhere.

All generating plants make use of a common pool of
backup plant that is typically around 20% of the peak demand
on the electricity network. When wind is introduced, system
operators do not rely on the rated power of all the installed
wind farms being available at the times of peak demand, but a


http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf
http://www.vtt.fi/inf/pdf/tiedotteet/2009/T2493.pdf
http://www.vtt.fi/inf/pdf/tiedotteet/2009/T2493.pdf
http://www.clubs.psu.edu/up/math/presentations/Apt-Windpower.pdf
http://www.greenpeace.org.uk/media/reports/wind-power-managing-variability
http://dx.doi.org/10.1016/j.tej.2007.08.002
https://e-reports-ext.llnl.gov/pdf/324206.pdf
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A//ieeexplore.ieee.org/iel5/5271856/5281781/05282039.pdf?arnumber=5282039&authDecision=-203
http://www.ieawind.org/AnnexXXV/PDF/erl8_2_025001.pdf
http://dx.doi.org/10.1016/j.tej.2004.04.010
http://www.greenpeace.org.uk/media/reports/wind-power-managing-variability
http://www.greenpeace.org.uk/media/reports/wind-power-managing-variability
http://www.rechargenews.com/business_area/innovation/article182891.ece

4 Wind Power Variability in the Grid — Chapter 1

lower amount - roughly 30% of the rated capacity at low
penetration levels, falling to about 15% at high penetration
levels. This lower ‘capacity credit’ gives rise to a modest
‘backup cost’. ‘Constraint costs’ arise when the output from
the wind turbines exceeds the demand on the electricity
network. They are unlikely to arise until wind energy is
contributing around 25% of electricity requirements.

Overall, it is concluded that the additional costs associated
with variability — with wind power providing up to about 40%
of all electricity, are quite small. For example, if wind
provides 22% of electricity in the UK by 2020, variability
costs would increase the domestic electricity price by about
2%, according to D. Milborrow[[31] Further increases in the
level of wind penetration beyond that point are feasible and
do not rely on the introduction of new technology.

There are numerous technical innovations at various stages
of development that can mitigate the costs associated with
variability. Improved methods of wind prediction are under
development worldwide and could potentially reduce the
costs of additional reserve by around 30%. Most other
mitigation measures reduce the costs of managing the
electricity network as a whole. ‘Smart grids’, for example,
cover a range of technologies that may reduce the costs of
short-term  reserves; additional interconnections with
continental Europe, including ‘Supergrids’ also deliver
system-wide benefits and aid the assimilation of variable
renewables.

Electric cars hold out the prospect of reduced emissions for
the transport network as a whole and could act as a form of
storage for the electricity network —for which the electricity
generator would not have to pay.

With current technology, wind power plants can be
designed to meet industry expectations such as riding through
voltage dips, supplying reactive power to the system,
controlling terminal voltage, and participating in system
operation with output and ramp rate control.

Although some aspects of the management of wind
variability can be controversial and costly, many utilities
agree that there is no insuperable technical reason why high
proportions of wind energy cannot be assimilated into the
system . There is a large body of literature on the topic
[34] and the steady growth of wind power, worldwide,
indicates that it is seen as a robust choice for reducing
greenhouse gas emissions.

1.2. Scope and Aims

The aim of this thesis is to contribute with a framework for
the systematic analysis of the wind power variability in time
and in space. The time scope ranges from seconds to days and
the geographic scope ranges from a wind farm to regions a
hundred of kilometres away.

Numeric weather predictions are usually based on public
models and they are wusually run by governmental
organizations. However, most studies on wind power
variability are based on confidential or not publicly accessible
data even for non-profit research . Even if weather
behaviour could be predicted very accurately, a model output
statistics would be required to transform into generated wind
power. The models are adjusted from experimental data and

many of them do not have a straightforward interpretation.
Thus, it is difficult to generalize from these results.

One of the objectives of this thesis is to obtain a general
variability model able to explain qualitatively the wind power
variability. The model for large distances and hourly/daily
variations is based on data available in the web from national
meteorological institutions [54]. For short intervals and inside
a wind farm, the model is based on the experience with a
logger system designed and installed in four wind farms
36] the wind coherence model of W. Schlez and D. Infield

[37]} and the general coherence function derived by Rise

Institute in Horns Rev wind farm

The complexities inherent to this mathematical model are
partially circumvented presenting some case studies with
meaningful graphs and using the classical tools of signal
processing and time series analysis when possible.

The application of the classical theory of stochastic
processes is widespread in telecommunications, radar
detection, audio and other fields, but it is less usual in wind
power. The classical stochastic framework brings the research
made in other fields of knowledge into wind power. Other
benefit of the classic theory is the more straightforward
interpretation of the obtained results.

The classical signal analysis of data from the
meteorological weather stations in the time-frequency domain
is a contribution of this thesis in the form of a freely available
program. Special efforts have been done to design a user
friendly interface, an intuitive operation and meaningful
graphics.

To account the non-linear behaviour of the wind, the
Markov Chain Approximation Method is employed as a tool
to discretize the stochastic differential equations involved in
the wind power dynamics. This framework makes possible
the utilization of the dynamic optimization of wind power
using Markov Decision Processes These techniques
have been customarily used in other fields, but they are quite
novel in wind power.

One of the advantages of using Markov Chains is that the
wind power dynamics can be characterized through a matrix
and its stochastic interpretation is straightforward. The
discretization of a stochastic system into Markov Chains is
easy to interpret. Moreover, the Markov Chain
Approximation can be used to optimize the system operation
using deterministic tools when the uncertainty of the forecast
can be estimated. Markov Chain Approximation and Monte
Carlo Analysis of dynamic systems are closely related.

Considering the thesis scope, its aims have been achieved
through the following items:

e  Characterization of the variability in the time domain
of the wind measured with an anemometer through
its power spectral density (PSD).

e Estimation of the spatial variability in the swept area
using the potential flow theory, wind shear and
turbulence.

e Estimation of the aecrodynamic torque of the turbine
accounting the spatial diversity of the wind.

e Estimation of the equivalent wind defined as the
wind that produces the same turbine or farm output
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Ch. 1: Introduction 5

as the real wind field using the simplified formula of
the torque or power coefficient.

e C(Creation of an interactive computer program to
estimate the coherence of the wind measured at two
weather stations as the experimental time and
frequency variability of the wind. This program also
clasiffy the system composed of two sites into states
and computes the Markov transmission matrix
among the states.

e Creation of an interactive computer program to
estimate gusts of equivalent wind for a turbine or for
a cluster of turbines.

e Derivation of a simplified statistical model of the
electric grid of a wind farm.

e Creation of an interactive computer program to
estimate the wakes in an offshore wind farm.

e Characterization of the non-linear dynamics of wind
power experimentally using the Markov Chain Ap-
proximation Method in a small demonstrative case.

1.3. Thesis Outline

This thesis is structured into eight chapters and six
annexes. It is also accompanied by several interactive pro-
grams to demonstrate some applications of this thesis. Since
some sections are indeed quite dense, the author recommends
trying the accompanying programs (their manuals are at the
end of this thesis) before revising the main body of this thesis.

Many programs have been developed during the realization
of this thesis, some of them for developing a multipurpose
datalogger and others for data processing. In fact, only the
more versatile and illustrative programs have been included,
those that can be run in a standard PC with freely available
data and without requiring buying licenses.

The first chapter consists in this introduction. The funda-
mentals of the wind variability are introduced in the second
chapter. The computation of the turbine torque and the
concept of equivalent wind are derived in the third chapter.
The characterization of the variability of the wind power in
the frequency domain is presented in the forth chapter. The
fifth chapter deals about almost periodic fluctuations in the
time domain. The sixth chapter is devoted to gust models.
The seventh chapter characterizes the wind power variability
in the time domain using the Markov Chain Approximation
Method and it proposes the Markov Decision Processes for
optimizing dynamically controllers and policies. The last
chapter contains the closure with the main contributions of
this thesis.

Chapter 2: Variability of Wind in the Frequency
Domain

Chapter 2 introduces the basic concepts and features
concerning the variation of the wind. The concept of
spectrum of wind is presented, which is a common way to
characterize the frequency content of the turbulence present
in the wind. The spectra of wind more often used in wind
power are compared.

The Taylor hypothesis of turbulence, a simple model that

relates about spatial variations and temporal variations of the
wind, is discussed. This hypothesis can be used to reconstruct

the approximate spatial structure of wind from measurements
with an anemometer fixed at a point in space. A more
advanced concept is the spatial and temporal coherence of the
wind, which statistically quantifies the variations of wind in
different points in space or in separate moments of time.

Chapter 3: The turbine torque and the equivalent wind

Chapter 3 introduces the simplified calculation of the
aerodynamic torque coefficient based on the torque of the
turbine, which assumes that the wind is uniform in the area
swept by the turbine. From this formula, a simplified small
signal model is derived to estimate the torque when the wind
conditions in the swept area are not uniform

Based on this approximation, the equivalent wind is
defined as the one that produce the same effects that the non-
uniform real wind field. This simplification implies that the
effects of the wind field, which cannot be measured directly,
can be estimated from an equivalent wind, usually estimated
from the measurements of an anemometer.

Thus, the aerodynamic torque can be computed
approximately with a simple formula from the torque
coefficient and from the equivalent wind, derived from the
measured wind.

The equivalent wind speed contains a stochastic
component due to the effects of turbulence, a rotational
component due to the wind shear and the tower shadow and
the average value of the wind in the swept area, considered
constant in short intervals. The fluctuations in the
aerodynamic torque due to the real wind field along the swept
rotor area are introduced in the equivalent wind modifying its
spectra. This simplification works relatively well since the
vibrational turbine dynamics randomize the real dependence
of the generator torque with the rotor angle.

The combination of the small signal model and the wind
coherence permits to derive the spatial averaging of random
wind variations. A stochastic model that links the overall
behaviour of a large number of turbines is derived from the
behaviour of a single turbine.

The power spectral density of the equivalent wind of a
cluster of turbines is estimated from parameters of an isolated
turbine, lateral and longitudinal dimensions of the cluster
region and the decay factor of the spatial coherence.

Although the proposed model is an oversimplification of
the actual behaviour of a group of turbines scattered across
the area, this model quantifies the influence of the spatial
distribution of the turbines in the smoothing and in the
frequency content of the aggregated power. This stochastic
model is in agreement with the experimental observation that
slow changes are highly correlated among a turbine cluster
while fast changes are poorly correlated.

Chapter 4: Variability of power in the frequency
domain

In the previous chapters, the wind has been analyzed to
estimate the variations of aerodynamic torque. However, the
aerodynamic torque interacts with the structural and drive-
train vibrations. Consequently, the power injected in the grid
has a stochastic nature even in total absence of turbulence.
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There are many specific characteristics that impact notably
in the power fluctuations between the first tower frequency
(usually some tenths of Hertzs) and the grid frequency. The
realistic reproduction of power fluctuations needs a
comprehensive model of each turbine, which is usually
confidential and private.

One contribution of this chapter is the experimental char-
acterization of the power fluctuations of three commercial
turbines, whose data is shown in annex B. The variations of
power during the continuous operation of turbines are meas-
ured and experimentally characterized for timescales in the
range of minutes to the grid period. Some experimental
measurements in the joint time-frequency domain are
presented to test the mathematical model of the fluctuations.

The admittance of the wind farm is defined as the ratio of
the oscillations from a wind farm compared to the fluctua-
tions from a single turbine, representative of the operation of
the turbines in the farm. The partial cancellation of power
fluctuations in a wind farm are estimated from the ratio of the
farm fluctuation relative to the fluctuation of one representa-
tive turbine. Some stochastic models are derived in the fre-
quency domain to link the overall behaviour of a large num-
ber of wind turbines from the operation of a single turbine.

A literature review on Power Spectral Densities (PSD) and
periodograms (averaged spectrum) of wind power are pre-
sented. The variability of PSD is also studied, a step ahead
from the literature, in the joint time-frequency domain
through spectrograms.

Chapter 5: Almost Periodic Fluctuations in the time
domain

Chapter 5 analyzes from a phenomenological point of view
the aggregation of unsynchronized almost periodic fluctua-
tions from the turbines in the time domain, assuming a char-
acteristic behaviour at each turbine. This almost determinist
behaviour does not represent the real stochastic nature of the
power injected by the turbines. However, this assumption
illustrates that the output of a wind farm is stochastic even if
each turbine power has non-synchronized periodic fluctua-
tions.

In the first part of this chapter, the statistical distribution of
turbine blade positions along a wind farm is derived in an
unsynchronized wind farm. The blade crossing in front of its
turbine tower is modelled as a Poisson Process. The variabil-
ity of the wind farm power output due to tower shadow and
the probability of extreme conditions (such as simultaneous
tower shadow events at all turbines of a wind farm) are esti-
mated in the time domain.

In the second part of this chapter, the flicker emission of a
turbine cluster is derived from the output of a representative
turbine of the cluster. Flicker emission of a wind farm during
continuous operation has three main sources: wind
turbulence, tower shadow and generator or power converter
oscillations. Flicker emission of a wind farm during
continuous operation is derived from the output of a single
wind turbine since fast fluctuations are low correlated among
turbines. A stochastic model of the power output PSD is
parameterized and a simple formula is derived to estimate
flicker level from PSD and network parameters. This simple

formula assesses the individual influence in flicker level of
wind turbulence, tower shadow and generator/converter.

The flicker model has been tested with data from several
wind farms. In wind farms with induction generators and
squirrel cage or variable resistance rotor, wind turbulence was
the main flicker source since the turbine coupling was soft
enough to damper generator oscillations and torque variations
related to rotor angle. In wind farms with doubly fed induc-
tion generators, the main flicker source was the induced noise
at frequencies around maximum flicker sensitivity by the
power converter. In the cases analyzed, the flicker level was
very low due to the strength of the network at the point of
common coupling.

Some experimental measurements are presented to test the
mathematical model of the fluctuations.

Chapter 6: Characterization of wind gusts in the time
domain

The previous chapters have introduced the wind spectral
density as the feature that summarizes the stochastic behav-
iour of the wind. In this chapter we will use this spectral
density to analyze the characteristics of wind variations in the
time domain and to synthesize samples of equivalent wind
with some features.

The mechanisms that generate turbulent wind changes are
analyzed, since they are closely related to the shape of the
bursts and the distribution of velocity variations. Experimen-
tal wind variations fit approximately a Laplacian distribution,
indicating some unknown multiplicative effect involved in the
extreme deviations. A bijective transformation is defined to
obtain the target distribution.

The average shape of the peak gust and the ramp gust are
defined and their probabilities are estimated from the theory
of conditional generation of samples. The peak gust is char-
acterized by the wind speed deviation AU,,,,, respect the aver-
age. The ramp gust is characterized by the variation of wind
AU,,. between two instants separated by a time A¢ (this
parameterization specifies both the average gradient and the
duration of the ramp). The properties of a normal process led
to significant conclusions about the behaviour of the equiva-
lent wind.

The peak and ramp gusts are synthesized in the frequency
domain using the Karhunen-Loéve expansion and the theory
of conditional simulation of normal processes. An
approximate method to avoid numerical difficulties that arise
generating very long samples.

The concept of the equivalent wind gust can be extended to
a geographic area and it can serve to compute the maximum
variability of the power expected in a region.

Chapter 7: Variability of wind power in the time
domain

The variability of wind speed can be modelled during short
intervals with the classical theory of stationary normal proc-
esses, which has been presented in the previous chapters.
However, the weather is a non-stationary process and this
cannot be neglected for horizons longer than some hours. The
evolution of wind power can be described in the time domain
by stochastic differential equations. Numerical Weather Pre-
diction (NWP) models the physics of meteorological dynam-
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ics. Wind speed is customarily transformed into generated
power with a power curve or or with a model output statistics
(MOS).

Since the wind variations show a fairly multiplicative
behaviour, the Markov Approximation Method is suitable for
modelling the non-linear stochastic behaviour of the wind.
This technique is analogous to the finite difference approxi-
mation in deterministic differential equations and it is a pow-
erful tool to optimally control the system, especially if
numerical weather predictions are available.

Indeed, if numerical weather predictions are unattainable,
the Markov chain can be used for generate basic probabilistic
forecasts based on the system behaviour previously observed.
The transmission matrix among the Markov states models the
non-statiorarity of wind, present in long time spans.

The optimal control of a Markov system is called a Markov
decision process and they can be expressed as a policy, which
gives the best action to take for a given wind farm state,
regardless of the prior history. Once a Markov decision
process is combined with a policy, this fixes the action of the
control for each state and the resulting combination behaves
indeed like a Markov chain.

The classic control theory of linear and time-invariant
systems is well established. However, many devices in the
grid are discrete and their control can not be linearlized
because their unnecessary switching can produce grid distur-
bances or excessive device wear.

Markov chains can model switching or jump events such
the probability of wind farm trips and the connection or
disconnection of devices such as reactors or capacitors. Some
events such as extreme wind variations or generator discon-
nections due to severe grid conditions can eventually jeop-
ardize the grid. Thus, the stochastic control is better suited to
manage these events than the classical control of linear and
time invariant systems. The optimum design and the optimum
control can be achieved assigning costs to staying in the same
system state or jumping to other states. Thus, the Markov
decision processes can be used to optimize the design and
control of many devices which should encompass the non-
linear and time-dependent variability of the wind power.

Usually, Markov chains have been utilized as Monte Carlo
random generators in stochastic power flows due to the high
dimension of their state space. To reduce the state space, a
discretization methodology is presented where the number of
states is remarkably reduced through careful system model-
ling and clustering. This makes the optimal control tractable
through Markov decision processes.

The classification of states can be based on power output,
equivalent wind speed or wind speed prediction, depending
on the available data and the aim of the wind farm model. The
performance matrix in Standard IEC 61400-12-3 can be used
as emission matrix to relate wind and power in a wind farm
using a Hidden Markov Model. The wind farm model can be
used also as time interpolation or to guess if there is an outlier
in the state (a switching event).

One application example is a probabilistic power flow. A
methodology to optimize the power flow based on Markov
processes is presented. Load, generation and network topol-
ogy is classified into a small set of cases represented by the
centroids of the fuzzy clusters. Afterwards, regular determi-

nistic power flow is run for each pattern centroid and the
statistics and the system stochastic dynamics are derived from
the transition matrix of the embedded Markov Process.
Finally, the optimal control of generation, network topology
and discrete elements such as switches and transformer tap
changers can be computed conveniently by Markov Decision
Processes. This approach is advantageous for loads highly or
barely interrelated and for non-controllable generators such as
wind and solar. Other possible application is the design and
control of reactors and capacitors in a wind farm to maximize
the profit due to reactive power control. In that case, a
simplified, quadratic model of the wind farm in the steady
state can be used to estimate the maximum absorption and
injection of reactive power at different points of the farm.

Other application is the optimal design and control of the
load consumption of an isolate system with renewable
generation and storage. The optimal design minimize the cost
of the system infrastructure with the expected cost of mainte-
nance, energy losses, load deferring and not supplying regular
and critical loads. The control of the optimal design manages
the loads for optimize the expected profit.

Chapter 8: Conclusions and Future work

In this chapter, the general conclusions of this thesis will
be presented, emphasizing its scientific contributions. Future
work lines will be also outlined.

Annex A: Simplified electrical model of the wind farm

This annex presents a simplified statistical model to repre-
sent a wind farm in a power flow study. This model has been
developed taking into account the variability in the generated
power from windmills and its normal operation. Its main
advantages are its simplicity and the possibility of calculating
the voltage in the park’s network without having to run a
power flow program. Another advantage of the proposed
method is that it is based in the fourth-pole theory, widely
used in electrical engineering. Finally, the uncertainty of the
model is assessed.

One possible application is to study the influence of nearby
wind farms. Other possible application of this model is to
study the management of reactive power in wind farms. The
reactive power strategies for wind turbines and wind farms
are analyzed as an application example.

Previous Spanish regulation stated unity power factor
(P.F.) as target. New regulation introduced in the Royal
Decrees 436/2004 and 661/2007 rewarded up to 8% with P.F.
< 0,95 inductive (on low-load hours) and P.F. < 0,95 capaci-
tive (on peak hours).

A better utilization of the infrastructure can be attained
considering the reactive power generation availability even in
calm periods —depending on the reactive power compensation
scheme implemented in the wind farm-. This can lead to a
voltage support strategy in a nearby node, especially if the
voltage at that node can be estimated despite tap changing
transformers.

The effect of some control strategies in nearby nodes are
quantified statistically regarding the stochastic nature of wind
power.
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Annex B: Analysis of wind power variability from
measured data

The models developed in this thesis are based in the per-
sonal experience gained designing, installing and analyzing
the records of a multipurpose data logger for wind turbines
and wind farms. The first prototypes have been developed
further and now it is commercially available under the name
AIRE (Analizador Integral de Recursos Energéticos).

This annex shows some examples of data analysis. The
contributions of these examples are the analysis methodology
and the conclusions gained from the analysis of the measure-
ments shown in the annex. In fact, some effects observed in
the data such the measured oscillations are quite difficult to
obtain from simulations.

The measurement system was installed in several wind
farms between 1998 and 2000 owned by CEASA (now NEO
Energia) and TAIM-NEG-MICON (now VESTAS).

Borja wind farm had 27 Vestas’ turbines with variable
pitch and wound rotor induction generators with a variable re-
sistor connected to their rotor, VRIG (generator speed vary
from 1500 to 1560 rpm).

Remolinos wind farm is in a cliff top and it has doubly fed
induction generators (DFIG) from Gamesa, with generator
speed ranging from 1220 to 1620 rpm. There are 15 x G42
wind turbines of 648 kW (42 m rotor diameter) and 3 turbines
G47 of 660 kW (47 m rotor diameter), both of them with
variable pitch.

It was also installed in Valdecuadros, a wind farm with two
600 kW wind turbines and one 750 kW turbine and with fixed
pitch (stall control). The utilized generators are squirrel cage
induction generators (SCIG), fixed speed, directly connected
to the network. The 600 kW WT has a solo generator, with
one fixed speed (1500 to 1514 rpm). The 750 kW wind
turbine has a secondary 200 kW generator to increase pro-
duction at low wind by reducing rotor speed (1000-1006 rpm
versus 1500-1510 rpm).

Annex C: Torque estimation from blade element theory

This annex introduces an aerodynamic model to estimate
the influence of deterministic wind component (wind shear
and tower shadow) from the torque coefficient and the main
properties geometry of the turbine. The model is derived
using blade element theory, potential flow upstream the tower
and uniform blade loading.

The aim of this model is to compute the aerodynamic
torque at the low-speed shaft, simply enough to be included in
the generator control or for simulating a cluster of turbines,
and requiring only basic features such as the aerodynamic
torque coefficient and the main constructive parameters of the
turbine. This model can also be used to study the effect of
mismatches in the blades (pitch errors in each blade) and
errors in orientation of the turbine.

Besides its computational efficiency, another advantage of
this method is that only requires the torque coefficient and the
main dimensions of the turbine (it does not need to know the
airfoil section along blades).

The model presented in this chapter is based on blade
element theory with constant tangent force distribution, also
known as uniform blade loading. The tangential force

distribution is approximately constant in the main body of the
blade when the turbine operates at partial load (maximum
turbine efficiency), but may introduce errors when the tip of
the blades stalls. However, the starting of the blade stall is
intricate and a more complex model is needed to take into
account the hysteresis of the separation of the boundary layer
in the blades. Since pitch controlled turbine is unusually
operating with attached flux and the proposed method is valid
for pitch controlled turbines.

Annex D: Wake estimation in an offshore wind farm

The distribution of wind speeds and turbulences along a
wind farm is required to achieve a fair representation of a
wind farm.

For simplicity, this model is targeted to offshore wind
farms, where there is no influence of land topography. The
wake is estimated in this annex using a kinematic model.

One of the contributions of this model is the simplicity of
testing different wakes models.

Annex E: Manual of the program WINDFREDOM

One contribution of this thesis is the program that
downloads, represents and analyzes the data from the network
of meteorological weather stations, typically used by
meteorological organizations for weather prediction.

An user manual of the program WINDFREDOM with
three case studies has been included to show the potential use
of this program.

Annex F: Manual of the program EQWIGUST

Another contribution of this thesis is the program that
generates gust or random samples with certain features of
equivalent wind.

This program estimates the average shape of gusts of the
equivalent wind with some features from the characteristics
of the wind and the turbine.

An user manual of the program EQWIGUST with two
three random samples has been included to show the potential
use of this program.



Chapter 2:
Variability of Wind

in the Frequency Domain

2.1. Introduction

‘ x 7ind oscillations due to momentary wind speed varia-
tions can be classified according to their rate and their
spatial extent. Slow fluctuations (in the range of tens of

minutes and hours) are mainly due to meteorological dynam-

ics and they are highly correlated among near wind farms.

Fast fluctuations have lower spatial correlation and
wind gust and turbulence effects are smoothed in the output
of the wind farm. A swift gust arriving simultaneously to all
turbines dispersed in an area of kilometres is also very
uncommon. The correlated component of wind is estimated in
fr m the Davenport type and Schlez and Infield’s decay
factors|[45]} showing that coherence for distances greater than
100 m 1s bellow 102 at tower shadow frequencies (between
0.5 Hz and 2 Hz). In fact, the coherence for the usual dimen-
sion of a wind farm is low for oscillations quicker than
0,001 Hz|[46]} Thus, the fluctuations quicker than 10 minutes
are low correlated among the turbines a wind farm.

Fluctuations of power output can be divided into cyclic and
acyclic components. Cyclic components are due to tower
shadow, wind shear, modal vibrations, etc. Acyclic compo-
nents are due to turbulence, weather dynamics and events
(turbine connection or disconnection, change in generator
configuration, etc.). Oscillations from a few minutes up to a
grid cycle are mainly linearly uncorrelated and their sum
across a wind farm can be estimated using stochastic analysis
commonly applied in other areas such as multipath fading in
communication channels, clutter and target cross section in
radars, interference in communication systems, etc. However,
this approach is novel in wind energy.

In [47], a transfer function of the wind farm power output
of N turbines respect the output of a single turbine is esti-
mated with gain N at low frequencies (< 0.03 Hz) and gain
N at high frequencies (/> 0.09 Hz). Micro-meteorological
and dynamic fluid models can predict the correlated fluctua-
tions which predominate at the very low frequencies. Fully
correlated fluctuations scales proportional to the number of
turbines N whereas linearly uncorrelated fluctuations cancel
partially among turbines and they scale up typically in a
factor VN, according to the central limit theorem.

The influence of blade position in a single turbine power
output has been widely analyzed in the literature [48, 49, 50].
The aerodynamic coupling among the turbines in a wind farm
is negligible due to the turbulent flow mixing. According to
[51], a very weak electrical network and a very low turbu-
lence is necessary for synchronization to happen driven by
voltage drops. Since these conditions are not realistic, the
rotor position has random angles and the crossing of a blade

in front of the turbine tower is a random event with constant
probability rate.

Experimental measurements [52] have corroborated that
the synchronization of blades is unusual. It has also been
observed that the cuasi-periodic aerodynamic torque oscilla-
tions are transformed into stochastic oscillation of electric
power due to the complex wind turbine dynamics. The power
oscillations of frequency bellow 0,03 Hz are greatly reduced
at the farm output and the main source of variability in the
wind power injected in the grid is the meteorological
dynamics.

To sum up, this chapter focuses on the spatial and temporal
variability of the wind for short horizons. Fast fluctuations of
wind power during continuous operation of wind turbine are
not an issue for utilities. Only in isolated or in weak networks,
or in the simultaneous tripping event of big amounts of wind
power they are an issue.

These results can be extended to several wind farms since
the uncorrelated components increases when the distances
among turbines become bigger.

The models developed in this thesis are based in the
personal experience gained designing, installing and
analyzing the records of a custom data logger for wind
turbines and wind farms [53]. The main system was
composed by a PC computer, a DAQ (Digital Acquisition
Board), signal conditioning modules and LabVIEW software
for logging and analyzing the measurements. It could be
placed in the low voltage side of a WT or connected to the
measuring transformers of the wind farm substation.

The first prototypes have been developped further and now
they are commercially available under the name AIRE
(Analizador Integral de Recursos Energéticos).

The measurement system was installed in several wind
farms between 1998 and 2000 owned by CEASA (now NEO
Energia) and TAIM-NEG-MICON (now VESTAS).

Borja wind farm had at that time 27 Vestas’ turbines with
variable pitch and wound rotor induction generators with a
variable resistor connected to their rotor, VRIG (generator
speed vary from 1500 to 1560 rpm).

Remolinos wind farm is in a cliff top and it has doubly fed
induction generators (DFIG) from Gamesa, with generator
speed ranging from 1220 to 1620 rpm. There are 15 x G42
wind turbines of 648 kW (42 m rotor diameter) and 3 turbines
G47 of 660 kW (47 m rotor diameter), both of them with
variable pitch.

Valdecuadros is an experimental wind farm with two
600 kW wind turbines and one 750 kW turbine and with fixed


http://wenku.baidu.com/view/c32411697e21af45b307a861.html
http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5
http://www.springerlink.com/content/j432n7711k8l71h7/
http://www.risoe.dk/rispubl/VEA/veapdf/ris-r-1408.pdf
http://onlinelibrary.wiley.com/doi/10.1002/we.246/pdf
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pitch (stall control). The utilized generators are squirrel cage
induction generators (SCIG), fixed speed, directly connected
to the network. The 600 kW WT has an unique generator,
with one fixed speed (1500 to 1514 rpm). The 750 kW wind
turbine has a secondary 200 kW generator to increase
production at low wind by reducing rotor speed (1000-1006
rpm versus 1500-1510 rpm).

The model of geographic variation of wind has been tested
with data from the World Meteorological Organization
(WMO). Even though these stations are not so exposed to the
wind, the measured wind speed can be scaled up to the typical
levels in a wind farm and interesting conclusions can be
drawn from the vast network of weather stations available.

A program called WINDFREDOM [54] has been
developped for retrieving the weather data from the servers of
Wolfram Research Inc. and computes the coherence from
nearby weather stations. This program can be run freely with
the Mathematica Player and it will be accessible in
http://www.windygrid.org/software under the GNU General
Program License after the public defence of this thesis. A
brief manual of this program is included in the axxes of this
thesis and a copy of the software is attached in the CDROM.

2.2. Characterization of the turbulence

At a very basic level, a turbulence flow can be interpreted
as a population of many eddies (vortices), of different sizes
and strengths, embedded in another and forever changing,
giving a random appearance to the flow (Fig. 1). Two
variables then play a fundamental role: d, the characteristic
diameter of the eddies, and 4, their characteristic orbital
velocity.

Since the turbulent flow consist in many eddies, of varying
sizes and speeds, 4 and d do not assume each of a single
value but vary within a certain range. In stationary,
homogeneous and isotropic turbulence, that is, a turbulent
flow that statistically appears unchanging in time, uniform in
space and without preferential direction, all eddies of a given
size (same d) behave more or less in the same way and can be
thought of sharing the same characteristic velocity 4. In other
words, we make the assumption that 4 is a function of d (Fig.
2) [55].

Flg 1: Drawing-of a turbulent flow by Leonardo da Vinci (1452-1519), who
recognized that turbulence involves a multitude of eddies at various scales.
Taken from Benoit Cushman-Roisin [55].
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Fig. 2: Eddy orbital velocity versus eddy length scale in homogeneous
turbulence. The largest eddies spin the fastest. Taken from “Environmental
Fluid Mechanics” of Benoit Cushman-Roisin [55] and modified from Simon
Watson [56].
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Fig. 3: Schematic of eddies as a function of height at atmospheric boundary
layer. Taken from Simon Watson [56].

2.2.1. Energy cascade in eddies

In the view of Kolmogorov [57], turbulent motions span a
wide range of scales ranging from a meteorological
macroscale at which the energy is supplied, to a microscale at
which energy is dissipated by viscosity. The interaction
among the eddies of various scales passes energy sequentially
from the larger eddies gradually to the smaller ones (Fig. 3).
This process is known as the turbulent energy cascade (Fig.
4).

energy supplied
] by external forces

energy

no turbulence here
system size doesnot allow it

eddy orbital velocity
turbulence
suppressed by viscosity

o
U min]
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energy removed
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Fig. 4: The turbulent energy cascade. According to this theory, the energy fed
by external forces excites the largest possible eddies and is gradually passed
to ever smaller eddies, all the way to a minimum scale where this energy is
ultimately dissipated by viscosity. Taken from Benoit Cushman-Roisin [55].
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If the state of turbulence is statistically steady (statistically
unchanging turbulence intensity), then the rate of energy
transfer from one scale to the next must be the same for all
scales, so that no group of eddies sharing the same scale sees
its total energy level increase or decrease over time. It follows
that the rate at which energy is supplied at the largest possible
scale (d,,,,) is equal to that dissipated at the shortest scale
(d,;,). Let us denote by ¢ this rate of energy
supply/dissipation, per unit mass of fluid:

&= energy supplied to fluid per unit mass and time = power
cascading from scale to scale, per unit mass = energy
dissipated by viscosity, per unit mass and time.

With Kolmogorov, we further assume that the
characteristics of the turbulent eddies of scale d depend solely
on d itself and on the energy cascade rate & This is to mean
that the eddies know how big they are, at which power
density is supplied to them and at which rate they must supply
it to the next smaller eddies in the cascade. Mathematically, 4
depends only on d and & The dimensional analysis of the
magnitudes, [4] = LT, [d] = L and [¢] = L*T? the only
dimensionally acceptable possibility is @ = A(e d)'?, in which
A is a dimensionless constant on the order of unity. This
relation implies that the smaller d, the weaker 4. Thus, the
larger &, the larger 4. This makes sense, for a greater energy
supply to the system generates stronger eddies. This could not
have been anticipated and must be accepted as a result of the
theory. The implication is that the smallest eddies have the
lowest speeds, while the largest ones have the highest speeds
and thus contain the bulk of the kinetic energy.

2.2.2. Largest and shortest length scales

Typically, the largest possible eddies in the turbulent flow
are those that extend across the entire system, from boundary
to opposite boundary, and therefore d,,,, = L, where L is the
geometrical dimension of the system (such as the width of the
domain or the cubic root of its volume). In the atmosphere,
the height has a short vertical extent and a comparatively long
horizontal extent (distance, length) of the system.

Therefore, the eddies that rotate in the vertical plane (about
a horizontal axis, as shown in Fig. 3) have significant
characteristics from those that rotate horizontally (about a
vertical axis).

The shortest eddy scale is set by viscosity, because the
shorter the eddy scale, the stronger the velocity shear and the
more important the effect of viscosity. Consequently, the
shortest eddy scale can be defined as the length scale at which
viscosity becomes dominant. The ambient air kinematic
viscosity is vg= 1,51x10™ m%/s.

If we assume that d,,;, depends only on &, the rate at which
energy is supplied to that scale, and on v, because those
eddies sense viscosity, then the only dimensionally acceptable
relation is d,,, ~ Var + € . Therefore, d,,, depends on the
energy level of the turbulence. The stronger the turbulence
(the bigger ¢), the shorter the minimum length scale at which
it is capable of stirring. The quantity v, % g1 called the
Kolmogorov scale, is typically on the order of a few
millimetres or shorter.

The span of length scales in a turbulent flow is related to its
Reynolds number. Indeed, in terms of the largest velocity
scale, which is the orbital velocity of the largest eddies, 4

maz

i(d,,,) = A(e L)"?, the energy supply/dissipation rate is &=
(4,,/A’L" ~ 4,,°/L and the length scale ratio can be
expressed as L/d,,~ L/ (var * & %) ~ Re’™, where Re =
Qrnool/Vair 18 the Reynolds number of the flow. As we could
have expected, a flow with a higher Reynolds number
contains a broader range of eddies.

The atmospheric boundary layer spans up to a height of
about 1000 m above the ground. Since wind speeds are in the
range of 10 m/s, then the Reynolds number can be estimated
as  Re=1,,L/ g=10m/s -1000m/1,51x10° m*/s =
6,6x10°, which yields Re* = 4,1x10° and d,,, ~ L/Re’ =
2,4x10"* m or about 0,24 mm.

The power mass density supply/dissipation is estimated to
be around & ~ 4, /L = (10 m/s)*/(1000 m)= 1 m%s’ or 1

maxr

Watt per kilogram of air.

2.2.3. Taylor’s Hypothesis of “frozen
turbulence”

Turbulent flow can be viewed as a collection of eddies that
evolve in time and space as they float along in the mean flow
(Reynolds decomposition). The structure, size and
distribution of these eddies determine the mixing efficiency
of turbulence and thus the importance of turbulent transport.
The distribution of eddies is very irregular in space and in
time and it is subject to ongoing change.

The question is: how then can we begin to measure the size
and distribution of these eddies that define turbulence? It is
impractical (or even impossible) to have such high instrument
density that every eddy is covered all the time. Even spatial
“snapshots” are difficult and expensive.

Under certain conditions (homogeneous and stationary
process) an average over a time-series of observations in one
place is an adequate representation of the ensemble average
(incorporating all possible eddies).

However, a time series essentially samples only those
eddies that happen to float past a given sensor. If we can
determine the average of all eddies that way, can we also
determine their size?

One difficulty is that such observations are not a pure time-
series: Because the eddies evolve in time (change shape, fall
apart etc.), we sample a mixture of a time series and a spatial
transect through the flow.

A practical suggestion for an escape from this dilemma
came 1938 from Geoffrey 1. Taylor: in certain circumstances,
turbulence can be considered as “frozen”, as it passes by a
sensor. This suggestion became known as Taylor’s Hypothe-
sis and assumes that the rate of change of an eddy is small
compared to the velocity of the mean flow, so that it changes
only negligibly over the time it takes to float by the sensor.

Fig. 5 shows an example of the Taylor’s Hypothesis of the
“frozen turbulence”. An idealized eddy of 100 m horizontal
dimension contains a wind difference of +1 m/s from one end
to the other. At this point, the sensor measures a speed of
9 m/s . The same eddy has now floated past the sensor with a
mean wind velocity of 10 m/s. The sensor now measures
11 m/s, assuming the structure of the eddy has not changed.

Of course, turbulence always evolves and is in reality never
frozen. However Taylor’s Hypothesis assumes that the time it
takes the eddy to float past (At = 10 s in this case) is too
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small for the eddy to change noticeably. In other words: it
appears to be frozen.

NS g T

Fig. 5: Example of a idealized eddy of 100 m (represented by a cloud)
passing through a meteorological mast according to Taylor’s Hypothesis of
“frozen turbulence”.

2.3. Wind spectra

The fluctuations in the wind can be thought of as resulting
from a composite of sinusoidally varying winds imposed on
the mean steady wind. These sinusoidal variations will have a
variety of frequencies and amplitudes. The term ‘spectrum’ is
used to describe functions of frequency. Thus the function
that characterizes turbulence as a function of frequency is
known as a ‘spectral density’ function. Since the average
value of any sinusoid is zero, the amplitudes are characterized
in terms of their mean square values. This type of analysis
originated in electric power applications, where the square of
the voltage or current is proportional to the power. The
complete name for the function describing the relation
between frequency and amplitudes of sinusoidally varying
waves making up the fluctuating wind speed is therefore
‘power spectral density’ or PSD for short.

There are three points of particular importance to note
regarding PSD’s.
e The wind variance due to fluctuations within a

frequency range may be found by integrating the
PSD/ . (f) in that range.

Uwind
e The integral of PSD; . d(f) over all frequencies is
equal to the total wind variance.

o If two-sided PSD(}f) are used instead of PSD(}),
the variance is twice the PSD(f) if only positive
frequencies are used in the integration domain.

Therefore, PSD is the variance spectral density of a signal,
irrespective of the signal nature (voltage, wind speed or the
power from a wind farm). However, the term “Power Spectral
Density” is in widespread use for referring to the spectral
density of the variance of a signal. Thus, that usual
convention will be used in this work.

The spectral density of the wind variance is often used in
dynamic analyses. The variations of wind in the stream
direction of the flow are usually characterized through the
PSD of the longitudinal component of the instantaneous
speed. A number of power spectral density functions are used
as models in wind energy engineering when representative
turbulence power spectral densities are unavailable for a
given site. The mathematical forms for along-wind velocity
spectra which are currently used in major current, or recent,
wind codes and standards [58] are due to von Karman,
Kaimal and Davenport.

2.3.1. Properties of spectra

The spectral representation theorem (Karhunen—Loéve
theorem) states that any real valued, covariance stationary
process, such as the wind or the power from the wind farm
turbines, can be represented as the weighted sum of
orthogonal periodic components. The benefit of applying a
spectral approach to the analysis is that it allows for the
decomposition of these moments into constituent frequency
components —providing a richer representation of dynamic
interactions.

Specifically, the longitudinal component of wind can be
expressed in frequency components using phasors. The
stochastic spectral phasor density of the longitudinal wind in
a time series of duration 7" are:

Uwind (f) = med (f) 6] el \/7f wmd 6 2l (D

Alternatively, the stochastic spectral phasor density can be
expressed from the cosine a(f) and sine b(f) Fourier
coefficients of the time series considered as a period as
Usnil$)= /I Tlalf) + b for £>0.

The longitudinal wind in the time domain can be retrieved
from the spectral phasor density through the scaled inverse
transform:

U wmd
]27r ft
u md f df :ﬁ‘ (2)
Ui )= wina(—f)
2 R 2 ft
= —Re f U wind (f) 6]2 ffdf B =
oL i) =U e

\/_f windl 608[27#75 + ‘prmd(f)]df

where e is the base of the natural logarithm, j is the imaginary
unit, Re states for the real part of a complex number and
stands for complex conjugate.

The wind is usually assumed to be a stochastic process
characterized by its two-sided power spectral density
PSDyyyina(f) » corresponding to the average squared modulus
of the stochastic spectral phasor <U 2 f)%

In the meteorological literature, it is more common to use
the dimensionless unilateral power spectral density,
fPSDS (f) ] Obwina (excluding the DC term at f =0). It
represents the frequency distribution of the turbulence when
plotted in a semi logarithmic graph, see (10) for details.

The integral of PSDyj, .. .(f) for positive frequencies is the
variance of the instantaneous wind, o7, (Parseval’s
theorem).

[ PSDf iD= [ PSDy, ) df =
— < j;T Uf,,an( ) dt> < v (t)>2:U(2]W;nd

The probability density function of the wind speed
provides a measure of the likelihood of particular values of
wind speed. It provides no information, however, about what
the speed is likely to be, given what it has been. A measure of
that tendency is provided by the autocorrelation function.

)
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The autocorrelation function can be used to determine the
integral time scale of turbulence. The normalized auto
correlation function is:

<[me,1(t+T) - ( and >]* [med(t) - < Uu'md >]>

2
0U wind

A CFU wind (T) =

“)

where the asterisk = denotes complex conjugation and it can
be omitted since wind is a real value.

Alternatively, the normalized autocorrelation A CFy,inq(T)
can be computed as the inverse Fourier Transform of
PSDyyina(f) divided by 0,4 according to the Wiener—
Khinchin theorem.

The PSDyuia(f) at very low frequencies would represent
the very slow weather dynamics but the wind is not stationary
at very low frequencies since it shows intermittency between
stable = meteorological  situations.  Since  frequency
representation of wind is based on the theory of stationary
signals, PSDy,,q(f) must be considered with prudence at
low frequencies.

The low frequency asymptotic trend (5) can be derived
from the Wiener—Khinchin theorem:

0.
Lim PSDf . (f)~4g%, Uuind )
f—0* q <med >
where (.. is the integral length scale to be defined later.

However, (5) has relatively small relevance and, in fact, some
popular models of wind spectra do not obey this relationship.

2.3.2. Integral length scale

The autocorrelation function ACFy,,q(r) will, if any
trends are removed before starting the process, decay from a
value of 1.0 at 7=0 to the first zero crossing at the lag noted
Tt.» and then A CFy,,,q4(7) tends to take on small positive or
negative values as the lag increases 7. A measure of the
average time over which wind speed fluctuations are
correlated with each other is found by integrating the
autocorrelation (usually from zero lag to the first zero
crossing, 7, for better numerical stability). The single
resulting value is known as the integral time scale of the
turbulence, T'y,ina

00 T fzc
TU'wmd :j; A CFmed(T) dr ~ j;) A CFUwind(T) dr (6)

One problem of the infinite integral is the influence of the
subtraction of the estimated mean [59] or a trend correction
[60]. Due to these difficulties, the integral time scale is
estimated, as aforementioned, wusing the truncated
autocorrelation function A CFynq(T) up to the first zero
crossing 7, or, equivalently, the windowed periodogram or
smoothed Fast Fourier Transform (FFT) [61]. The smoothing
is arbitrary and therefore estimation of 7j;,;,q via FFT is
subjective [62]. Alternatively, a spectral model can be
adjusted and the time scale can be derived from its fit.

While typical values of T, are less than 10 seconds,
the integral time scale is a function of the site, atmospheric
stability, and other factors and may be significantly greater
than 10 seconds. Gusts are relatively coherent (well
correlated) rises and falls in the wind, and have characteristic
times on the same order as the integral time scale. Moreover,

the aerodynamic filter, which relates actual and equivalent
wind speed, has characteristic times of the same order for
multi-megawatt turbines.

Multiplying the integral time scale by the mean wind
velocity gives the integral length scale. The integral length
scale tends to be more constant over a range of wind speeds
than is the integral time scale, and thus is somewhat more
representative of a site.

The integral length scale of the turbulence, ¢, is defined
as the integral time scale 7', times the wind speed average,

(Uina ) -
(7)
Lywind
(Usina )

The length scale is dependent on the surface roughness, z;,
as well as the height above ground, z Standards used for
wind turbine loading calculations specify different turbulence
spectra and/or different length scales to be used in different
test conditions. The length scale dependence on the height
above ground can be simplified until a constant as is done in
the Danish standard DS472 or in the IEC standard 61400-1.

The turbulence intensity is the standard deviation
normalized by the average wind speed (8):

gUwind = < Uwind > TUwind

and the dimensionless frequency is f;;= f Typina = f

®)

Other normalizations are possible, especially for wind
turbine design calculations [90]. The standard deviation o,
of the wind speed longitudinal component varies depending
on the stability regime of the boundary layer. The standard
IEC 61400-1 assumes an average value of the standard
deviation (oy,,,» = 1. (0,75U,,;+3,8) with a variance
Var (6 g =( 1,441,,)* in S.L units.

Experimental measurements in the inertial subrange and
dimensional analysis have shown the following tendency at
high frequencies, with A =0.10 ~ 0.15:

fPSDJde(f) - A[ fé Uwind, ]2/3
<Uwind >

1 Uwind — O Uwind / < Uuri71d>
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2.3.3. Classic description of turbulence
in the frequency domain

The turbulent variations of the wind speed are typically
expressed in terms of the standard deviation, oy, Of
velocity fluctuations measured over 10 to 60 minutes,
normalized by the friction velocity u:or by the mean wind
speed (U,,,»»- The variation in these ratios is caused by a large
natural variability, but also to some extent because they are
sensitive to the averaging time and the frequency response of
the sensor used. In horizontally homogeneous terrain, the
turbulence intensity, /i = O vwing /{Uwina)» 18 @ function of
height and roughness length in addition to stability, whereas
Opwing divided by the friction speed u« may be considered a
function only of stability near the ground. A typical value for
neutral conditions is oy, /u+= 2,5 for homogeneous flat
terrain, often larger for inhomogeneous terrain, but with very
large local variations.

The turbulence intensity is a widely used measure, and for
neutral conditions with a logarithmic wind profile over flat
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terrain, we find I,,,, = 1/Ln(z — ). Typical values of I,
for neutral conditions in different terrains are [63]:

Sea: 8%

Flat open grassland: 13%

Complex terrain: 20% or more

The variations with stability can also be considerable,
especially at low to moderate wind speeds, with smaller
resulting turbulent intensities in stable conditions and larger
values in unstable conditions; values of 25% are not unusual
in flat open grassland for moderately unstable conditions. The
variances are quite sensitive to the averaging time because
much of the turbulent kinetic energy appears at quite low
frequencies, in both unstable and particularly in stable
conditions. In the latter case, the variance can be completely
dominated by large-scale slow variations in wind speed and
direction overlaid with very little turbulence [64].

In wakes we see increased turbulence levels together with
decreased mean wind speeds, leading to significantly larger
turbulence intensities than for the free flow [102].

The turbulent velocity fluctuations can be described as a
result of stochastic broadband processes. We see variations in
velocity in a broad range of frequencies and scales, and
numerous models have been used to describe the distribution
of energy over different scales as a function of stability and
height (see Fig. 6). These models can be subdivided into two
‘families’: the so-called Kaimal-spectra and their
generalizations [70], providing good empirical descriptions of
observed spectra in the atmosphere, and the von Karman
spectra, which may provide a good description of turbulence
in tube-flows and wind tunnels [63]. The popularity of the
latter can be attributed mainly to the fact that they feature
simple analytical expressions for the correlations and follows
the Wiener-Khintchine relation between autocorrelation and
spectral density, PSDy,a(f=0) = 46puima > Lowing K Usind)s
where £, 1s the integral scale (i.e., the mean wind speed
times the area under the normalized auto correlation function
of the wind).

Usually, the PSD is represented in a way that the total area
below the graph is the variance of velocity fluctuations,
Ouumi and the height of the curve indicates the relative
content of the signal at such frequency. Since only positive
frequencies are plotted, PSD" is one-sided (one-sided PSD"
is the double of two-sided power spectral density PSD). To
increase the dynamic range of the plot, the logarithmic scale
is used for frequency in the horizontal axis. Using the
Riemann-Stieltjes integral, it is straightforward that the
vertical axis must be the wind spectra times the frequency in
linear axis (see the Van der Hoven spectra in Fig. 8 or Fig. 6)
for the underlying area being &7, -

-
)
Umed:j; PSDy,na(f) df= of PSD* N

min Uwind

Area below conventional graph
(f) with linear axis

) P
_fLOMJm) AlLog())] d[Log(f)]= (10)
df

[ Loatf) " | Area below Log-Lin
= oy TP Priaal) ALog(f )]_{graph of f-PSD;’ (f)}

Uwind

If the logarithmic scale is used both for frequency and for
PSD, then the dynamic range of the spectra is increased, the

order of the system is easier determined and the peaks of
semi-log and bi-logarithmic graphs coincide since the
logarithmic mapping is a monotone increasing function.
However the area below the bi-logarithmic graph of
f-PSD'(f) does neither represent the wind speed variance nor
the height of the graph is proportional to the frequency
content of the signal. Hence, if a bi-logarithmic scale is used,
then it is recommended to plot PSD'(f) instead of f-PSD'(f).
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Fig. 6: Model spectra of the streamwise velocity component 50 m above
ground level in flat terrain for neutral (L infinite), stable (L = 30 m) and
unstable (L = -30 m) conditions, where L is the Monin-Obukhov length. The
areas under the curves are proportional to the variances. Taken from “Wind
Power Meteorology” by Rise National Laboratory [63].

Typical spectra, (at near neutral, and not too close to the
ground) are dominated by broad maxima and falling towards
high frequencies as f>°. Note the quite large differences in
the variances for different stabilities in Fig. 6 (area bellow the
plots). The large variances correspond to unstable boundary
layer and much smaller variances happen with stable bound-
ary layer. The peak of f.PSD'(f) is lower in unstable atmos-
phere than in stable atmosphere. The characteristic period of
the turbulent oscillations in unstable boundary layer is T,
unstable = Vfoeak, unstanie ~ 1/0,004 Hz = 250 s. In stable boundary
layer, the characteristic period is much smaller, T,.. e =
Ufear, stanie ~ 1/0,07 Hz = 14 s and the oscillations have
smaller amplitude due to the reduced variance. The neutral
atmosphere behaviour is between stable and unstable
behaviour.

The very low frequency behaviour 1is typically
characterized by a large amount of variation and statistical
uncertainty. In fact, frequency analysis of stochastic signals is
based on linear, time-invariant system behaviour (i.e., system
characteristics do not vary significantly inside the time of
study). The very low frequencies are related to long time
spans, where the atmospheric characteristics do vary
significantly. This is the reason why numeric weather models
or Markov chains are more suitable than frequency models
for analyzing very long time spans (very low frequencies).

The traditional way of relating length and time scales in
turbulence is through the so-called Taylor ‘frozen turbulence’
approximation, i.e. the turbulence statistics can be regarded as
a result of a frozen picture of turbulence advected past the
observer by the mean wind, such that A= (U,,;,.)/f, where A is
a length scale and f the corresponding frequency observed in
a fixed frame of reference. In the simple Kaimal formulation
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for neutral conditions, approached from stable conditions,
spectra close to the ground have a dominating length scale of
about 22 times the height above the ground. This is a fair
approximation at low heights and moderate wind speeds, but
above 30-40 m and for high wind speeds [65] the length scale
approaches a constant value, typically 500-1500 m. There-
fore, significant power fluctuations are due to eddies with
length scales of a bigger magnitude than the rotor radius R.

Terrain inhomogeneities may locally give rise to very large
changes in the spectra. In flow over hills, the pressure field
perturbations induced on the flow by the presence of the hill
lead to an (almost) instantaneous redistribution of energy
from the stream wise component of the wind to the vertical
component by rapid distortion [66, 67]. In situations with
changing roughness, the turbulence changes gradually
downstream, first at small scales (high frequencies), and later
also at larger scales. Because it can take considerable
amounts of time (tens of minutes to hours) to change the
large, energy-containing eddies, the turbulence of the flow
“remembers” the upstream conditions far downstream [103].
The general effect of inhomogeneous terrain is to increase
turbulence, typically at length scales comparable in size to the
characteristic terrain featureq [41] In this way, the shape of
the spectrum approaches that of the unstable spectrum, where
typical length scales of the energy-containing range are of the
order of several kilometres.

Neutral conditions are very rare events, typically occurring
only as transitions between stable and unstable conditions.
However, near-neutral conditions occur also during overcast
skies and moderate to high wind speeds. This variation in
stability means that at a particular site, a wide range of
dominating length scales are seen: from tens of meters to
several kilometres, the distribution of which depends very
much on the local stability climatology.

The probability distribution of length scales at a coastal site
is shown in Fig. 7. Here, the length scale was defined instead
of the length scale corresponding to the peak of the semi
logarithmic plot of f PSD,,;,{f), as the scale for which half of
the variance of the stream wise component is distributed on
larger scales and the other half on smaller scales —i.e., the
scale corresponding to the turbulence median in a semi
logarithmic plot of fPSD,;,{f)—. This length scale does not
coincide exactly with the peak of the power spectrum —the
difference being < 10% for a typical spectrum— but the length
scale defined in this way is much easier to measure reliably.

In Fig. 7, the most common length scale is 500-600 m, but
the distribution is skewed (almost symmetric in the logarith-
mic representation) and the average length scale is about 1000
m. Length scale distributions are presented also for other
heights in [68]; from 15 m and above these are very similar
(for the 7-m level the scales were found to be significantly
smaller) with a slight tendency towards smaller scales closer
to land. Also, it has been observed at the offshore location, 2
km from the coast, that the scales are smaller for offshore
flow and larger for onshore flow.

Wind spectra from von Karman, Davenport, Kaimal, etc.
can be thought as the squared transfer functions fed with
white noise. Such filters can be applied to white noise to
generate random wind with the same spectral properties as the
real wind [42, 153, 176, 177]. The wind cut-off frequency
depends on the turbulence length scale and and the average

wind speed. If turbulence intensity is constant, then wind
spectrum is proportional to the standard deviation of wind.

300 TT | T T T T L I T T T T LA
Coastline
250 —
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Fig. 7: Probability distribution of length scales from the Vindeby site at

heights of 48 m. Length scales were derived by the “half variance” method.
Taken from “Wind Power Meteorology” by Rise National Laboratory [63].
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2.3.4. Kaimal wind spectrum

The Kaimal power spectra pattern was fitted based on
several experimental data collected with neutral atmosphere
over flat homogeneous terrain in Kansas as explained in [70].
This spectrum implies a relatively low terrain roughness.
Furthermore, the model applies for neutral conditions only
(strong winds), as convection is not accounted for. However,
these conditions are met in a large number of applications like
off-shore wind farms. Also, because of its simple expression,
the Kaimal spectrum is widely used. The selection of this
spectrum is discussed in [69].

The Kaimal spectrum model is, like other ones, usually
presented under a PSD function. For the longitudinal wind
speed component, the model defined by Kaimal relates
frequency, length scale and average wind speed, [70]:

fPSDIJgaimal(f) . 4a’<f£med/<med>) (11)
2 - 5/3
O Uwind [1 + 6a ( f 4 Uwind/( Uwind >)]
where PSDY . (f) is the one-sided auto-spectral density

function of the wind, f is the frequency in Hertzs, o is the
standard deviation of wind, €, is the integral length scale
(proposed maximum 600 m) and <me d> is the average
wind speed at the hub height, all in the upwind direction. The
wind spectra at high and low frequencies is tuned with the
parameter a: a =1,7 in the draft Eurocode ENV 1991-2-4 and

thus, the inertial subrange constant in (9) is A =0.14.

The Kaimal power spectra is similar to a low-pass filter of
cut-off frequency f,,...;= (Upina)/(6a € yyina) of order r =5/6.
In other words, the Fourier transform of wind is
approximately constant up to f,,. .~ and then decays in a factor
10°° each decade (the PSD decays with the squared factor).
In a double logarithmic plot, the slope of the Fourier
transform of wind is 20-(5/6) dB/decade or 10°° per decade if
regular scale is used.


http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBkQFjAA&url=http%3A//risk2.ewi.tudelft.nl/research-and-publications/doc_download/197-phdpapaefthymioupdf&rct=j&q=%22Integration%20of%20Stochastic%20Generation%20in%20Power%20Systems%22&ei=WVqoTbL6MZCzhAfe0f
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2.3.5. Davenport wind spectrum

This spectrum is based on the average of measurements
obtained at various heights above the ground [71].

f PSD[ng;gnpgrf,(f) B % (fLD(w/< U’wind >)2 (12)
U?Im’nd [1 + (fLD(w/< Uwin,d »2 ]4/3

where Lp,, is a turbulence length scale different from £,;,4
and usually chosen as 1200 m.  Assuming
Lpgw ~ 11,9¢,ina » the inertial subrange constant in (9) is
A=0.13.

2.3.6. Harris wind spectrum

The Harris wind spectrum is nearly identical to the von
Karman form if Ly, is taken as 11,9 £rind -

f PSDy,,,,(f) _ 0,6 (fLHam's/< Usina >) (13)
U?]wz’nd [2 + (f LHarrz's/< U’lvmd >)2 ]5/6

where Ly,gs 1S a turbulence length scale different from
L t7wind » Usually chosen as 1800 m. Equation (5) holds neither
for Davenport nor for Harris spectrum.

2.3.7. Von Karman wind spectrum

Von Karman proposed a PSD for wind speeds in 1948
[72]. The von Karman spectrum is also suitable for the
structure of the turbulence experienced by wind turbines,
particularly in complex terrain, [73, 74]. Its power spectral
density is:

f PSD}(ZT’I’H(ZTL (f)

2
OUwind

A i) (14)

5 /6
1+ 70.8(f£med,/< med >)

The inertial subrange constant in (9) is A = 0.12. Several
experimental works demonstrated that the von Karman model
and the Kaimal model have the following main differences:

e The Kaimal spectral expressions for the three spatial
wind components describe adequately the
experimental data as to the shape and peak
frequencies but not as to the power levels;

e The von Karman model seems to fit the 3D
experimental data better than the Kaimal with
respect to the power levels. In the longitudinal
component, a power deficit at low frequencies is
observed.

2.3.8. IEC 61400-1 spectrum

The international standard IEC 61400-1 [97] for design
requirements for wind turbines specifies a Kaimal type PSD
function (11) with factor a = %, which can be used in wind
turbine design. The length scale is £,q = 5,672 where z is
the height above ground, i.e. the hub height in our case. For
heights above z> 60 m, the value of /¢y, takes the
maximum length scale, 340,2 m.

Inside a wind farm, IEC 61400-1 recommends to apply the
model proposed by Frandsen [75] to include the added
turbulence generated by upwind turbines in the structural

design of wind turbines. Frandsen proposes to calculate the
turbulence o, according to:

o+ 07 36 < Uwind >
v 1+ 0,2{s15 /Cr

where o, 18 the turbulence in the ambient flow. The
separations between rows and columns in the farm,
normalised by the wind turbine rotor diameter, are s, and s,
respectively. C is the wind turbine thrust coefficient.

(15)

2
2
] + O wind

1
wa:§

The wind turbines in the front with expected free inflow
have a standard deviation of the longitudinal component of
the wind equal to o = 0,4, and the remaining wind turbines
inside the wind farm are assumed to have a standard deviation
equalto o =o,;.

2.3.9. Slettringen spectrum
recommended by the Norwegian
Petroleum D:irectorate

The Norwegian Petroleum Directorate (NPD) published in
1992 a different spectrum based on extensive wind
measurements off the coast of mid-Norway and it is
henceforth referred to as the “NPD spectrum” [76, 77]. Its
power spectral density is:

N 320(10 10
PSDypp(f) = 5 (16)

172f( z )2/3[(med>]3/4 ]n 3n

i)o.zxs [(med )]2

1+

10 10

where n = 0.468 is a constant, z denotes the height above sea
level in meters and (U ,;,q ) is the 1 hr mean wind speed at a
reference height 10 m above sea level.

The NDP spectrum is intended for describing gust and
mean wind speeds above 10 m/s. The NDP spectrum deviates
significantly from the other two in that it contains
considerably more power at low frequencies. The reason for
this is that the other spectra are based on observations of wind
over land while the NPD spectrum is fitted to measurements
of wind over sea, where the thermal structure is different.

The Hejstrup spectra is sometimes used because it includes
more power than the Kaimal spectrum at the low frequencies,
and this has shown to agree better in a number of cases [153].

2.3.10. Van der Hoven’s wind spectra

The Van der Hoven’s wind spectrum [78] differs from the
previous spectra that has a very wide dynamical range, from
seconds to several days. It shows a gap between 3
minutes/cycle and 5 hours/cycle that separates fast
fluctuations from slow fluctuations. Other works also
reported a gap between mesoscale and microscale wind at the
free atmosphere [79]. Nevertheless, this gap has been not
found at some locations [80, 81, 82]. In [83], the 5 h gap were
not found in the meteorological records measured at an
experimental field site near Oak Ridge, Tennessee, USA
during the years 1995 to 1998. Other measurements carried
out in wind farms indicate that the presence of the gap is
dependent on the location.
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HORIZONTAL WIND SPEED SPECTRUM
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Fig. 8: Van der Hoven’s spectral model (from [78]).

2.3.11. Horns Rev wind spectra

According to e.g. [84] there is a significant variability of
the wind speed at lower frequencies, which is not included in
the Kaimal spectrum. The Kaimal type PSD functions are
valid only for shorter time scales, corresponding to what is
normally considered in mechanical design of wind turbines,
i.e. from 0.02 sec to 600 sec. For simulations of wind farm
power fluctuations, the PSD functions are required on a
longer time scale (up to several hours).

According to Serensen et Al. [85], the Hovsere measure-
ments have been applied to fit the PSDLF(}‘) for low frequen-
cies, and the fit is expressed as:

(aLF <Uwind > + ﬁLF )2

ol el L)
<Uwind > <Uwind >
In Havsere, the coefficients estimated from measurements
are o, = 0,0046 and (3, = 0. Thus, the total spectrum is
composed of low and high frequency contributions:

PSDH@vsme(f) = PSDKaz'mal(f) + PSDLF(f)

z

<med >

PSDLF(f) =

(17)

1+100[

(18)

2.3.12. Coherence models

IEC 61400-1 [97] specifies the coherence function (in
absolute value) ~;pc(f) for two points r and ¢ separated a
distance d,, in the rotor plane according to:

]2

‘AJ [<ICJIZ;J;>]2 #[012

IEC 61400-1 recommends A ~ 12; Frandsen [86] recom-
mends A =~ 35 and Saranyasoontorn [82] recommends A
~ 9,7. Note that this expression is intended for points in the
area swept by the blades. Therefore, it is not intended for
estimating the wind coherence at different turbines.

Schlez and Inﬁeldderived an empirical model, based
mainly on measurements with 18 m high masts with distances
up to 102 m in the Rutherford Appleton Laboratory, UK.
According to them, the coherence decreases exponentially at
a site-specific rate respect wind travel time. The decay
constants for lateral and longitudinal directions are, 4,,,, and
Ay, respectively. A, is the decay factor when the flow is
longitudinal («,.= 0). A,, is the decay factor when the flow is
lateral, i.e. when the wind direction is perpendicular to the
line between points rand c (o= ©/2 rad).

rC

gUwind

Yiee (f) = exp (19)

Thus, a compound decay constant A, can be estimated
according to (20) for any arbitrary disposition of points r and
c (see Fig. 9).
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(20)

Fig. 9: Definition of distance d,. and angle o, between the points rand c.

Schlez and Inﬁeldm recommended for the Rutherford
Appleton Laboratory A,,,, = (15£5) oving / {(Uying ) and A,
~ (17,5:|:5)(nﬂs)'layw,~,,d, where op,i,q 1 the standard devia-
tion of the wind speed in m/s.

Saranyasoontorn et Al. adjusted a coherence model from
experimental data in LIST Test site at Bushland, Texas. The
statistical properties of the estimation can be reviewed in [87]
and a comparison of standard coherence models form inflow
turbulence with estimates from field measurements is
presented in [82].

Serensen et Al. [85] fitted the lateral and longitudinal
decay factors, A,,, = 4 and A,= (Uypne)/(2 mis),
respectively, from measurements at 80 m height with up to
1.2 km distances in Hevsere, Denmark. With these
parameters, Serensen et Al. used a complex rooth coherence
Yre(f) (adding an average phase delay to the absolute
squared coherence |f?,2p ( f)| proposed by Schlez and Infield

. Since complex coherence is used, the phase of the
coherence indicates the average delay between wind
fluctuations at different points. Serensen et Al. used the
Taylor’s “frozen turbulence” model in [191] to compute the
average time delay 7,. as the time difference between the
arrival to the points r and ¢ of a flat wind wave front
travelling at average wind speed.

_d, cos(a,,)

< med >

where d,. is the distance between points 7 and ¢ (see Fig. 9).

(e2))

Tre =

Finally, the expression of the complex rooth coherence
Nre(f) for Hovsere is:

14

rc
<Uwind >

It can be derived that at low frequencies 7¥,.(f) tends to
unity with zero phase (fully positive correlated fluctuations)
and at high frequencies 7,.(f) tends to zero with random
phase (uncorrelated fluctuations).

Vre(f) = exp + 92T (22)

2.4. Spectrum and coherence estimated
from the weather station network

The network of weather stations provides a wide coverage
of slow variations of wind. Many stations provide hourly or
half-hourly data. These data is used in the program
WINDFREDOM [54] to compute the wind spectra and the
coherences between nearby locations.


http://www.springerlink.com/content/j432n7711k8l71h7/
http://www.springerlink.com/content/j432n7711k8l71h7/
http://www.springerlink.com/content/j432n7711k8l71h7/
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Quick fluctuations of wind are more related to the turbine
integrity, structural forces and control issues. But they are
quite local, and they cancels partially among clusters of wind
farm. The slower fluctuations are more cumbersome from the
grid point of view, since they have bigger coherences with
small phase delays.

2.4.1. Coherence between Logrono and
Zaragoza airports (Spain, 140,5 km
apart)

This example analyzes the coherence and the spectrum of
wind speed oscillations up to 12 days, at the airports of the
Spanish cities of Logrofio and Zaragoza. Both cities are
located in the Ebro River and share a similar wind regime.
The weather stations are 140,5 km apart (see Fig. 10) and the
analysis is based on one year data, from October 2008 to
October 2009.

Station
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Fig. 10: Map from WINDFREDOM program [54] with the location of
Zaragoza and Logroilo in the Iberian Peninsula.

The spectrograms in Fig. 11 and Fig. 12 show the evolution
of the power spectrum of the signal, computed from
consecutive signal portions of 12 days. The details of the
estimation procedure can be found in the annexes of this
thesis.

Wind spectra and coherence has been computed from the
periodogram, and the spectrograms of the signals are also
shown to inform of the variability of the frequency content.
The quartiles and the 5% and 95% quantiles of the wind
speed are also shown in the lower portions of in Fig. 11 and
Fig. 12. The unavailable data have been interpolated between
the nearest available points. Some measurements are outliers,
as it can be noticed from the 5% quantiles in Fig. 11 and Fig.
12, but they have not been corrected due to the lack of further
information.

The diurnal and semi-diurnal variation peaks can be
recognized in clearly in the periodograms of Fig. 11 and Fig.
12 (gray graph on the left) or as dark-bluish horizontal lines
in the spectrogram (color image on the right). The oscillation
magnitude is not constant along one year because the

horizontal lines get lighter or darker along the time.
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Fig. 11: Periodogram and spectrogram of Zaragoza airport (Spain) estimated
with WINDFREDOM program [54].
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Fig. 12: Periodogram and spectrogram of Logrofo airport (Spain) estimated
with WINDFREDOM program [54].
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The ratio between the periodograms and spectrograms of
Fig. 11 and Fig. 12 is shown in Fig. 13. The wind in Zaragoza
airport meteorological station (LEZG for short) is the double
in average than in the weather station of Logrofio airport
(LELO for sort). The average ratio is about 0,4~0,6, indicat-
ing that the ratio of oscillation amplitudes are around
70,4~N0,6. The coefficient of variation (standard deviation
divided by the mean) is 87% in Logrofio and 70% in
Zaragoza.

The quartiles of the time series at Logrofio and Zaragoza
(lower graph in Fig. 13) show significant differences. The red
shadow indicates the interquartile range of Zaragoza and the
thick red line is its median (the blue colours correspond to
Zaragoza). The wind in Logrofio (in blue) is about half the
wind in Zaragoza in average.

The wind variations in each station show different features
eventually. Some variations are replicated on the other station
but with some non-systematic delay and with different
magnitude. These features are the reason of the relatively
small coherence of the two stations.

Data from Sun 5 Oct 2008 17:30:00. to Mon 5 Oct 2009 14:30:00
The distante between LEZG (station $1) and LELO (staticsn H2) 45 140.40 Jun,

| Latitute  Longitude  Elevation [m]  Seriesmean  Samples per day
LEZG | 41.667 -1. 258.m 16292 kmfh 48
LELO | 4245 -2333 363.m 78883 km/h 36

The petiodogram and spectrogram of LELO have been divided by the ones of LEZG:
A ratio bigger than unity indicate that the fluctuations of freguency § ohserved

inn LELID are bigger than in LEZG.

+ & ratio smaller than unity indicate that the fluctuations of frequency fobserved
in LELOD ate smaller than in LEZG.

In the lower tight plat, the quartiles of Wind speed [kmy/h]in LEZG are shown inred.
The quantiles of Wind speed [km/h]in LELO are shown in blue
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Wind speed [kmyvh ]

and the quartiles of Wind speed [kn/h]
(LEZG in red, LELO in blug)
at hottom right —-.

Tima days ]
Fig. 13: Periodogram and spectrogram of Logrofio airport divided by the
ones of Zaragoza airport (estimated by WINDFREDOM program [54]).

In practice, the oscillations observed in one station are
seen, in some extent, in other station with some delay or in
advance. The coherence 7 4142 is a complex magnitude with
modulus between 0 and 1 and a phase, which represent the
delay (positive angles) or the advance (negative angles) of the
oscillations in the second weather station respect the first one
(considered the reference). Since the spectrum of a signal is
complex, the argument of the coherence #,.(f) is the
average phase difference of the fluctuations.

The coherence 7,.(f) indicates the correlation degree and
the time pattern of the fluctuations. The modulus is analogous
to the correlation coefficient of the spectrum lines from both
locations. If the ratio among complex power spectrums shown
in Fig. 13 is constant (in modulo and in phase), then the
coherence is the unity and its argument is the average phase
difference. If the complex ratio is random (in modulo or in
phase, then the coherence is null.

However, the wind direction is not considered in this esti-
mation, but it has a great impact on the coherence estimate.
The time delay between oscillations t depends greatly on the
wind direction. Thus, the phase difference of the fluctuations,
¢ =2mnf 1, can change notably and this would lead to very low
coherences. If there are several preferential wind directions,
the phase difference can experience great variability. In such
cases, a more detailed model —maybe using Markov states
indicating prevailing wind directions— is needed.

The red/purple colours in Fig. 13 indicate that phase differ-
ence is near 0 up to 0,5 cycles/day (small delay of fluctua-
tions). However, the phase difference at frequencies above 2
cycles/day is quite big, indicating that the timing sequence of
the fluctuations has varied along the study period (one year).

The phase difference between the spectrum of LEZG and LELO is computed to estimate the lag
‘between the oscilations in both stations

A phase difference positive indicate that the fluctuations of f frequency are

observed (in average) first in LEZGand then in LELO and viceversa,

+The average time lag can be computed as lag=phase/(2r f) when the phase is expressed in radians
=> In general, slow fluctuations show a phase proportional to frequency indicating that the

slow fluctuations are observed with a constant time delay between stations.

#é random phase indicates that the fluctuations happen first indiferently in any station

without a simple temporal link.

= In general, fast fluctuations show non—-systematic phases indicating that they are local
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Fig. 14: Phase difference between the periodogram and spectrogram of

Zaragoza airport respect the ones of Logrofio airport (estimated by WIND-

FREDOM program [54]).

Generally, the time delay between fluctuations of a given
frequency, 7,. = ¢ /(2nf) is more informative than the phase
difference ¢ because the time delay of the arrival of events is
constant under the Taylor hypothesis of frozen turbulence.
According to it, the time lag is the travel time of the perturba-
tion from one station to the other (see Fig. 5).
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Thus, the time lag is the distance divided by the displace-
ment speed of the perturbation, projected in the line joining
the two weather stations. It can be computed through formula
(21), where 7,, is the observed time lag, d,, is the distance
between the weather stations and (U,;,,) and «,, must be
interpreted as the perturbation travel speed and direction (see
Fig. 9). For far away stations, this speed can differ notably
from the wind speed and direction due to the differences
between the boundary layer and the free atmosphere.

If time lags present characteristic values, this can be due to
different wind directions at higher levels of the atmosphere.
In the Fig. 15, the commonest lags are -4,4 days (white in the
picture) and +3,0 days (indigo in the picture). This bimodal
behaviour might match the wind regime in the Ebro River,
dominated by the “Cierzo” and “Bochorno” winds, with
contrary directions.

Since the distance between the stations is 140,5 km, the
displacement speed of the perturbation, projected in the line
joining the two weather stations, is -2,25 km/h to +2,0 km/h.
This speed seems to be very small to correspond to the real
displacement of the weather features and further research
should be done to obtain conclusions.

The bigger variability of the time delay is observed at
fluctuations quicker than four hours (upper part of the picture
in Fig. 15, with yellow, pink and cyan colours) and at fluctua-
tions of three to five days hours (lower part of the picture).

The tite lag of the the oscilations in LELO respect LEZG is shown bellow,

The time lag is lag » phase/(Zn £] whith the spectrim phase difference in radians

# & time delay positive indicates that the fluctuations of £ frequency are

observed (in average) first in [EZG and thesn in LELO.

+ & time delay negative indicates that the fluctuations of ffrequency are

observed (in average) first in LELD and then in LEZG

= In general, slow fluctuations are observed with a constant time delay between stations
+ According to the Taglor Hypothesis, the wind direction determines the ime delay
Thus, different time delays can be due to different wind directions
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Fig. 15: Time lag of the oscillations of Zaragoza airport respect the ones of
Logrofio airport (estimated by WINDFREDOM program [54]).

The variability of time lag in fluctuations quicker than four
hours can be a symptom that the weather perturbations evolve
as they extent geographically (see Fig. 16). The high
variability of the fluctuation delay of three to five days can be

due to different wind regimes (commonest wind storms occur
each 5 days on average in Zaragoza).

Dialay betersen flachiabons (days)

0.1 0z 0.5 10 20 50

100 200

Frequency [eyvelesfday ]
Fig. 16: Quantiles 5%, 25%, 50% and 95% of the estimated time delay (in
days) between the fluctuations in Zaragoza airport respect the fluctuations of
Logrofio airport of the same frequency (estimated by WINDFREDOM
program [54]).

It should be noted the phase unwrapping can have notori-
ous influence on the time lag estimation. One reason that
increases the variability of the time lags is the fact that there
are different mechanisms involved in slow, daily and intra-
day oscillations. Since the spectrum phase difference ¢’ is
wrapped in [-7, +7t] radians, it is not easy to guess the actual
time delay 7,.= (¢’ + 2nk) /2mf).

The phase unwrapping applied in WINDFREDOM pro-
gram [54] detects 2m radians jumps in the cross power
spectrum density of the stochastic time series. Actual phase
unwrapping considers that there is no phase wrap at lowest
frequencies (f;,,..; = 1/12 cycles/day for 48 samples a day and
512 samples in the Short Time Fourier Transform, STFT).

The time delay at lowest frequencies has a standard devia-
tion of about 3 days (one forth of the period length considered
in the STFT or n/2 radians). At high frequencies, the standard
deviation reduces to about half day. The weather dynamics
imposes a great variability on the time delay of slow
oscillations.

In Fig. 16, the median delay is usually below half a day,
but the variability is very big. The oscillations during 5 days
happen, on median, two days first in Logrofio than in
Zaragoza. However, the great variability of the time delay
indicates that the behaviour of slow weather oscillations
behaviour is not systematic and weather dynamics must be
taken into account to explain low frequency wind dynamics.
This high variability of the time delay decreases the
coherence module at low frequencies.

Diurnal and semi-diurnal variations (f= 1 and 2 cycles/day,
respectively) present a much smaller dispersion, with an
interquartile range of about 2 days in Fig. 16. Diurnal and
semi-diurnal oscillations are related mainly to wind dynamics
due to the sun heating, and thus, the time lag at such
frequencies is primarily not related to travel time.

The coherence module of fluctuations lasting one day or
more is about 30% ~ 50%, as can be seen in Fig. 17. It has
aforementioned that this is due to the changing time delay of
fluctuations.
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The interquartile range shown in Fig. 16 tends to 1 day at
intraday oscillations, with 2 days of 90% range. However,
intraday oscillations last less than its interquartile range and
the coherence module at such frequencies is decreases up to
5% in Fig. 17. Hence, intraday oscillations can be considered
mainly statistically independent.

The image in Fig. 17 shows that the relative oscillation
module is quite close to unity (indigo color) in general. But
since the phase difference varies noticeably, the modulus of
the average of the complex coherence is below unity (graph
on the left).

The coherence between the spectrum of LEZG and LELD indicate the correlation between the oscilation magnitude
at a given frequency in both stations

4 coherence near unity indicate that the flustuations are almost, fully linearly correlated

and a coherence near Zero indicate that the fluctuations are not lineady comrelated.

=>In general, slow fluctuations show a strong correlation (coherence near unity)

with a constant time delay hetween stations

4 random phase indicates that the fluctuations happen fiest indiferently in either station
withowt & sitnple temp oral link.

== I genetal, fast fluctuations show a low cottelation (coherence near Zero) and

small time delays indicating that fast fluctuations are local.
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Fig. 17: Coherence of Zaragoza and Logrofio airport winds (estimated by
WINDFREDOM program [54]).

Fractional, power law and exponential models of the
coherence module are shown in Fig. 18. The coherence does
not follow a clear tendency, and the peaks of the
characteristic frequencies f= 1/3, 0,8, 1 and 3 cycles/day are
not reproduced by the models.

The model that performs better in this particular case is the
exponential model (thin, dashed green line in Fig. 18) and it is
obtained adjusting two parameters. The fractional model and
the exponential model are obtained adjusting only two
parameters.

The power law model is quite informative because it
indicates the slope and the level of the coherence in a double
logarithm plot, even though it overestimates the coherence at
low frequencies. The fractional model is included because it
is analogous to many wind spectra models found in the
literature. For instance, the exponent 0.4573 in the fractional
model is about one half of the 5/6 power law of Karman and
Kaimal wind spectra.

Rodule of coherence[f]

21

Appearance

Measured coherence

| {SFFTy [£ i]-(SFFTy) *[£,]}

 BSD[£]5Dy (1]

0545001

thin, grey solid line

Fractional model ey TR thick, dotied red line
Power law model TEE dot—dashed hlue line
Exponential model | 00596511 + 0378308 ¢ 048348 f iy dashed green line

Comparision of the models in semi—logarithmic plot:

10— T T T T T T T
0gr B
g
"E ]
B
&
i i
Q
O
rv
oo L . . . . f . \
0l 0z 05 10 20 30 1o 200
Frequeney [cycles/day ]
Comparision of the models in double—logaritmic plot:
1.00 — T T T T T T T
e
:
5 |
2 |
&
&
(=}
O
o2 L . . . . |
ol 0z 03 10 20 50

Frequency [eycles/day]

Quantiles 5%, 25%., 509, 75% and 95% of the estimated time delay (in days) between
the fluctuations in LEZG respect the fluctuations in LEL O of the same frequency.
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Fig. 18: Comparisons of several coherence models Time lag of oscillations of
Zaragoza airport respect the ones of Logrofio airport (estimated by
WINDFREDOM program [54]).

However, more meteorological parameters than the single
speed modulo at the Zaragoza and Logrofio airports is
required to explain the variability of the time delays between
the fluctuations. Without further information, it should be
noticed that the average coherence for oscillations slower
than a day is between 30% and 50% and a small time delay in
average. This low coherence implies a low correlation of the
power injected by wind farms close to the stations considered.
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2.4.2. Coherence between Pamplona and
Zaragoza airports (Spain, 133,6 km
apart)

The second example has been chosen because the distance
of Pamplona and Logrofio from Zaragoza is comparable and
both are quite aligned with the prevailing wind direction in
the Ebro River. Pamplona is on the north of the Ebro river
valley and closer to the Pyrenees Mountains than Zaragoza
and Logrofio. However, the coherence between Pamplona and
Zaragoza is significantly higher than between Logrofio and
Zaragoza (see Fig. 19).

Fig. 19: Map from WINDFREDOM program [54] with the location of
Zaragoza and Pamplona in the North of the Iberian Peninsula.

However, the average wind measured at Pamplona is
higher than in Logrofio. There is no further information on the
weather station and the higher wind can be due to the
surroundings of the weather stations. The coefficient of
variation (standard deviation divided by the mean) is 89% in
Pamplona, 87 in Logrofio and 70% in Zaragoza.

The periodogram and spectrogram of Pamplona is similar
to the one of Logrofio. The diurnal variations are more
noticeable in Pamplona than in Logrofio and in Zaragoza,
possibly by the closer presence of the mountains. In contrast,
the fluctuations of 3 to 5 days prevail in Zaragoza.

The semi-diurnal pattern clearly seen in Logrofio (and in
Zaragoza in a lesser extent) but is almost missed in Fig. 20.

The ratio between the periodograms and spectrograms of
Fig. 11 and Fig. 20 is shown in Fig. 30. The ratio of
oscillations of 3 to 5 days of duration is below the unity in
Fig. 30, indicating that they are more noticeable in Zaragoza
than in Pamplona. However, the amplitude of the daily
fluctuations in Pamplona are almost twice the ones in
Zaragoza (the periodogram ratios is a bit lower than 4).

The quartiles of the time series at Pamplona and Zaragoza
(lower graph in Fig. 30) show a similar behaviour. The blue
shadow indicates the interquartile range of Pamplona and the
thick blue line is its median (the red colours correspond to
Zaragoza). Even though the median of the wind in Pamplona
is 30% ~ 40% smaller than the wind in Zaragoza, the
variations match significantly better than between Logrofio
and Zaragoza. Hence, the coherence between Zaragoza and

Pamplona is significantly bigger than between Zaragoza and
Logrofio.

Wind speed [kmfh]in LEFF from Bun 5 Oct 2008 12:30:00. to IMon 5 Oct 2009 09:30:.00
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Fig. 20: Periodogram and spectrogram of Logrofio airport (Spain) estimated
with WINDFREDOM program [54].

Data from Sun 5 Oct 2008 17:00:.00. to Mos 5 Oct 2009 14:30:00
The distante between LEZG (station 117 and LEFF (station £2) is 13362 km.

| Latitute  Longitude  Elevation [m]  Series mean  Samples per day
LEZG | 41667 -1 258.m 16292 kan/h 48
LEPP | 4277 -1646 459.m 11185 kan/h 36

The petindogram and spectrogram of LEPP have heen divided by the ones of LEZC:
+ A ratio bigger than unity indicate that the fluctuations of frequency § observed
it LEPF are bigges than in LEZG.

A ratin smaller than unity indicate that the Auctuations of frequency f observed
in LEFF are smaller than in LEZG

Inthe lower right plot, the quartiles of Wind speed [kmfh]in

LEZGare shows in ted. The quantiles of LEPP are shows in blue
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Fig. 21: Periodogram and spectrogram of Pamplona airport divided by the
periodogram and
WINDFREDOM program [54]).

spectrogram of Zaragoza airport (estimated by
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In practice, the oscillations observed in one station are
seen, in some extent, in other station with some delay or in
advance. The time delay between fluctuations of a given
frequency is 7,, = ¢ /(2nf), where ¢ is the phase difference
between the spectrums of the two stations.

According to Fig. 22 and Fig. 23, the fluctuations of 5 days
(f = 0,2 cycles/day) are seen, in median, half day before in
Pamplona than in Zaragoza. But the daily fluctuations (f =
1 cycles/day) are seen about 19 hours before in Zaragoza than
in Pamplona. This is due to the different mechanisms
involved in slow and daily oscillations. The actual time lags
show big variability (see Fig. 22) except at daily fluctuations.
The interquartil range is significantly smaller than the one of
Zaragoza and Logrofio.

Delay betareen fhactaations (days)
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Fig. 22: Quantiles 5%, 25%, 50% and 95% of the estimated time delay (in
days) between the fluctuations in Zaragoza airport respect the fluctuations of

Pamplona airport of the same frequency.
Data from Mond Oct 2008 21:30:00. to Tue & Oct 2009 18:30:00

The distante between LEZC (station 1) and LEPF (station #2) is 133 62 km

| Latitute  Longitude Elevation [m] {Wind) [mfs] Samples perday
LEZG | 41.667 -1 258.m 16342 kan/h 48
LEPP 4277 —1.646 199.m 11245 kmfh 36

The time lag of the the oscilations in LEPP reapect LEZG is shown bellow.

The time lag is lag = phasef(1zf) whith the spectrum phase differsnce in radians

w4 time delay positive indicates that the fluctuations of £ frequency are

observed fin average] first in LEZG and then in LEFF

w4 time delay negative indicates that the fluctuations of £ frequency are

observed (in average) first in LEFP and then in LTEZG

=5 In general, slow fluctuations are ohserved with a constant time delay hetween stations
wAccording to the Taylor Hypothesis, the wind direction determines the time delay.
Thus, different time delays can be due to different wind directions
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Fig. 23: Time lag of the oscillations of Zaragoza airport respect the ones of
Pamplona airport.

The picture in Fig. 23 shows that the commonest delays of
the slower fluctuations (0,1 < f< 0,5 cycles/day) is -2 days
(white colour) or +2 days (indigo colour). The variability
decreases at bigger frequencies and the most common colours
are cyan (about 0 delay), green (+1/2 day) or pink (-1/2 day).

Fractional, power law and exponential models of the
coherence module are shown in Fig. 24. The coherence does
not follow a clear tendency, and the peaks of the
characteristic frequencies f= 1/3, 0,8, 1 and 3 cycles/day are
not reproduced by the models.

The model that performs better in this particular case is the
exponential model (thin, dashed green line in Fig. 24) and it is
obtained adjusting two parameters. The fractional model and
the exponential model are obtained adjusting only two
parameters. The power law model is quite informative
because it indicates the slope and the level of the coherence in
a double logarithm plot, even though it overestimates the
coherence at low frequencies. The fractional model is
included because it is analogous to many wind spectra models
found in the literature. For instance, the exponent 0.8978 in
the fractional model is comparable to the 5/6 power law of
Karman and Kaimal wind spectra.

2.4.3. Coherence between Pamplona and
Logrono airports

At low frequencies, the coherence of Zaragoza and Pam-
plona airports almost doubles the coherence of Zaragoza and
Logrofio. However, Pamplona and Logrofio are in the
prevailing wind direction at Zaragoza (North-West) and at
similar distances. Furthermore, Fig. 26 shows the low coher-
ence between Logrofio and Pamplona airports, only 66,6 km
apart. This fact is an example of the complex wind regimes
and the value of data measured at weather stations.

Conclusions

This chapter has introduced the concepts relative to wind
variation. The most popular characterization of wind
turbulence at a point is through the turbulence intensity and
the wind spectra.

The Taylor hypothesis of “frozen turbulence”, a simple
model that relates about spatial variations and temporal
variations of the wind, is discussed. This hypothesis can be
used to reconstruct the approximate spatial structure of wind
from measurements with an anemometer in a meteorolical
mast. The accuracy of the Taylor hypothesis of has been
tested for long periods and long distances with the program
WINDFREDOM. This hypothesis is an approximated model
which allows to obtain the qualitative behaviour of the wind.
However, the perturbations evolve along its travel and the
time delay between the observations of the events at different
locations varies greatly due to different travel speeds (in
module and direction) of the weather perturbations.

A more advanced concept is the spatial and temporal
coherence of the wind, which statistically quantifies the
variations of wind in different points in space or in separate
moments of time.

The coherence of the wind quantifies the spatial and

temporal variability of the wind. The coherence characterizes
stochastically the differences of the wind field at different
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points or at different instants. The computer program
WINDFREDOM retrieves data from the network of
institutional meteorological stations and it is able to estimate
the coherence of slow wind oscillations (lasting more than an
hour) for distances above 30 km. This program is a
contribution of this thesis, since the great variety of wind
dynamics requires the use of real data to quantify the actual
variability of the power generated in a region.
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The cohezence between the spectrum of LEZG and LEPF indicate the comrelation between the oscilation magnitude
at a given frequency in both stations.

# A coherence near unily indicate that the fluctuations are almost fully linearly correlated

and a coherence near zero indicate that the fluctuations are not linearly correlated

= In general, slow fluctuations show a strong correlation (coherence near unity)

with a constant time delay between stations.

4 random phase indicates that the fluctuations happen first indiferently in either station
without a simple temporal link.

=> In general, fast fluctuations show a low correlation (coherence near zero) and

small time delays indicating that fast fluctustions are local.

50

20

0s

0z

01
00

02 04 08

Coherence module

0s8

verage module of coherence between
LEZG and LEPP attop lefL 1,
{SFFT [0} (SFFT)"[£,0)) |
Vesbnrevi
estimated from the top right 2
| SFFT)[£,t}EFFTy)(1,1]

NEEIE Tl

Wind speed [kmyh ]
n

(LEZG in red, LEFF in blue)
at bottom right —>.

Tire [days]

Fig. 25: Coherence of Zaragoza and Pamplona airport winds.

Drata from Twe 7 Oct 2008 17:00:00. to Wed 7 Ot 2009 14:00:00
The distante between LELO (station 1) and LEFP (station H2) 15 66.643 km.

| Latitute  Longitude Elevation [m] {Wind} [mfs] Samples per day

LELO | 4245 —2333 363.m 7011 kmfh 36
LEPP | 4277 —1.646 459.m 11.284 kimfh 26
Module of coherence[f] Appearance
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Fig. 26: Coherence of Logrofio and Pamplona airport winds.
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Chapter 3: The turbine torque and the

equivalent wind

3.1. Wind turbine torque

The aim of this work is the characterization and estimation
of power output fluctuations. In fact, power oscillations are
the ultimate response of generators to torque fluctuations due
to spatial and temporal wind variations.

The turbine torque can be estimated from blade theory.
Since either the blade section, neither the relative speed nor
the angle of attack is constant along the blade from the root to
the tip, torque must be integrated along the blade elements.
The lift and drag coefficients for the whole blade can be
parameterized for blade tip conditions.

turbulence

mean wind speed

instantaneous

vy s 1
4 wind Tield /

steady wind profile

windspeed in
fixed-space coordinates
Vw

v

wind speed in
, rotor- rotating system
W

Time Q

Time
Fig. 27: Effect of an uneven wind-speed distribution over the swept rotor area
on the upwind velocity of the rotating rotor blades. The lagrangian motion
coordinates are added assuming the turbine is aligned with the wind. Taken
from “Dynamic wind turbine models in power system simulation tool
DIgSILENT” by Rise National Laboratory [88].

v

A further simplification is to consider a torque coefficient
C, (A, 0) depending only on the pitch angle 6 and on tip speed
ratio A. In this work, the tip speed ratio is referred to an

equivalent wind speed since the wind conditions vary along
the swept area:

A =R Qrotor/ Ue(p (23)

where R is the rotor radius, €2,,,, is the rotor angular speed
and U, is the equivalent wind speed. In a first approximation,
U., is the longitudinal wind speed component averaged along
the swept area provided the shaft is aligned with the wind [88,
891.

Thus, the turbine torque is:
TR3U2 C (\,0)

€q - q

24

-1
Tmtm‘ T 9 Pair
where p,_,. is the air density.

In a second approximation, U, is defined as the wind
speed applied to (23) and (24) which produces the same

aerodynamic torque 7, , = than the real wind field.

A typical curve or rotor torque coefficient can be seen in
Fig. 29. Alternatively, the torque coefficient can be computed
as the power coefficient (see Fig. 28) divided by the tip speed
ratio, C,(A,0) = Cp(A,0)/A.

3.2. Definition of the equivalent wind,
equivalent turbulence and effective
quadratic turbulence

3.2.1. Equivalent wind

The equivalent wind U, is an artifice defined as the
uniform wind which would produce the same torque as the
real wind field. According to (24), it can be computed from
real torque as (25):

U _ 2 Tmtm"
‘A TRC (N 0)
air q\’"

Since the wind varies along the swept area (wind distribu-
tion is irregular), the tip speed ratio A must be computed also
from (23). Therefore, the equivalent wind U, is defined as
the wind resulting from solving the following equation:

(25)

QiR 2T
C rotor 79 U2 _ rotoT (26)
q eq R3
eq pairﬂ-
where C_(A,0) is the turbine torque coefficient, 7, is the

torque in the low speed shaft of the wind turbine, R is the
rotor radius, €2, is the rotor angular speed and p,, is the
air density.

The simplification of using an equivalent wind is huge
since the non-stationary three-dimensional wind field is
approximated by a signal which produces the same torque.
Apart form accelerating notably the simulations, U,, describes
in only one signal the effect of the turbulent flow in the drive
train.
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Fig. 28: Rotor power coefficient C' P ()\, 9) for a variable-pitch turbine.
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Fig. 29: Rotor torque coefficient C' q ()\, 9) for a variable-pitch turbine.

The actual wind speed U,,;,q is measured at a point by an
anemometer whereas the equivalent wind speed U, is
referred to the rotor surface (or more precisely, to the turbine
torque). Since the Taylor’s hypothesis of “frozen turbulence”
is usually applicable, the spatial diversity of wind can be
approximated to the point wise time variation of wind times
its mean value, (U, ), and hence U,, can be considered a
low-pass filtered version of U,;,; (plus the rotational sam-
pling effect due to wind shear and tower shadow effect).

On the one hand, the meteorological science refers to the
actual wind speed U4 since the equivalent wind U,, is, in
fact, a mathematical artifice. On the other hand, turbine
torque or power is customarily referred to the equivalent wind

U,, instead of the 3-D wind field for convenience.

Wind Power Variability in the Grid — Chapter 3

A good introduction about the equivalent wind can be
found in [177]. The complete characteristics of the wind that
the turbine will face during operation can be found in [90].

The equivalent wind speed signal, U,,(t), just describes a
smoothed wind speed time series at the swept area. For
calculating the influence of wind turbulence into the turbine
mechanical torque, it has to be considered the wind distribu-
tion along the swept area by a vector field [91]. Blade itera-
tion techniques can be applied for a detailed analysis of
torques and forces in the rotor [92]. Thus, the wind shear and
tower shadow can be accounted including the rotor position
as a parameter in the torque coefficient. Hence, the definition
of the equivalent wind accounting the former effects is:

rotor

C

q

0,9 27)

eq
where ¢ is the rotor angle (in the following chapter, a
method will be derived to assess the influence of rotor angle
in the torque coefficient).

The anemometer dynamic response to fast changes in wind
also influences measured wind [93]. Most measurements are
taken with cup anemometers, which have a response lengths
between 10 and 20 m, corresponding to a frequency cut-off
between f.= (10 m/s)/10 m = 1 Hz and f, = (10 m/s)/20 m =
0,5 Hz for 10 m/s average speed.

Apart from metrological issues, the spatial diversity of
turbulent wind field reduces its impact in rotor torque.
Complete and proved three dimensional wind models are
available for estimating aerodynamic behaviour of turbines
[82, 94, 95]. Turbulent models are typically used in blade
fatigue load.

From the grid point of view, the main effect of spatial di-
versity is the torque modulation due to wind shear and tower
shadow [48]. Vertical wind profile also influences energy
yield and it is considered in wind power resource assessment
[95].

3.2.2. Equivalent turbulence

Accordingly, the equivalent turbulence AU, is the differ-
ence between instantaneous value of U, and its average, (U,
(see Fig. 27).

A Uﬁq = Ueq_ < U(zq) (28)

Since wind is not a stationary process due to weather evo-
lution, the wind average depends on the averaging time (U,,).
In general, (U,,) can be considered the running average of U,
(or alternatively, a smoothed value of U,). The influence of
the constant time in the estimation of (U,,) will be considered
in subsequent sections of this chapter (some usual values are
1, 10, 15 or 60 minutes, depending on the time span of the
analysis).

3.2.3. Effective quadratic turbulence

Since aerodynamic torque is a quadratic function of wind,
the deviation of the equivalent wind speed squared (29) is
more directly related to power output. The effective quadratic
turbulence AU?,) is defined as follows:
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For relatively small variations of wind, the effective quad-
ratic turbulence AU, gq) could be approximated by a normal
process (with an almost cyclostationary process superimposed
due to the sampling of the quasi-deterministic wind field
distribution along the rotor area, see Fig. 27).

Gust dynamics are complex and measured data indicates
that small fluctuations are correctly assessed but blasts of air
are underestimated with the normal process approximation
(independence of wind influences) [214]. During gusts,
moment contributions are correlated resulting in a bigger
overall wind deviation. Thus, the normal model will be
analyzed and modified in the chapter devoted to gusts to fit
experimental data of extreme gust.

3.2.4. Linearization of quadratic
turbulence

When the wind turbines are generating, a small-signal
model based on equivalent wind speed deviations AU, can be
obtained since U, >AU,, ,:
qu:[@q V420U, ) AU, + (AU, )? ~

~(U,, ) +20,) AU, +{(AU, ) =U2)+20,,)AU,,

2
)+ AU, [=,

(30)

For relatively small variations of wind, the following first-
order approximation is valid:

AU?) ~ 2{U AU
Therefore, the relation between the power spectral densities
of the equivalent speed and the quadratic turbulence are:
2
PSD . (f) = (2@, PSD,, ()

eq

Vf=0  (32)

3.3. Effect of transversal components of
wind

The rotor area filters small scale eddies, and thus the
relevant eddies for wind turbine power fluctuations are those
of larger scales.

The lateral and vertical components of wind affect relative
direction and velocity of the air in the blade reference and
thus, turbine torque. However, the overall effect of transversal
fluctuations to the rotor plane can be neglected in the first

instance since the stream wise speed component is

significantly bigger than the span wise fluctuations
2 2 2 2

(Ular(m/<<Ulonmmﬂmn7 and Uz'rrncn,l<<Uhmqiiurhnnl ) [97]

_ 2
— 2 2 2 ~ 2
| U’wind - Ulungifudinal—"_ Uvertical+ Ulateml"" Ulongifudinal (33)

Moreover, vertical and lateral turbulence have shorter
length scales than the longitudinal component, producing a
lower net effect in turbine overall torque. For convenience,
only the longitudinal component of the turbulence averaged
across the turbine rotor will be considered relevant for power
output variations (structural stresses are not studied in this
work).

UeZq(t) ~ (Ul%ngitudinal(t)> (34)

rotor area

Nevertheless, the influence of small lateral and vertical
components can became eventually important at some pitch

angles where the torque is quite sensitive to changes in attack
angle.

3.4. Wind smoothing from turbine rotor
and equivalent wind

3.4.1. Fundaments of spatial filtering in
rotor

On the one hand, the spatial and temporal variations of the
wind are related to the turbulence structure. On the other
hand, the equivalent wind -applied to a simplified
aerodynamic model— produces the same torque on the turbine
shaft than the real wind distribution across the rotor. The
equivalent wind filter models the smoothing of the equivalent
wind speed respect the actual measure of an anemometer
placed upstream the turbine hub. This filter models the spatial
diversity in the area swept by the turbine blades.

The input of this filter is the wind U,,,, which would be
measured at an anemometer installed at the hub height and

the output is the estimated equivalent wind, U,;.

Neglecting the cuasi-periodic components in the torque, the
equivalent wind smoothing can be expressed as a wind
turbine admittance function defined as:

|H (f)|2 PSDmed(f)
1

—_mees 3
PSDUeql (f) ( 5)

where PSDy,inq(f) is the power spectral density of the wind
measured at a point and PSDy,, (f) is the power spectral
density of the equivalent wind (without the perdiodic
components due to the cuasi-deterministic variation of torque
with rotor angle).

The wind spectrum PSDy,,q4(f) is equivalent to a low-
pass filter with an order around r’ = 5/6, applied to white
noise. In other words, the spectrum decays a bit slower than
white noise filtered with a first-order low-pass filter.

The turbine power decreases quicker than the pointwise
wind at f>0.01 Hz [52] and this is partially due to the spatial
distribution of turbulence, the high rotor inertia and the
viscous-elastic coupling between the turbine blades and the
generator [96]. In fixed speed, stall regulated turbines, the
drivetrain dynamics influences notably the power output. But
in variable speed turbines, a simple model with two coupled
mass (equivalent to a second-order system) can be precise
enough to model the drivetrain since generator control usually
damps resonance modes of blades, gearbox and tower.

The ratio os the PSD is the square modulus of the filter,
which can be computed from the filter Laplace transform
Hi(s):

|H\(f)[F = Hy(52mf) [ Hy (527 f)] (36)

The phase of the filter indicates the lag between the wind at
the anemometer and the turbine torque. The phase of the filter
does not affect PSDy,, (f) provided the wind could be
considered stationary and, accordingly, the phase its spectrum
would be arbitrary. The lag difference of equivalent wind
among turbines at points 7 and ¢ will be considered through
complex coherence 7,.(f), irrespective of the argument of

H(f).

The frequencies of interest for flicker and blade fatigue are
in the range of tenths of hertz to 35 Hz. These frequencies
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correspond to sub-sound and sound (inertial subrange) and
they have wavelengths comparable to the rotor diameter. The
assumption that such fluctuations correspond to plane waves
travelling in the longitudinal direction and arriving
simultaneously at the rotor plane is not realistic. Therefore,
quick fluctuations do not reach the rotor disk simultaneously
and fluctuations are partially attenuated by spatial diversity.
In brief, H,(s) is a low-pass filter with meaningless phase.

The smoothing due to the spatial diversity in the rotor area
is usually accounted as an aerodynamic filter, basically as a
first order low-pass filter of cut-off frequency
~0,1224U,;.»/ R respect an ideal and unperturbed
anemometer measure [[44].|For multimegawatt turbines, the
rotor filters significantly fluctuations shorter than one minute
(cut-off frequency in the order of 1/60 Hz).

The presence of the ground surface hinders vertical
development in larger eddies. The lateral turbulence
component is responsible for turbulence driven wind direction
changes, but it is a secondary factor in turbine torque
fluctuations. Moreover, according IEC 61400-1 [97], vertical
and transversal turbulence has a significantly smaller length
scale and lower magnitude. Thus, the vertical and lateral
component of turbulence averaged along the turbine rotor can
be neglected in turbine torque in the first instance.

3.4.2. Turbulence models for estimating
smoothing of equivalent wind

The spectral coherence of the wind at positions z and y,
Coh(f) or |i§y (f)|, is a normalized measure of the
correlation between the fluctuations of frequency f on both
locations. Note however that the integral of |7,,(f)| over all
frequencies is different from the correlation coefficient of the
wind between both locations.

The coherence is an important quantity when translating
Eulerian spectra into spectra in a rotating frame of reference,
such as that ‘seen’ at a fixed position on a rotating wind
turbine blade [98]. It is quite difficult to measure coherences
with sufficient statistical significance and consequently there
is a lot of scatter in measured values. Traditionally, very
simple exponential models have been used to describe the
coherence functions [99]. The coherence for separations
perpendicular to the mean wind in neutral conditions, is
described reasonably well by the following model, even in
wake situations [100]

Iﬁy(ﬁAS)I:EXP[-

where As is the longitudinal separation and a, depend on the
velocity component and the direction of separation (vertical
or lateral).

a;fAs
T] (37)

The decay constants for the longitudinal wind component
are:

o g,=12+1 lAz/z,“,g (for vertical separation Az) and
o q,=12+11Ay/z (for lateral separation Ay)

where Az is the height difference, z,, is the average of the
two heights, and Ay is the lateral separation at the same
height 2 [63]. In the literature, several other models of varying

degrees of sophistication can be found [101].

The coherences also depend on stability: the decay constant
a; increases significantly in stable conditions, and decreases
slowly with increasing instability.

In strongly stable conditions, the picture is somewhat
blurred by the fact that the low-intensity, small-scale
turbulent fluctuations are masked by the presence of slow,
large-scale, highly coherent, two-dimensional structures.
Except for minor differences in average stability (slightly
more stable over the sea) there is no reason to believe that the
coherences should behave differently over the sea. In
complex terrain, however, where we typically see excess
turbulence at large scales, one might expect that, like for
unstable conditions, the coherences will increase somewhat.

The presence of operating wind turbines in the flow have a
significant impact on the flow properties close to the rotor
(within 10 diameters), see [102, 103]:

e The wind speed is decreased inside the wake, giving
rise to large shear at the top of the wake.

e  Turbulence levels are increased inside the wake and,
since the mean wind speed is decreased, there is a
considerable increase in turbulence intensity.

e The length scale of turbulence is decreased inside
the wake because the turbulence produced by the
shear layers in the wake is created at length scales of
the same magnitude as the cross-wind dimensions of
the wake which are typically an order of magnitude
smaller than the length scale of the turbulence in the
free flow.

e Because of the wake-imposed length scale,
turbulence length scales in the wake for the different
components of wind speed approach each other.

e In general, second-order statistics are quite perturbed
inside the wake. The variances are quite different in
the non-equilibrium turbulence and in the usual
boundary-layer approximations.

e Spectral coherence in the wake seems to be well
described by the usual models except for the near
wake (distances < 5D), see [100].

A) Spatial filter from Sgrensen (IEC 61400-1)

For power quality analysis, the equivalent wind speed
method described in [153] provides a very good compromise
between accuracy and calculation time.

In fact, IEC 61400-1 [97] defines the following coherence

function of the wind in the rotor area vz (f) : (38)
f 012 |
’YIEC <f’ drc> =exp _drcA * | ] B e_ﬁdm
< med > l Uwind
foY (012 Y
where 3 = A\/ [ + (39)
< med > 14 Uwind

A is a decay constant and d,, is the distance between the
points 7 and ¢. IEC 61400-1 recommends A = 12; Frandsen
et al. [104] recommends A ~ 5 and Saranyasoontorn et Al
[82] recommends A = 9,7 from experimental data in LIST
Test site at Bushland, Texas.

The average fluctuation of frequency f at the rotor area
(relative to the wind measured at hub nose) is the area integral
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of the coherence assuming that point 7 is the hub nose and
point c is in the differential area. Fig. 30 shows the limits for
the area integral of the coherence. The fluctuation is assumed
to arrive at all the points in the rotor plane at the same time in
average or with a random lag and hence~v;pc(f) has null
argument.

Hi(f) :j;]R j:ﬂ ’YIEC(fv T) ’f'd’f’ dL)D :j;)R ’YIEC(-ﬂ 7”) 2777”d’l” =

= 27rj;R e Prydr = ;—W[l + (BR — 1)67“3R] (40)

2

Finally, the transfer function is normalized to have unity
gain at very low frequencies (very slow fluctuations affect

equally all the rotor area): (41)
H(f) 1 1+ (BR — 1)e 9%
H(f)=——= 2 0,124R
HI(O) 1+( gmedf ) 0/12AR - [L )
07 12 < Uwind > + ( gUu*md -1 ) € "

Fig. 30: Differential sector area to compute the average fluctuation along the
rotor area.

Fig. 31: Differential annular area assuming rotational symmetry.

The admittance function has been solved numerically by
Serensen in [105] for different coherence functions and wind
speed weightings in the rotor plane. Calculating the
admittance function numerically with the coherence function
(38), this admittance function is fitted to the analytical
expression

g \4/3]3/2
0
_\/§ <Uwind> o <Uwind>
h= g hmoipen @)

where R is the radius of the wind turbine rotor disk and A is
the coherence decay factor, i.e. A ~ 12 using the coherence

function vzc(f) .
The cut-off frequency of this filter is obtained solving

\H,(f,)[ =1/2: (44)

U . 22
for =4/ 0,4502f% — £2 :<—”d> 0,9 — 0.0144A—R
' AR 2

Uwind

The application of the first filter to the wind produces the
following PSD:

PSDyeq, (f) = PSDyuina ) Hy (F)F

where PSDy,,q(f) is the power spectral density of the wind
measured at a point and PSDy,, (f) is the power spectral
density of the equivalent wind (without the periodic
components due to the cuasi-deterministic variation of torque
with rotor angle).

(45)

B) Spatial filter from Wilkie, Leithead and Anderson

Wilkie, Leithead and Anderson proposed in [106] an
alternative approach with aerodynamic filters. Since long
wind records at hub height and high sampling rate are not
usually available, they are randomly generated from a suitable
wind model. In the first step, a wind time series at the hub is
synthesized with the required properties (i.e., average wind
speed, spectrum parameters and turbulence intensity). This
signal is the input to the aerodynamic filters, and the output
signal is the equivalent wind speed representing the wind
field impact in the whole rotor area.

The spatial filter of the rotor disk has the following Laplace
transfer function in (46):
N2 + bs

H(s) = (V2 + b-sva)(1 + b-s /va)

(46)

where a = 0,55, b = YR U,.»)>» R is the turbine radius, U,,,,
is the average wind speed at the hub height, and v is the decay
factor over the disc (y=1.3)([44]

The square modulus of the filter is:
1+ 2(b-fr)
(P = 20
[1+2b-f)? /o] [ 1420 (b-f-m)?
This filter is almost equivalent to a first-order low pass

filter with cut-off frequency f.,, = 2nb)" = 0,1224 (U,,.) /R
(compare solid and dot-dashed lines in Fig. 32).

2 1
| H(F)" ~ 1466,72(f R /{Uping )

02T

(47)

(48)

Notice that for multi-megawatt turbines, the cut-off
frequency f., is a few cents of Hertz, filtering wind
oscillations of tens of seconds. However, the filter order is
only one and the transition droop is mild. Therefore, the
frequency content of the equivalent wind can be noticeable
even one decade bellow the cut-off frequency f,,,. However,
the effect of the turbulence in the torque is negligible at
frequencies f2 0,2 Hz compared to the drivetrain oscillations
due to tower oscillation, wind shear, rotor revolution and
tower shadow.
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Fig. 32: Comparision of aerodynamic filters (42) —dashed purple line—, (47) —
solid blue line— and (48) —dot-dashed brownish line— for a rotor of radius
R =50 m, average wind speed (U,;,»» = 10 m/s and integral turbulence
length ¢7,,,= 1000 m (f,,, = 0,0245 Hz approximately).

Fig. 32 shows that the three filters show good agreement.
For very short integral turbulence lengths ¢,,,.,, the filter
from Serensen (42) introduces a non-unity gain at very low
frequencies, which is not very reasonable. However, the
Serensen filter is more precise than (46) or (48) because the
transition is a bit softer and the cut-off frequency depends
explicitly of the ratio between the turbulence length scale and
the turbine radius.

In short, taking into account the uncertainties in the
coherence in the rotor area, the rotor spatial diversity is
similar to a first order filter of f,,,~ A (U,,;,»/(100R), where
the coherence decay factor A is between 5 (high spatial
coherence typical of a stochastic parameter between gusts)
and 12 (standard spatial coherence).

C) Spatial average vs. time average

The Taylor’s hypothesis of frozen turbulence implies that
the spatial averaging along the rotor area is similar to time
average during some AT interval. In fact, most data loggers
record running averages computed during the interval AT.

The transfer function of a running average is similar to a
second-order filter:

sin? (2mfAT/2) 0.443
=T T A cut %,— 49
(2 fAT/2)? AT “49)
and its cut-off frequency is f,,, ~ 0,443/AT, a bit lower than
the Nyquist frequency of the data sampled at AT.

H

sinc

Equating the cut-off frequencies of the aerodynamic filter
and the running average, A (U,;.»)/(100R) =~ 0,443/ AT, the
characteristic time of the rotor is AT =~ 44,3 R/(A{U,.a)-
The gust quicker than AT are significantly attenuated by the
rotor.

For a rotor of radius R =50 m at an average wind speed
(U= 10 m/s and A = 12, the characteristic time is AT ~
18 s. This implies that gust of a few seconds are notably
filtered at the low speed rotor shaft of a multimegawatt
turbine.

3.4.3. Average rotor wind speed vs. wind
speed at hub height

Wind speed generally increases with height and this
variation is termed wind shear. Torque pulsations, and
therefore power pulsations, are observed due to the periodic

variations of wind speed seen at different heights. Power and
torque oscillate due to the different wind conditions
encountered by each blade as it rotates through a complete
cycle. For instance, a blade pointing upwards would
encounter wind speeds greater than a blade pointing
downwards. During each rotation, the torque oscillates three
times (in a three bladed turbine) because of each blade
passing through minimum and maximum wind. It is therefore
important to model these wind shear induced 3p torque
pulsations when studying a wind turbine system.

If the blades of a rotor have different pitch angles or small
differences in their shape or if the rotor mass is unbalanced,
then a pulsation at the revolution frequency is also observed
in the torque.

The turbulent mixing in the atmosphere may be considered
in a similar way to molecular mixing (this is called K theory).
Assuming the phenomenon is dominated by mechanical
mixing due to shear forces, the following relationship of wind
speed with height is derived:

zELn =D
k 2

wind (50)
where the friction velocity is us, & is the von Karman constant
(generally taken as 0.4), z, is the roughness length and D is
the displacement heigh.

The roughness length z is related to the vegetation cover
of the area and tables of roughness length are available from
several sources [107], ranging from z= 0.0002 m (sea and
lakes) to z= 0.4 (urban districts, forests, and farm land with
many windbreak). In general, wind vertical profile is heavy
dependent on meteorological condidions, specially on stable,
unstable and neutral atmosphere (for instance, see Tambke
[108]).

The displacement height D is the height above the
roughness elements where the flow is free. For most
vegetation it is small and is generally treated as zero. For
large roughness elements like trees and buildings in towns it
is not negligible and is of the order of the average height of
the elements (the log law may only be used for heights above
D). Turbines are usually sited in isolated places and D is
usually taken as zero.

The wind speed at any height z can then be computed
provided that the wind speed at a height H is known:

med (Z) o Ln (Z/ZO )

Uun'nd(H) Ln(H/ZO )

If the wind speed at hub height H is measured, U,;,q(H),
the wind speed at other elevations above ground z can be

estimated with (51), without considering the local variations
due to turbulence.

(1)

The increase in wind speed with height is easier to evaluate
of it is described as a power law. A common wind shear
model, shown as (52), is taken directly from the literature on
wind turbine dynamics [109].

z

Umd@):Umd(H)[—]” 2)

H

where o, is an empirical wind shear exponent, which depends
on meteorological conditions and site characteristics.
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The power law exponent a, can be estimated from the
roughness length z, applying logarithms to (51):

n Ln(z/zo) ~ Ln(z/H)
_ Ln(H/zo) _ Ln(zO/H) 53)
Ln(z/H) Ln(z/H)
10-3 1n|-4 1n|-3 10-1
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Fig. 33: Shear exponent «, as a function of roughness length and elevation,
relative to hub height from eq. (53).

Fig. 33 indicates that the shear exponent only varies
slightly with height (i.e., the contour lines are almost vertical
except near the surface). Therefore, the power law and the
logarithmic law are similar for points near the rotor hub
(z ~H). Taking into account that Ln(l—xz)~ (4 — 1/z)7!,
the following approximations are valid:

1 1
NzH |~H Ln(H/z0 )

Z

a,~ (54)

Ln

0

The power law exponent a, typically varies between 0.1
and 0.4 depending upon the landscape type. According to
[110], the wind shear exponent is often assigned a value of
0.143, known as the 1/7™ power law, to predict wind profiles
in a well-mixed atmosphere over flat, open terrain. However,
higher exponent values are normally observed over vegetated
surfaces and when wind speeds are light to moderate (i.e.,
under 7 m/s). For example, Eggers et al. [111] reported
exponents up to 0.75 based on wind speed measurements for
a considerable period of time in the Midwest and Southwest
regions of the United States. It has been reported [112] that
findings made at a Colorado wind site indicate shear
exponents as high as 1.25 eventually occur at tall tower
heights for significant periods of time (up to two hours) at
night.

A relationship between wind speed averaged along the
rotor disk, (Uwind )yoror» @and the hub height wind speed

Uina(H) is required such that tower shadow and wind shear

formulas can be combined with only one wind speed term.
H+R

[ U 2 B2 (H—2)d

=R (55)

TR?
where the spatial variation due to the turbulence estructure is
not considered

Usina )
< wind /yrotor
area

Area=2 R.

Fig. 34: Differential area assuming dependence only with height.

To calculate spatial average wind speed (Uing )yotor » the
varying wind speed from wind shear is integrated over rotor
area and divided by total rotor area (for integration details,
see Dolan and Lehn [50]). The ratio of the spatially averaged
wind to the hub height wind is:

Usina )
m = < wind [rotor area —

56
Uwind (H) ( )

The simplification that (Uwying Vrotor area = UwindH) 1S
reasonable since 0.98 < (Uing )yotor ! Uwina(H) < 1, (assuming
R/H<0.76 and 0.1 < a < 1). For more accuracy, (56) can be
used (see Fig. 35).

Ratio of spatially averaged wind ws. hub wind

24| N ]

b
b
T

Relativehei ght of the tower, HRE

0z 04 0a 02

Sheat exponent, g
Fig. 35: Ratio m = (U ying )rosor ! Uning(H) with shear exponent 0< a, < 1

for different tower heights.

rotor
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Notice that the mean squared wind is proportional to rotor
torque. The ratio of squared winds is analogue to (56), but

changing o, by 2c,.
H+R
2 2 [p2_ rr_\2
<Uwind >7'otar area _ fH*R med(z)Q R (H Z) dz _
Uiind (H) TrRQUz;z'nd (H) 57
g 200, (20, — 1) R ¥
8 H

At partial load, the mean of the wind cubed is proportional
to power. The ratio of cubed winds is analogue to (56), but

changing o, by 3cv,.
H+R
3 3 [p2_ . \2
<Uwind >7”ot07‘ area :foR U’wmd(z)2 R (H Z) dZ:
|y, 30.Ba, (R ?
8 H

The uncertainty in the turbine power curve introduced
considering hub wind instead of (cubed) wind speed averaged
along the rotor can eventually exceed 5% according to
Rehman and Al-Abbadi [113]. The average wind speed
is bigger than hub wind speed U, ,(H) if
o> 1. Average squared wind speed (U 3}@ I rotor area 1S DigZET
than squared hub wind speed for U  (H) for a> Y.
Average cubic wind speed (U SM I )rotor area 1S bigger than
U3 (H) for a> 1/3. Therefore, the power curve of a turbine
can vary significantly depending on the shear exponent ..

<UU/i7Zd >T’01‘,07> area

3.5. Calculation of aerodynamic filter
based on 3D wind waves

In the previous subsection, the turbulence structure along
the rotor disk has been neglected. The equivalent wind has a
determinist oscillation due to wind shear and tower shadow
and a random oscillation due to turbulence. But even the
determinist oscillation can turn into a random oscillation if
the blades start vibrating if they have enough flexibility and
inertia. Thus, the determinist variation of the real wind along
the swept area can introduce random oscillations in the torque
and thus, in the equivalent wind.

A naif approach to estimate the smoothing —due to the
spatial variation of turbulence— of the equivalent wind respect
the wind measured with an anemometer will be developed in
this subsection, just as an illustrative example.

3.5.1. Comparison of 3D wind waves
with frozen turbulence

Under the Taylor’s assumption of frozen turbulence, the
perturbation travels at average wind speed v,,;, ~{(U,q " -
Thus, the perturbations seen at a fixed point fluctuating with
frequency f, have a wavelength X\, = v./f = (Ui )/f
related to the spatial escale in the longitudinal direction
L ywing - Using the turbulence structure in the standard IEC-
61400-1, the cut-off frequency of the equivalent turbulence
foum AU,/ (100R).

However, the wavelenghts in the lateral and vertical
directions are smaller due to the surface and the boundary
layer presence. For simplicity, we assume a transversal

wavelength \,,.., = k Niong for the lateral and vertical
directions, slightly smaller than in the longitudinal direction
(0 <k punse < 1). Using a sinusoidal perturbation pattern with
transversal wavelength X\, ..., (see Fig. 37), the cut-off
frecuency in the rotor disk average wind is f,,, =
Kranso{Uina » /(6 R) —this formula will be derived in the next
subsection. Equating both estimations, the ratio between the
transversal and longitudinal wavelengths can be estimated as
Kyanss = 0,06 A.

Since the coherence decay factor A is a stochastic
parameter between 5 (high spatial coherence typical of gusts)
and 12 (standard spatial coherence), the ratio between the
transversal and longitudinal wavelengths is v,/ U, .o =~
0,3~0,72. This factor is bellow unity, indicating that the
spatial variation of the 3D wind field is bigger in the lateral
and vertical directions than in the longitudinal direction.

transv

Thus, the results from Taylor’s Hypothesis and from the
wind perturbation treated as a wave match. This fact is
surprising, especially taking into account the chaotic
behaviour of the turbulent flow and the oversimplification of
the frozen turbulence hypothesis or the wavelength approach.

3.5.2. Model of 3D wind waves

In a gas, a perturbation generates a pressure wave that
transmits in all directions at sound speed. Since macroscopic
turbulence implies vortices, that are quite stable flow
structures, it is reasonable that they pass floating the turbine.
Due to the stability of eddies, their speed of translation is the
average flow speed (U,,,, ) instead of at sound speed (v
343 m/s at standard conditions).

In this sub-section, the source of perturbation will be con-
sidered far and the air viscosity (i.e., the attenuation of air
waves) will be neglected. With the former simplifications, the
longitudinal compontent of the wind of fluctuating frequency
f at the anemometer will have a spatial periodic pattern of
wavelength N,,...0 = K transe (Uwinag ) /f 10 the rotor disk (see Fig.
37) travelling in the longitudinal direction at speed v,
R (U ying ) -

sound

-10

50 ] =50

Fig. 36: Plot of the longitudinal wind component corresponding to a 3D wave
which at an anemometer appears as a fluctuation of frequency f=5 Hz and a
turbine rotor of radius R = 50 m.

The longitudinal wind component at frequency fin rectan-
gular coordinates y, zis assumed to be: (59)
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wl(?/, 2, f,t) = 'Y]Ec(ﬁ Y 312+32 )
27T<med>(t+t0) 27T(y+ yo)
)\— COS

long

27(2+2,)
08 0s

Transv Tansv

where -y [EC( fNy?+22 ) is the amplitude of wind oscillation
and ty, y and z are random values.
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Fig. 37: Flow curls due to the eddies and the corresponding modulation of the
longitudinal wind component.

Assuming that initial angle of the first blade is ¢ = ¢ at
t = 0, then the angular position at any time is ¢ = €2,,,,,t4+ o,
where €, is the rotor angular speed —for a three bladed
turbine, f,,,5 = 3€2,00,/(270).

Therefore, the wind field in the blade axis at a distance p of
the rotor centre is, in polar coordinates:

U)l'(p, 2 f7 t):

. (60)
= wl( p Cos(Q, ...t +¢4),pSINQ, ..t +¢y), [ t)

If the aerodynamics can be considered linear enough for
neglecting small perturbations and the blade aeroelastics, only
a sensitivity coefficient of wind in torque or in power needs to
be considered. Moreover, the turbine torque would show the
same cut-off frequency than the average wind and the
equivalent wind.

3.5.3. Spatial turbulence averaged along
the blades

Since rotor solidity in a three bladed turbine is low, the
equivalent wind can be estimated averaging the wind only
along each blade axis, provided the blade is narrow and it is
not influenced by the nearby flow.

Nblades

(o, ;5 f,1)
(= -
| 1 () | ; mem Nytades —

max min )

Rmagz

dp| | (61)

Solving the integral for f=~0, this approximation leads to a
first-order low-pass filter of the same cut-off frequency f, ..
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= U /(6R) = (U, ) /(6R). Therefore, averaging along the
blades instead of along the rotor disk area produces a slower
decay (this is sensible since the blade area is is smaller than
the rotor disk area).

In the one hand, the blade average corresponds to the order
r =1 of the aerodynamic filters proposed by Serensen [105]
and Wilkie, Leithead and Anderson [106].

1.000 E
0.500 | ]

0.100 E
0.050 - b

0.010 E
0.005 |- ]

equivalent wind gain vs. measured wind

0.001 L ‘ ‘ ‘ ‘ ‘
0.1 0.5 1.0 50 100 50.0
frequency f°
Fig. 38: Averaged wind fluctuation along the blades of a rotor of radius
R=50m, v,,;, = V. and the asymptotic approximation to a system of
order r=1.

In the other hand, the cut-off frequency f.,, is a few cents of
Hertz in multi-megawatt turbines, filtering wind oscillations
of tens of seconds. Experimental measurements have shown
that the equivalent wind has approximately the same PSD as
the wind measured at a point and filtered with a second order
filter in a multi-megawatt turbine. Since the blades sweep the
turbulence many times in the characteristic times corre-
sponding to such low frequencies, it is more sensible to
represent the turbine as a disk actuator than only considering
the averaging along the blade axis.

3.5.4. Spatial turbulence averaged across
the rotor disk area

The cut-off frequency of the rotor filter is very low, typi-
cally 0,033 Hz for a megawatt turbine. Such low frequency
imply that the fluctuations that happen quicker than 30 s are
filtered by the rotor. During such times, the blades sweep
many times the wind field perturbation and the rotor can be
considered a disk actuator. Thus, the turbulence impact on the
equivalent wind is more accurately accounted if the local
wind is averaged across the rotor disk area than along the
blade axis, assuming a fairly constant blade loading between

R,,and R, ..

The component of mean wind in the rotor area at frequency
f gives an idea of the attenuation respect the fluctuation

measured with an anemometer due to the averaging of speed
in the swept area.

Rmazx p27 wl P,% fa )
mem 0 _R2 )

min

—— dydp (62)

leI

Fig. 39 shows that the averaging is equivalent to a low pass
filter. The asymptotic function min{l, f.,../f 321 corre-
sponding to a low-pass filter of order r=3/2 and characteristic
frequency f,,iop = Viut/(61) = (U,nq ) /(61) has been added to
the plot in Fig. 39 to contrast the system behaviour.
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For f3~0, the cut-off frequency due to the rotor averaging is
Jeutoff = Vuat/ (6 R) = (U4 ) /(6 R) and its order is r=3/2 (see
Fig. 39). For a turbine of radius R= 50 m and an average
wind speed (U, )~ 10 m/s, the cut-off frequency is about
Jeutop ~ 1/(30 s) = 0,033 Hz. In fact, the order r of the filter is
bigger than 3/2 because f > 0, and the actual filter order
estimated from experimental measurements is around r ~ 2.
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equivalent wind gain vs. measured wind
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Fig. 39: Averaged wind fluctuation in the area of the rotor disk radius

10.0 50.0

R=50m, v,y & Uy, and the asymptotic approximation to a system of
order r=3/2.

In sum, the equivalent wind is similar to the wind meas-
ured at the rotor hub filtered with a second-order low-pass
filter with cut-off frequency f,,. The effect of the turbulence
in the torque is negligible at frequencies f 2 0,2 Hz compared
to the drivetrain oscillations due to tower oscillation, wind
shear, rotor revolution and tower shadow.

3.6. Torque dependence on rotor
position

The analysis of experimental data shows that the turbine
torque exhibit cuasi-periodic power fluctuations as well as
stochastic power pulsations caused by the variations of the
wind speed —see Fig. 183 to Fig. 186. The most common are
power pulsations at the frequency of the blades passing in
front of the tower. These pulsations are caused by the torque
modulation due to wind shear and aerodynamic effects as the
blades pass in front of the tower.

Wind turbulence induces random changes in wind speed in
a very broad frequency range and with high variance. In
contrast, torque modulation is an almost systematic torque
perturbation but it turns out into a random behaviour due to
the interaction with the vibration modes of the blades and
drivetrain.

Since the modulation of the torque is almost systematic
with a characteristic time-varying frequency and its
harmonics, the turbine can be designed and controlled to
minimize its effects.

In a variable speed wind turbine (e.g. equipped with a
double-output asynchronous generator) the influence of rotor
angle in output power is smaller than in a fixed speed turbine.
Fast variations in torque and thus power that affect the turbine
blades then will result in momentary variations in the turbine
speed, momentarily storing real power. Due to the same
reason, the variations in power decrease when the induction
generator slip is increased, by controlling the power flow in
the rotor circuit. Thus, the tower shadow effect and the wind

shear or wind speed gradient usually have a small and
deterministic contribution to the observed output power
variations ([114] and [186]).

Even though rotational effects concern, first and foremost,
the turbine structural integrity and its control, it should be
included in the equivalent wind to have a realistic
representation of low speed shaft torque.

3.6.1. Cascade rotational sampling filter
from Petru and Thiringer

Since wind depends on height due to wind shear, the
equivalent wind has a component dependent on rotor angle
and hence, at frequency f;,,,. and its harmonics. Near the
tower crossing, the air flux is influenced by the presence of
the tower, resulting in a small decrease of torque. Thus, the
equivalent wind shows amplitude-varying oscillations at the
frequency of a blade crossing the tower, f;,,,, due to spatial
sampling at blade positions. The amplitude-varying
oscillations can be mathematically decomposed in pulsations
of frequency f,,.1/(t), where the carrier frequency is fy,4.
and f{¢) is the modulating frequency, much lower than f,,,,..

Despite torque varies sharply depending on tower position
—see Fig. 311—, this spiky variation is smoothed through the
dynamic train flexibility and generator dynamics. Thus final
power variations can be characterized primarily through the
fundamental sinusoidal fluctuations —see Fig. 190 to Fig. 202.

Petru and Thiringer represented the rotational sampling as
a cascade filter applied to the wind spectra. The application of
the first and second filter to the wind produces an equivalent
wind with the following PSD:

PSDUeq(f):PSDUrqu(f)|HQ(f)|2:

= PS Dy T (O[] | o)

where  PSDy,,(f) is the equivalent wind, including the
rotational sampling effects.

i Wind spectra
\IX)}};E: }_' equalizer meq;
Hy(f)

‘ Hli (f) ‘2 = PSDT»'mnd(f)

|2 (63)

Filter H,(f): Filter Hy(f):
rotor spatial &ql_(é torque angular
averaging modulation | = U.,(f)

v .
Aerodynamic filter

Fig. 40: Block diagram of the cascade model in|[43]|for off-line equivalent
wind time series generation (actual rotor angle ¢ and pitch angle 6 are not
considered).

The second filter represents the wind rotational sampling
by the turbine rotor and is called the rotational sampling filter,
with the general expression (64) taken from :

Hy ()= [1+92% }(5 + 27 ftaae )
? {8+27r.ﬁ)lade (g(zl+j)][3+277fl;lade (g(;l'j)]

where the blade frequency is fy,. = 3€2,,,/(2T) in a three
bladed turbine and g, is the rotor amplification factor at f
=fyuae Tespect H,(s). This filter amplifies the variations at a
frequency region around the blade passing frequency. In other
regions, this filter has a gain of nearly one. Fig. 41 shows a
typical power spectral density for U =12 m/s, before and after
the application of the acrodynamic filters (46) and (64).

(64)


http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5
http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5
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Since signal phase is uniformly distributed, it doesn’t affect
equivalent wind distribution. The squared modulus of the
rotational filter sampling is:

i (0+92) (P 8) |
fl.)—/;ade+2f13ade (f2+f13ade)g§ +(f2-fﬁade)2 gjil

Recall that g, = 2nf,,../d is used instead of the original
i

| H,(f) (65)

formula in to obtain simpler expressions related to the
equivalent wind. This filter amplifies the equivalent wind
variations around the blade passing frequency in an
approximate factor g, The bandwidth of the filter is BW=
fowde/ 92 @pproximately and it increases the variance of
equivalent wind U,(f) in a factor Gy’ = T fuwe Y

PSDHI(fblade) .

N
=
N 104 L Von Karman PSD
é estimated at one point
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Fig. 41: Wind speed power spectral density before and after the application
of aerodynamic filters and a system of fractional order r = 1.6947. (Other
conditions: von Karman, U =10 m/s, L2=150/2,329 m, /=0.10, f,.. =1,0
Hz, R=50 m, gd =27tf;;,q. /15).

This rotational sampling filter can be roughly
approximated to an ideal narrowband equalizer of unity gain
except at f,,,., where the gain is approximately 7 f,,,.. 9, 0(f-

.ﬁ)l{ld(ﬂ) / PSDU@qJ (ﬁ;lade)‘

T foiade9d
PSDU@ql( blade)

Put into words, rotational sampling is modelled in (66) as a
deterministic pure tone oscillation. The gain g, has been
deduced equating the variance of the equivalent wind
computed with (65) or (66). Notice also that comparing (186)
and (66), then the amplitude of the ideal narrowband
fundamental component is g, * T fyj.00 4-

PSDye,, (N |1+

6(f7ﬁ)la,de) (66)

A) Estimation of g;, 6,4, and the bandwidth of the
rotational sampling filter

The blade frequency fi.q 1S 3 €2, /27 in a three bladed
turbine. The average amplitude of the fluctuations due to
rotational sampling can be determined from recorded signals
or from the model presented in the next section.

The value of g, can be estimated as g, ® Gyui/[% firuae
PSDy/(fyae)], where all the parameters are easily estimated.
The bandwidth BW in the filter (64)is f,;,../ 9, (it cannot be
adjusted) but the bandwidth can be adjusted in the alternative
filter (70) to take into account the variability of f;,,,. and some
mechanical vibrations induced by the rotational sampling.

The parameter o;,,,, is the RMS value of the torque modu-
lation generated by the filter. In order to preserve the ampli-
tude of the torque modulation, o;,,,. can be estimated alter-

natively as the equivalent wind dip when a blade is crossing
the tower divided by 2 V2 and a tiny bandwidth BW.

However, this criteria overestimates the RMS modulation
since the loss of torque is very brief (see Fig. 311). If only the
fundamental component of the fluctuations are considered,
then oy, ~ Amplitude / V2 but considering the real shape,
Amplitude / 6y4. >>\/§due to the presence of harmonics in
the torque signal.

Since wind is variable, operational conditions vary and
consequently the torque signal is not truly stationary. The
frequency bandwidth of the oscillations, BW, can be esti-
mated from rotor speed (or f,;,,.) excursions for some given
operational conditions and it is a quite small fraction of f,;,,.-
The bandwidth BW increases when it is estimated from long
records of real data since wind is not really stochastically
stationary (f,;,;. varies more in long periods). The bandwidth
is an outcome of the interaction of wind turbulence with
complex turbine dynamics. In contrast, f,,,, and oy, are less
affected by estimation method.

If the aerodynamic torque considering tower shadow and
wind shear is measured or estimated, Gj,4.,(1) is just the RMS
value of the bandpass-filtered equivalent wind signal (see Fig.
42).

BandPass RMS

Torque 2T ;
rotor eq2 : U, o- O-blade,(l)
- filter with | _ca2y AU —b
[ Tro/or pairﬂRqu (‘97 /\) BW and f;/lmhf _Usql < v >

Fig. 42: Estimation of 6y, (1) from the rotor aerodynamic torque.

Analogously to Fig. 42, ¢’ 1s the RMS value of the
bandpass-filtered equivalent wind computed from the aerody-
namic torque without considering the tower shadow and wind
shear. ¢, can be regarded as the background fluctuation at
Jotade due exclusively to wind turbulence (G4, (1)>> 0 ae)-

Since rotational sampling and wind turbulence are different
processes, the fluctuations induced by them can be considered
stochastically independent. Therefore, the sole contribution of
rotational sampling is Gy = Chiade, (1)~ hade -

B) Rotational effects as a randomly modulated
component of carrier frequency f,,4.

In time domain, the rotor introduces in the equivalent wind
a sinusoidal component with approximately Rayleigh-
distributed amplitude of parameter oy, = [T fiwe Ya
PSDy,( f,,lm)]'l/z, random phase and approximate frequency
foiwde- The bandwidth of the filter is related to the modulating
frequency of the signal (a rough estimation of the modulating
frequency is just the bandwidth, f, ~BW). Thus, the
rotational sampling can be described by the additional term in
the temporal signal:

HZ (t) ~A COS(27rfllJladet + 901) COS (27Tfmodt + 902) (67)

where ¢; and ¢; are random phases uniformly distributed in
[-%, +7] and A is the amplitude, distributed as a Rayleigh
random variable of parameter o;,,,. This behaviour has been
observed in power output of wind turbines, indicating that the
assumed approximations are valid (see, for example, Fig. 200
to Fig. 203).

The former expression is suitable for the generation of
equivalent wind in time domain simulations, where the
rotational speed and f;;,,. can vary depending on the wind and
turbine control. If f;,,,. varies in time, (67) transforms into:


http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5

36

HQ (t) ~ Acos (@l + ﬂ) ZWﬁ)ladedt) COS(Qﬂ—fmodt + 902) (68)

C) Additional filters to increase accuracy

Other filter types can be applied in order to adjust the high
frequency components. The induction lag filter is one of
them, resulting from the induction lag that occurs when the
blades react to a change in wind speed and hence to a
changing angle of attack. This change can be modelled as a
lag filter with a frequency response represented by (9):

_ams+1

H() T8+ 1

(69)
where a; > 1 for amplifying certain mid-range frequencies.
The time constant, i, and the empirical parameter a, must be
obtained through an identification method. According to
Petru and Thiringer, omitting the induction lag filter has no
detectable impact on the power quality predictions m This
can be due to the fact that high frequencies present in rotor
torque are highly attenuated by turbine dynamics.

3.6.2. Proposed rotational sampling
model

In this, a rotational sampling model is proposed to
overcome the limitations of the cascade filters:

o The estimation of the parameters of the rotational
sampling filter (64) and its additional filters (69) is

intricate.  Typically, they are derived from
experimental measurements or complex
aerodynamic simulations.

e The additional filters introduce  harmonic

components of random phase, unable to reproduce
the shape of the real angular modulation. With
several additional filters, a signal with the same
frequency content can be obtained, but without its
characteristic shape.

e On the one hand, PSDy,,, (fiude) depends strongly
on wind speed, turbulence length and wind spectra
type. On the other hand, the torque modulation
depends on rotor angle, average wind speed, pitch
angle and shear exponent. The use of cascade filters

imply considering rotational components
proportional to  PSDy, (fiuge) and it is not
advisable.

e The essence of the rotational effect is the torque
dependence on rotor angle, average wind speed,
pitch and speed profile. Therefore, the torque
modulation is represented more accurately by an
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function dependent on rotor angle, average wind
speed, pitch angle and shear exponent.

e The wind field can excite aeroelastic modes of
blades, introducing complex behaviour. This
behaviour is typically analyzed by specialized
programs such as Bladed, Adams, Fast... and it can
be introduced either as deterministic or as stochastic
terms in the equivalent wind.

Therefore, the rotational sampling will be characterized
later in (752) as an angle-dependent torque modulation
f,us() whose characteristic shape depends on turbine
characteristics and operational conditions (see Fig. 45). The
torque modulation f,, (¢) is composed by a sinusoidal
oscillation at blade frequency due to wind shear plus a narrow
torque dip during the crossing of the blade through the tower
(see Fig. 311).

Since rotational sampling produces an angular modulation
in torque, an equivalent wind modulation can be defined
based on (24). The modulation of equivalent wind speed can
be estimated through a small signal model —see (73) to (94)
for details on a small-signal model.

Thus, the rotational effects can be accounted as a
modulation of equivalent wind speed with approximate shape
f,u(¢p) and amplitude .

A) Feedback of actual rotor speed 2, rotor angle ¢
and pitch angle 0 for better accuracy

Provided U, and f,,,,. can be considered constant, time
series of equivalent wind can be roughly generated regardless
of wind turbine dynamics. However, variable speed turbines
with blade pitch or active stall regulation or time series with
significant wind speed variations requires feedbacking the
actual rotor speed €2, the rotor angle ¢ and the pitch angle
0 to the operating conditions. This is naturally accomplished
in the time domain.

Fig. 43 shows a diagram where the mean wind speed
(U,ing) and the turbulence averaged along the rotor U,,(?) is
computed in the time domain without including rotational
effects. In fact, the rotational effects are computed from the
pitch 6 and the effective tip speed ratio (\’) —angle brackets
indicates that the aerodynamic parameters are averaged along
all the blades of the rotor. This approach increases the
accuracy on the estimation of aerodynamic behaviour of the
rotor without requiring detailed knowledge of rotor details —
only torque or power coefficients are needed to compute
aerodynamic torque. The use of an effective tip speed ratio
(X\’) have been not found in the literature and it is an original
contribution of this work. (X\’) will be derived from blade

Feedback of€),,,,., p and 0

/~ N

[ [Rotor speed Qroror, (Uwi,,dﬂ:\

W i rotor angle ¢ and pitch 6 J i
speed <Uwind> | v I

I Pitch 6 and , :

Rotor-averaged Ut feffective tip speed ZAL)
wind turbulence : ratio (X\’) T
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Fig. 43: Diagram of the proposed retrofitted rotational sampling model for the on-line estimation of aerodynamic rotor torque in the time domain
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element theory in the next subsection 3.7.

In case the blades experience noticeable aeroelastic twist
induced by aerodynamic loads, an equivalent pitch angle (6°)
can be defined analogously.

Fig. 44 shows the simplified diagram of the farm wind
model with the interaction between the generated single point
wind speed time series, usp, and the turbine rotational speed.

J

Turbine
model

Ueql,turbinel(tl Rotational )|
| sampling [ g *

A Prurbinel s (lrotor
Ueql.turbine? (Q

2]
Ymrbinet

Farm geometry including
oherence and wake modellin:

Uegl turbine N, St)

[Mean wind speed and direction]
v

.

Fig. 44: Diagram of the generation in the time domain of the equivalent wind

in a farm.

B) Rotational sampling in the frequency domain

The former methodology can reproduce the sape of the
angular dependence of equivalent wind. This methodology is
suitable for simulations in the time domain, where turbine
parameters evolve.

The studies in the frequency domain usually assume a
steady system operation. If f,, and pulse shape is
approximately constant, the time model in Fig. 43 transforms
into the frequency model in Fig. 45. The frequency model
retains the shape of the torque modulation (the phase of
U,,2(f) is synthesized) but it does not account for changes in
rotor speed, pitch and wind along the simulation.

. Wind spectra Filter H,(f):
White equalizer U% rotor spatial Ueql(')ry °q (]2
OIS Hy(f) averaging )Y
2 S
‘Ho(f)‘ :PSDUUN,'nd(f) '%
)
Angular Freq-domain Gain, shift & freq. scale:
modulation Fpulse (f) = N ; 71_2;@0
fpuls(‘,(@) g [fpulbc(@)] Q F;)ulse T e blade
blade

t

Turbine and wind
characteristics

4 ..
Rotor initial angle y,
wind and angular speed
Qmmr: 3 f;‘)lada

-

Fig. 45: Diagram of the proposed additive rotational sampling model for the
off-line estimation of the equivalent wind in the frequency domain.

Due to the elasticity of the drivetrain and the high inertias
in the turbine, the shape of the torque dip at the rotor due to
tower shadow is heavily smoothed at the output of the
drivetrain. Thus, the main effect of torque modulation —apart
from the fatigue on the blades and on the drivetrain— is the
excitation of vibration modes of the blades, drivetrain and
generator.
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Many frequencies of vibration are not harmonic, resulting
into stochastic processes characterized primarily by their
PSD. In such cases, the phase difference between vibrations
is random and the original shape of the torque modulation is
meaningless (in a linear system, vibration modes are fed by
the frequency content of the torque, irrespectively of its
original shape).

C) Narrowband filter for coarse simulations

On some studies, higher frequency rotor dynamics can be
neglected. In such studies the rotational effects are only
represented by its fundamental component.

In such cases, the rotational sampling can be characterized

with a narrowband filter around the blade frequency (see Fig.
46) and this approach is comparable to Petru and Thiringer

method.

white || Y catatrer [V rotor spatial [Veatal/)
ML Hy(f) averaging A
=
random|  Freq-domain transfer function ~
behaviour{ & Fyyise(f) => bandpass filter

f

Fundamental compnent of
average amplitude v 2 oy, at
slow-varying frequency fyq.

f

Turbine and wind characteristics

J
Fig. 46: Simplified block scheme for off-line equivalent wind time series
generation (actual rotor angle ¢ and pitch angle 6 are not considered).

A simple second-order bandpass filter can be used. In such
case, an extra parameter, the passband bandwidth BW, is
used to model how much the rotor speed (and hence, the
blade frequency f,,,,.) varies.

2
250,40 |27 BW

H(m ass(s (70)
oy 2421 BWs+27 )
2 2BW f20},40/7
|Hb(mdpass f | = ) 2 2 2 (71)
BW f +(f _-fbladc)
2
PSDU@(I(f) %PSDUGQI (f) + |H?1andpass (f)| (72)

In time domain simulations, the full rotational model of
Fig. 43 and Fig. 44 is recommended for its low footprint and
its high accuracy. The model of Fig. 45 is suitable for
frequency domain simulations where the operational
conditions of the turbine are known.

When a very simple model of equivalent wind modulation
is required, the model of Fig. 46 can be useful. On some
circumstances, several band pass filters can be connected in
parallel to represent the torque harmonics.
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3.7. Small signal model of aerodynamic
torque

3.7.1. Derivation of the small signal
model

A small signal model can be computed using a first-order
approximation based on total derivatives of torque 7.,
respect squared equivalent wind UZ,I :

dTmtor
dUz)
where AUZ)=U2—(UZ ) is the effective quadratic
turbulence defined in (29) and AT, is the turbine torque
deviation from its mean, excluding periodic deviations due to

rotational sampling (these fluctuations are not related to
variations of equivalent wind speed).

ATrozﬁor: rotor ™ < T;‘otor > ~ A(Uzq) (73)

Taking into account the torque in function of equivalent
wind speed (24) and considering the air density p,; constant,
the total derivative can be computed as:

AT'ro or ar
< ; ~ ro;or _ %p(l”ﬂ_RS d2 [Uzch()\, )] (74)
Uz)  aU;) au;,)
where the chain rule can be applied.
d dC (\0)
UZC,00)| = C,00 + U2 ——— (75
2 [ eq g\ v eq 2
d(Ueq) €q
Based on (74) and (75), the small signal on torque is:
T dC,(\.0)
—rdor 1 7R C (N6 + ———U2, (76)
awz,) *" duz,)

The aeroelasticity and the turbine control introduces non-
obvious interactions between wind speed through tip speed
ratio 4 and blade angle 6.

dC, (X0) 0C (A0) dx +8611(%9) do
au?,) oA dU?) 90 au?)

eq

(77)

Torque fluctuations depend primarily on effective
quadratic turbulence. But they depend secondarily on turbine
control since the turbine controls 8 and €2,,;,,.

Tip speed ratio A and rotor speed €2,,  are related
according to (23). Thus, the first order approximation of
aerodynamic torque at the turbine is, in general form: (78)

-~ 3 2
AT~ p,, TRPAUZ){ C,00) +

rotor™
2 6 O‘I ()\7 9) de R 8 C‘I (>\7 9) Qmmr demr
a0 d4w?) U, ON |20k dUZ)

The control influence will be estimated in the following
subsections for very slow (At > 5s for a megawatt turbine)
or very fast (At < 5s for a megawatt turbine) wind
fluctuations.

3.7.2. Classtfication of turbines
according their controllable parameters
A) Speed and blade controlled wind turbine

Controlled turbines can adjust the parameters A and 6
according to the control law. Two main control policies exists

during continuous operation: maximize power output if wind
is bellow rated value and limit power output when wind
surpasses rated value. Sometimes, saturable integrators are
included in the control scheme to switch smoothly between
policies.

B) Fixed speed wind turbine

Squirrel cage induction generators are very reliable, robust,
compact and low-cost machines. They have been utilized
widespread in wind turbines, directly connected through a
soft-starter and sometimes in arrangements which allowed
operation at two fixed speeds.

The main drawbacks of fixed speed wind turbines are:

e They operate at low slip (very close to nominal
speed). Rotor speed cannot vary significantly to
dampen torque oscillations or to optimize
aerodynamic efficiency.

e They consume reactive power almost quadratically
with load factor, with a significant idle reactive
requirement. Capacitor banks are customarily
installed in parallel to the generator to control the
required power factor.

e They cannot satisfy fault ride-through reactive
requirements of most grid codes unless an external
system is installed.

Nowadays, the multimegawat turbines require alleviating
structural loads and being able to comply with grid codes.
Therefore, fixed speed turbines are less suitable for present
turbines and advanced systems allowing bigger speed excur-
sion such as VRIG, DFIG or induction generators connected
through power converters are becoming usual (for example,
see Hier [115], Sallan-Arasanz [116] or Sanz-Osorio [117]).

In fixed speed turbines, the parameter A varies inversely
proportional to equivalent wind speed and it cannot be
controlled.

C) Stall controlled wind turbine

In turbines with variable blade angle 6, it is controlled to
achieve maximum power at partial load and limit power at
full load. In stall controlled turbines, the blades are designed
so that they gradually start stalling their tips at high winds,
limiting the power. This concept is robust and reliable but the
aerodynamic design is complex, especially in multi-megawatt
turbines due to blade fatigue. The stall process is dependent
on flow regime and blades are designed so that this process
occurs gradually from the tip of the blade. The process of air
boundary layer separation present hysteresis and can be
characterized through the use of dynamical power or torque
coefficients and a state variable (portion of detached flux) to
account flow regime.

Stall control of turbines has been widespread in the past
and it continues being used in small turbines. However, the
need of additional aerodynamic features to stop the turbines
has made turbines with variable blade angle 6 flavoured by
manufactures. Notwithstanding these facts, the control of the
turbines decreasing 6 at high winds (active stall or stall-
induced control) is used by many manufacturers since they
present better stability during gusts than conventional pitch
control (increasing 6 at high winds).
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3.7.3. Analysis of fluctuations at
characteristic operational points

A) Fast fluctuations at partial generation:
p(\,0) = mazimum

When the wind U,, increases, the rotor accelerates slowly
due to rotor inertia and the tip speed ratio A = R 2,01,/ U,

eq
changes gradually.

If the turbine is maximizing power output,
OCp(\,0)/0X~0 and OC,(\,0)/00~0 since Cp(\,0) is
maximum. Since the torque coefficient is the power
coefficient divided by the tip speed ratio, Cq(A, ) =
C ng\ﬁ /X, then the following relations holds at maximum

P

)

dC (N0
ocC (/\,9) 8)\_1 C ()\79)
4 = C 9,)\ = — 4 80
dC (A0 _
« ):CP(M) (MK =C,\0) 1( —Q;;W—dgrﬁm (81)

Now, the influence of effective quadratic turbulence on
torque can be estimated using the chain rule:

AT

rotor

AU

1 U2 49

e
14+ == q rotor

2
2, dU,)

~ %pdirﬂR3Cq()\, ) (82)

rotor

Thus, a first-order small-signal model can be estimated
from dT},,,/d(UZ,) in (82), assuming operation at maximum
turbine efficiency (Cp(A,0)~ constant at wind lower than
rated speed):

eq rotor
2
au;,)

(assuming turbine operation at mazimum efficiency)

U2 dQ
AT 3 Teo Bliotor

~ 1 3
rotor " Epm',rﬂ-R Cq ()‘a )

2
g AU2) (83)

rotor

For constant speed turbines and for variable speed turbines
operating around maximum or minimum rotor speed,
A1, /AU?Z) < /U2, and hence:

qu()\,H) NCq()\,H)

~ (84)
2 2
dv?, 202

Finally, the small signal model (85) has been estimated
from (82) assuming Cp(6,\) and Q,,,, fairly constant. Thus,
fast fluctuations of A(UZ,) are reflected in turbine tower
almost proportionally:

AT, =~ %pmﬂ'R?’C’q A\OAU?)

rotor (85)
(assuming turbine operation at mazximum efficiency and

at constant speed)

In other words, the torque variation is approximately
proportional to the effective quadratic turbulence A(qu)
with gain % p,;, mR*C,(0,)\) if the turbine is operating at
maximum efficiency and there is not significant energy
storage in the rotor.

B) Fast fluctuations at full generation

Beyond rated wind, the generator torque control tries to
maintain €,,,, almost constant varying the generator power.

The rotor torque can be estimated assuming d<,,,,,/d(UZ,) ~0
since a low dQ,,,,/dU. 62,1) is required for avoiding over-
speeding and for limiting the value of “~p\\Y),

Moreover, the blade angle 6 does not change significantly
in very short intervals due to its inertia and its actuator
limitations. Therefore, if d0/d(UZ,) ~ 0for short intervals
then (78) can be further simplified into:

. A0C (\0)
rotorwépairﬂ—RJA(Uzq) OqO‘? 9) - 5;;—)\ (86)
(assuming 0 and Q,,,,, constant)

This approximate formula (86) is valid wherever 6 and
Q010 are judiciously constant.

In pitch regulated turbines, the regulation of C(I()\? 0) is
slower than in active-stall turbines, (i.e. 9C,(A,0)/00 and
9C, (A, 0)/OX have lower values in pitch regulated turbines).

C) Stall operation

The aerodynamic torque coefficient in (24) is estimated
from steady state operating points. The hypothesis that torque
coefficient only depends on # and X underestimates the actual
power fluctuations in the stall region due to flow separation
hysteresis. Therefore the aerodynamic model can be
improved by taking the dynamic stall effects into account
through a dynamic torque coefficient ng"m”’“ﬁ()\,@) —see
[118, 119] for details.

D) Slow fluctuations (quasi-static approximation)

During slow wind variations, the control adjusts the blade
angle 6 and the rotor speed €2,,,, to their optimal values. On
the one hand, the torque variations should be computed from
the general formula (78) since the variation of 6 and €2,,,,
cannot be neglected.

On the other hand, wind turbine dynamics are negligible
provided the fluctuations are slow enough for the static
approximation to remain valid. Thus, the torque can be
alternatively estimated based on the power curve in function
of the squared effective wind P, (U%) and the overall
efficiency of the mechanical transmission (mainly the

gearbox) and generator, 7,,cc gen -

2

mec+ gen

(87

~
~

rotor

rotor

Thus, the small signal model of torque based on the power
curve (valid only for slow fluctuations) is:

d T;'o or
rotor™> U; ) A(qu) =
eq
_ A(U(’qu dPturbine(Uzq) _ ]Dturbmri(Uqu) erotm‘ (88)
nmec-&-gen Qroz‘,or d(Uzq) Q']'()t()r d(UeZq)

(assuming quasi-static operation)

For slower fluctuations bellow rated speed, the turbine can
be considered operating at maximum efficiency (control
policy: maximize power bellow rated speed). Then A, 6 and
Cp(0,\) are close to the optimum values and C,(6,)\) is
approximately constant. Thus, equation (85) is a good
approximation and the torque is proportional to the square of
the equivalent wind speed.



40 Wind Power Variability in the Grid — Chapter 3

During slower fluctuations above rated wind speed, the
turbine limits the power and rotor speed. Therefore, the
torque is unaffected by slower fluctuations beyond rated
speed:

~ turbine max

rotor,limit power ™ = constant

(89)

mec+gen  “rotor,max

Thus, the torque variations are negligible under the quasi-
static approximation at constant power:

Ptm‘binemax erotar,max ~ 0
2 2
Qrotor,max d(Ueq)

(assuming quasi-static operation at constant power)

(90)

. ~
AT rotor,limit power ™

3.7.4. Small signal approrimation of
effective quadratic turbulence AUZ) on
equivalent turbulence AU, .

When the wind turbines are generating, a small-signal
model based on wind speed deviations AU,, can be obtained
since U, >AU,, ,:

2
U2=[(U, )+ AU, [ =(U,, P+20, ) AU+ (AU, ¢ ~

1)
~(U,, ' +2{, ) AU, +{(AU, ))=U:)+20U,,)AU,,

Notice that the average of (A Ueq)2 is the equivalent
turbulence parameter or more precise, the variance of the
equivalent wind, ((AU, q)2>:<U3q>—<Ue . )2. Therefore the
following relationship is also hold:

2
A(U2 ): U62q_<U62q >: Uqu_<Ueq> _<(AUeq)2 >:

€q

92
=2AU,,(U,, )+ (AU64)2—<(AU€(1)2 > ©»

For relatively small variations of wind, the following fist-
order approximation is valid:

2y
AUZ) ~ 2(U, ) AU

e eq

(93)

Therefore, the relation between the power spectral densities
of the equivalent speed and its square are:

PSD, s (D) ~ (2 <U(,,q>)2 PSD,, (f)

eq eq

V=0 (94)

3.7.5. Influence of turbine control

The measurement system shown in the second chapter has
been installed on two models of doubly-fed induction
generator (DFIG) wind turbines (WT) from GAMESA with
several control configurations, in a variable resistor induction
generator (VRIG) turbine from VESTAS and two models of
squirrel cage induction generator (SQIG) turbine from TAIM-
NEG MICON (now VESTAS).

The turbine behaviour relies heavily on the control scheme
and their fine-tuned parameters. The usual schemes are
available in the literature (see the thesis of Comech-Moreno
[120] and Akhmatov [121], or the book from Bianchi, De
Battista and Mantz [122]) but the turbine manufacturers are
very reluctant to provide the control parameters.

The derivatives d@/d(qu) or d ., . /d(qu) in (78) are
difficult to estimate analytically since they depend on turbine
control. If no information on the control is available, it can be

assumed that the dynamic of 6 and Q,,,,
the blade and rotor inertias, respectively.

are dominated by

Neither the drivetrain nor the generator is modelled in this
work due to unavailability of the turbine and its control
characteristics. The transfer functions in this thesis are
estimated only from measurements since full turbine
simulations are out of the scope of this thesis.

For small torque variations, a linear model can be enough.
Inertia constant of multimegawatt turbines is in the range of 8
s (ratio of kinetic energy in the drivetrain to turbine assigned
power). The drivetrain, with its torsion stiffness and its small
damping is often modelled as a second order (see for example
Comech [120]). The electromagnetic transients are usually
fast compared to turbulence and to the inertia. The control
influences notably the dynamics. In some turbines, it has been
observed experimentally the noticeable changes in the
behaviour after updating control parameters and/or software.

Some turbine transfer functions are available in the
literature for induction generators (see for example the book
from Ong [123] and Lesieutre [124] ), self-excited induction
generator (see for example the review from [125], Melkebeek
[126] and Uctug [127]), doubly-fed induction generator (see
Comech-Moreno [120], Akhmatov [121], Wu [128], Nagaria
[129] and the book from Bianchi et al. [122] ), full converter
generators (see for example Erikson [130] and [131]) and
hybrid configurations (see for example Salldn-Arasanz [116]
or Sanz-Osorio [117]).

3.8. Equivalent wind of turbine clusters

3.8.1. Equivalent wind of a farm

A) Average farm behaviour

Sometimes, a reduced model of the whole wind farm is
very useful for simulating a wind farm in the grid. The
behaviour of a network with wind generation can be studied
supplying the farm equivalent wind as input to a conventional
turbine model connected to the equivalent grid.

The foundations of these models, their usual conventions
and their limitations can be seen in [120, 132, 133, 134]. The
average power and torque in the turbines and in the farm are
the same on per unit values. This can be a significant
advantage for the simulation since most parameters do not
have to be scaled. Notice that if electrical values are not
expressed per unit, currents and network parameters have to
be properly scaled.

For convenience, all the N turbines of a wind farm are
represented with a single turbine of radius f2,,, spinning at
angular speed (2, . The equivalent power, torque, wind,
rotor speed, pitch and voltage are their average among the
turbines of the farm. Thus, the equivalent turbine represents
the average operation among the farm turbines.

If the turbines are different or their operational conditions
are dissimilar, the averages are weighted by the turbine power
(because the aim of this work is to reproduce the power
output of farms). Elsewhere, the farm averaged parameters
can by approximated by a conventional arithmetic mean. The
average along the turbines will be notated as {%; ), pines -
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The equivalent farm mechanical power Py, is the
average of the individual mechanical powers along turbine
rotors:

turbine,i

N

P

farm

NP
(95)

— p_> —
< v [turbines

where subindex ¢ indicate that the parameters refer to the
turbine .

i=1

The equivalent farm torque can be derived from farm
power:

a Qrator.iTrotori

(95) = QfarmTfm‘m :Z : (96)
i=1 N

Thus, farm torque can be defined as:
DAY A
T :<T . > = i=1" turbine,i _
farm rotoryi [ yurbines Qf N
arm (97)
N
_ Ei:182r0t0r,ifzﬂrotor,i
QfarmN

Taking into account relationship (24), the farm torque is:

N [9) )
T}’mm = % pa,irﬂ-z qu,z' o Riscqﬁio" 9) (98)
i=1

o) 177

farm

The equivalent farm wind is derived assuming a similar
relationship to (24) with an equivalent wind farm torque
coefficient C('I (0 arm s Marm ) ©

3 1
T R, NC ()\fam,ﬂfmm)

farm ‘farm q

_1 2
- 5 Paiy™ Ueq,farm (99)
The average tip speed ratio Ay, , the equivalent rotor
speed ., and the average blade angle 0y, are typically
estimated in the turbine model. However, they can be
alternatively estimated as the weighted average of the actual
N
<0 > _ Eizlpturbz’ne,iei ~
i turbines
farm
>N P A
PfarmN

turbine values according to formulas (100) and (102).
~ 100
P, N farm (100)
(A), = D el
¥ | turbines

(101)

'farm

N
VPR

turbz’ne‘ithorﬁi
J ~

PN

farm

<Qr0t0r,i >twbm65: farm (102)
The power considered for computing the weighted
averages (100) to (103) can be the mechanical power at the
turbine rotor, the electrical power output and the nominal
power output (in decreasing order of model accuracy). Notice
that even if P4, ; were considered the electrical power
output of the turbine, then Py, would be the output of the
farm plus the losses inside the farm grid. Notice that
whichever representation is selected for P4 i, the
calculus of the rest of global parameters must be congruent.

The turbine radius is a constructive property of the turbine.
If a wind farm is composed by several types of turbines, the
equivalent radius can be computed as the average of rotor
areas weighted by the turbine nominal power (other
constructive parameter):

sV P

turbine, iRi

PN

Rf’”m - <R77 >tu7'bines:

(103)

The weighted average of squared radius produces a higher
fidelity in power (104) whereas the linear average (103)
produce more acurracy of tip speed ratio.

SN P e i B
2 _ 2 =17 turbine,i” i
B, = (&) = PN (104)

The standard IEC 61400-123 defines a methodology to
compute the power curve of a whole wind farm. Based in this
power curve, a wind farm torque coefficient C;()\farm,ﬂfarm)
can be estimated. Basically, C,(\,,,,0,.,,) 1s the turbine
torque coefficient C' ;();,0;) scaled and smoothed to take
into account the diverse operational points of the different

wind turbines.

SN QR (N,0) N.C (.6

ColMarms Opa) =——— it Z)NZ 008 (105)
Qfarm R.?arm N =1

Cq(Afa'r"m’ efarm) ~ < Cq’i(Ai’ eb) >twbmes (106)

The wind farm equivalent wind is implicitly defined from

the previous relationship as: (107)
N 3

9 Ei:lett)r,iRi Cq,i

eq,farm NQ R (/\ 0 e%i) %< 3‘” >twbz‘nes

farm™"farm ™~ q\" farm> "~ farm

N0,

1

or, equivalently, as:

9 Zfﬁvzlf)turbmerotor,i/N
eq, farm = 1 3 ) (108)
5 Pair ™ Bn C oA O )

farm™"farm™~q\" farm> "~ farm

The effective quadratic turbulence of the wind farm
AUZ, jurm) is defined as:

9 Ef\f:lthor,iR?Cq.i()\i’ 97)AUP2q,z
A(Ueq,farm) = 3 v’ ( 1 09)
NQ farm R ‘farm Cq ()‘ 'farm? farm)
or, equivalently, as:
N
Ei =1 Aptwbz',ne rotor,i /N
A(ch,farm) = ( 1 10)

3 1
% Pair™ Qfarm Rfarm Cq (/\farm’ efarm)

A small-signal model of the wind farm can be derived from
the previous relationships:
N
A(Uzq, fm'm) ~ Z bi A(Uzq,i)

i=1

(111)

where the sensitivity factor of wind farm equivalent wind
respect turbine equivalent wind b, is:

b — dU(?q,fm*m o Eﬁvlewtor,iRiSCq,i(Ai’ei)/N (112)
(A 9 - 3 )
d Ueq,i Qfarmearqu(/\farm7 Hfarm)

and the farm sensitivity vector is notated I;farm =[b].

The equivalent farm wind can be estimated as a weighted
sum of joint Gaussian processes [135, 136] corresponding to
the equivalent squared turbine wind. Thus, the turbine wind
spectra AU, ;(f) are joint complex normal random
variables V 1 <¢ <N and the coherence can be used to
compute an equivalent wind speed for the whole wind farm
according to (22).
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If all the turbines are equal and they are operating near the
same operational points — 6;(t) ~ 0y,,.,,(t) =At) and \(t) =
Narm (£) = Xt) — then b, ~1/N . (113)

a) Model based in equivalent squared wind

In general, AUZ, f4m)(t) —defined analogously to (73)- is
not a Gaussian process. However, an instantaneous
transformation can be used to obtain a process with the same
stationary probability as the actual one.

Assuming that the equivalent squared wind at the different
wind turbines behaves as a multivariate Gaussian process
with spectral covariance matrix:

= ooy D= i)\ PS Dy NP5y ) |

Thus, the PSDyr,, 1 (f) of the equivalent squared wind
for the farm can be computed as:

PSDUch,fm*m(f) = bfz;rmEUzeq(f)bfarm =
N N N
= Ziil ijl blb]’)/l] (f)\/PSDUZeq,z'(f)PSDUQeq,j(f)

where f_y';j( f) is the complex coherence of effective quadratic
turbulence at frequency f.

(114)

(115)

If all the turbines experience similar equivalent squared
wind spectra  —PSDyp,, (f) & PSDyp, (f)— and  their
contribution to the farm is similar —b; ~1/N — then the
following approximate formula is valid:

PSDUz
PSDU2eq,far7n(f) ~ Zz 12 =1 U

Notice that 7;(f) =1 and 0 < |77;]- | < 1. Since the
real part of %( f) is usually positive or close to zero (i.e.,
non-negative correlation of fluctuations), PSDyz,, r,, (f) 18
generally between the behaviour of perfectly correlated and
independent fluctuations at the turbines.

PSD,, (f) PSD. (1)
N

(116)

i e (117)

S PSDUzeq,farm (f) < N2

if 0 5 Rel7,(f)]

b) Model based in equivalent wind

The properties of the effective quadratic turbulence are not
available usually. A second-order approximation based on
(93) and (118) can be used to obtain its characteristics:

A(Ueq farm)( ) ~2A Ueq farm (t) ( eq, farm)

The wind farm model based in equivalent wind speed
assumes that the equivalent wind at the wind turbines behaves
as a multivariate Gaussian process with covariance matrix:

(118)

'

E’UZeq(f) :[4<Ueq,i ><Ueq7j >5;Z](f)\/PSDch, (f)‘PSDUqu (f) } (1 19)
where 7,;(f) 1is the complex coherence of equivalent

turbulence at frequency f—as the coherence for Hovsere (22)—
and PSDyp,, (f) can be computed through (45).

The equivalent turbulence coherence and the effective
quadratic coherence are roughly equivalent, ¥, (f) ~ &’;]( ),
provided the second-order approximations (93) and (118) are

valid:
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And the spectral density of quadratic coherence, expressed
with equivalent turbulence complex coherence, is: (121)

PSDUQEq farm (f) = b

bfarmE'Ueq(f)gfarm =
_ZL 127 1 cqz eq‘j>?ij(f)bibj\/PSDUeq,(f)PSDUeq/(f)

If the turbines experience the same equivalent wind
spectra, PSDy,, (f) = PSDy,(f), their equivalent average
wind speed  is similar, (U,,)~ (U, ), and their
contribution to the farm is similar (b; ~1/N ), then the
following approximate formula for the effective quadratic
wind speed is valid: (122)

PSDyzyy o (f) = 4(U,, ) 27 IZ] a(f

Assuming that ( ) <U€q farm ) , then the model for the
equivalent speed is Vahd

9 PSDUeq

PSDy,
PSDUeq,farm(f) o Ufl Zl 12 177/ (123)
and
PSDy,(f) PSDy, ()
TSP NS (29

B) Equivalent wind farm filter

The rotor angle of each turbine is random and independent
of the rest of the turbines due to the lack of noticeable
synchronizing forces. The torque modulation of many
turbines with random phases is a stochastic process that will
be studied in detail in the next section.

Since the tower shadow is quite narrow (the blades and the
tower are quite slim), the probability of several simultaneous
tower shadows is small. Moreover, the shape of the torque dip
at the rotor due to tower shadow is heavily smoothed at the
output of the drivetrain due to the elasticity of the drivetrain
and the high inertias in the turbine.

Thus, the main effect of torque modulation —apart from the
fatigue on the blades and on the drivetrain— is the excitation
of vibration modes of the blades, drivetrain and generator of
each turbine. Many frequencies of vibration are not harmonic,
resulting into stochastic processes characterized primarily by
their PSD (in a linear system, vibration modes are fed by the
frequency content of the torque, irrespectively of its original
shape).

Thus, it is sensible to model rotational sampling only by
the PSD of the equivalent wind modulation. Since each
turbine angle is independent of the rest of the turbines, there
is a partial cancelation of power fluctuations along the farm.
Thus, the equivalent wind will present —in average— an
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angular modulation inversely proportional to the number of
turbines of the farm.

If different turbines are installed in the farm, an average
shape of the torque modulation can be estimated but, in many
cases, it would be more practical to simulate the turbines
aggregated in groups of the same characteristics.

In Fig. 52, the spatial diversity smoothing filter ,(f)and
the aerodynamic rotor filter H,(f) account for the spatial
variation of wind computed in a region or in the turbine rotor,
respectively. H,(f) is related to the PSD of the equivalent
wind of a representative turbine and of the wind farm:

2 PSDU@,'arm(f) 1 N N
| _ q.f _Zi:lzljzl’%j(f)

PSDy, (f)  N?

For simplicity, H,(f) can be estimated from the
equivalent turbulence coherences among turbines. Since the
phase of the white noise is random, the phase of the filter
H,(f) do not alter the statistical properties of the farm wind.
According to (123), a simple estimation of H,(f) is

1 -
~ ﬁ\/ZjV:lEj; 7217'<f)

| Hy(f) (125)

(126)

3.8.2. Equivalent wind of turbines
distributed along a geographical area

The turbines are grouped into farms, and some farms are
concentrated around the geographical spots with higher wind
potential. Thus, the approach used to compute the equivalent
wind of a wind farm can be iterated for a cluster of wind
farms.

However, this would subsection presents another approach
valid when the wind farms are fairly distributed across a
region. This approach accounts the asymptotic wind
smoothing due to geographical dispersion of the wind farms.
This subsection relates the dimensions of a geographical area
with the smoothing of the equivalent wind of that area.

In (22), a model of complex root coherence 7,.(f) was
introduced based on the works of Schlez and Infield [[45]|in
the Rutherford Appleton Laboratory and Serensen et Al. [85]
in the Hovsere offshore wind farm. In (116), a formula was
derived assuming all the turbines experience a similar wind
and they have similar characteristics.

In this section, the decrease of variability of the equivalent
wind of a geographical area due to its spatial diversity is
computed in (127) from the variability at a single turbine or a
single farm and from the complex root coherence 7,.(f) .

Formula (127) assumes that wind turbines are
approximately evenly spread over the area corresponding to
the integrating limits. Even though the former assumptions
are oversimplifications of the complex meteorological
behaviour and wakes have been neglected, (127) indicates the
general trend in the decrease of wind power variability due to
spatial diversity in bigger areas. Notice that PSD ., i) 18
assumed to be representative of the average turbulence
experienced by turbines in the region and hence, it must
account average wake effects. Even though the model is not
accurate enough for most applications, it leads to expression
(132) that links the smoothing effect of the spatial diversity of
wind generators in an area and its dimensions.

Since 7,.(f) in (22) is expressed in terms of the power
spectral density of the wind, PSDy, (f), the model presented
here will be also referred to PSDU(, (f), which is more usual
than PSD,, (f) -which is more closely related to
aerodynamlc fqorce and torque fluctuations. Notice that the
variations of the wind and the variations of its square are

closely related through the first order
approximation AU 21) ~2{,)AU,, (31) and thus
PSDyg (1) ~ 40U, PSD, 5, ) '3).

The cbherence Nre(f) between points r =(z,,y,) and ¢ =
(z,,9,) inside the wind farm can be derived from Fig. 47 and
formulas (20), (21) and (22). The geometric distance between
them is d,=[(z,,9.)(7,9)|= [(4-1)° + (2-2)]"/* and the
angle between the line that links the two points and the wind
direction is a,= B — ArcTan[(y,-1;)/(2,-%,)]. In the general
case, the equivalent wind taking into account the spatial
diversity can be computed extending formula (123) to the
continuous case: (127)

b/2 b/2 a/2 a/2
-b/2 y, -a/2 =
b/2b/2 a/2 a/2
-b/2 y -a/2 x;
where the quadruple integral in the denominator is a forth of
the squared area, i.e., a* b4,

¥, (fod,, ) dzyde dy,dy,
PSDUeq,area f

PS‘DUeq.turb(f) ~

dz,dx, dy,dy,

(z,31)

Fig. 47: Wind farm dimensions, angles and distances among wind farm
points for the general case.

Due to the complexity of d,, and «,. and the estimation of
Y,.(f,d,. e, ) in formula (22), no analytical closed form of
(127) have been found for the general case.

In case wind has z direction as in Fig. 48, then the
coherence has a simpler expression:

,?rc (fa drc’ Oérc) =
ﬁ [ \/[ Aoy (Ty—1) ]2+ [Am(yryl) ]2 +j27r(;1;2x1)]

(25,9

(128)

= exp

Fig. 48: Wind farm parameters when wind has the z direction (3=0).
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The presence of the squared root in (128) prevents from
obtaining an analytical PSDy, ,..(f). In case ad,,,<bA,,,
the region can be considered a thin column of turbines
transversally aligned to the wind. This is the case of many
wind farms where turbine layout has been designed to
minimize wake loss (see Fig. 50) and areas where wind farms
or turbines are sited in mountain ridges, in seashores and in
cliff tops perpendicular to the wind. Since A, (7-1,) <

Aul%-y,), then  PSD,, q‘mm(f) can be computed
analytically as: '
PSD € at area f A b
Ueg,lat ( ) ~ f7[ lat f (129)
PSDU eq,turb (f ) <Uwind >

where f,(z) = 2(—1 +e ¥+ X) / z*

(7,9,)

=0
g (3317?/1)

s

Fig. 49: Wind farm with turbines aligned transversally to the wind.

In case aA,,>bA,, the region can be considered a thin
row of wind farms longitudinally aligned to the wind. This is
the case of many areas where wind farms are disposed in a
gorge, canyon, valley or similar where wind is directed in the
feature direction (see Fig. 50). Since A,,,(25-2) > A (vo-
Y1), then PSDy, ... (f) canbe computed analytically as:

PSD €q,long area f A + 271— a
Uq,l g () %Re f7 ( l()’!Lg .7 ) fJ (130)
PSDU eq,turb (f ) <Uwind>
A 4527) a A a
where Re{,}; M”’ = fg Lorg f’ Alonq]
<Uwind> <Uwind> )
which can be expressed with real functions as:
f8(V7Along): (131)
2
1_[ 2 COJ?WUL 47 Sinbm]l
o ¥ long AlongJ long AlongJ
(v-1)+@+)|—| +
long e’
1, 2\’
51/ (l+(27r/Al0W) )
(75,95)
'_/)- ~
BZO (‘TU yl) a

Fig. 50: Wind farm with turbines aligned longitudinally to the wind.

Notice that (130) includes an imaginary part that is due to
the frozen turbulence model in formula (22). A wind wave
travels at wind speed, producing an spatially average PSD

that depends on the longitudinal length a relative to the
wavelength. For long wavelengths compared to the
longitudinal dimension of the area (4,,,,>>2), the imaginary
part in (130) can be neglected and (130) simplifies to (129).
This is the case of the Rutherford Appleton Laboratory,
where Schlez and Infield[[43]] fitted the longitudinal decay
factor to A,,, ~ (15£5)(Uyina ) /Ouwina for distances up to
102 m.

But when the wavelengths are similar or smaller than the
longitudinal dimension, (A,,,,S27), then the fluctuations are
notably smoothed. This is the case of the Heovsere offshore
wind farm, where Serensen et Al. [85] fitted the longitudinal
decay factor to A,,,, = 4 for distances up to 2 km. In plain
words, the disturbances travels at wind speed in the
longitudinal direction, not arriving at all the points of the area
simultaneously (see Fig. 5 for clarity) and thus, producing an
average wind smoother in longitudinal areas than in
transversal regions.

long

In the normalized longitudinal and transversal distances
have the same order, then (127) can be estimated as the
compound of many stacked longitudinal or transversal areas
(see Fig. 51):

PSDU@q.rﬁcf area(f)

PSDU@q.lan,g area (f) PSDU@{].Zat n,rca,(f)
PSDUﬁq.turb (f )

PSDUﬁq.Zat area (f) PSDUﬁq,turb (f)

Abf) (Ay.af (132)
~ lat longa _ )
- f7 [ <me(1> fS <U1m'nd> ?Hong |H3 (f)|
=0
a

Fig. 51: Rectangular area divided in smaller transversal areas.

The approximation (132) is equivalent to consider the
Manhattan distance (L; or city-block metric) instead of the
Euclidean distance (L, metric) in the coherence 7, (128):

2 2
\/[ Alun_(/(IQ _'rl)] + [Alat(yQ_yl)] ~ A]un_(/ ('TQ _'rl) + A]at(yZ_yl) (133)

3.8.3. Equivalent wind smoothing due to
turbine spatial layout

Expression (132) is the squared modulus of the transfer
function of the spatial diversity smoothing in the area. H,(f)
corresponds to the low-pass filters in Fig. 53 with cut-off
frequencies inversely proportional to the region dimensions.

The overall cut-off frequency %f the spatially averaged
wind is obtained solving |H5( f)| =1/4. Thus, the cut-off
frequency of transversal wind farms (solid black line in Fig.
53) is:

<me( >
f;‘ut,lat = 683—1

bA

lat

(134)
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In the Rutherford Appleton Laboratory (RAL), A, ~
(17,5£5)(m/s) ' 04j,inq and hence f,,, , = (0,42£0,12)(U . 1)/
(O pwina D). A typical value of the turbulence intensity o,/
(U,ying) is around 0,12 and for such value f,,; .. ~ (3.5£1)/,
where b is the lateral dimension of the area in meters. For a
lateral dimension of a wind farm of b = 3 km, the cut-off
frequency is in the order of 1,16 mHz.

In the Heovsere wind farm, A,= (U,i.a)/(2 m/s) and
hence f,, ., ~ 13,066/b, where b is a constant expressed in
meters. For a wind farm of b = 3 km, the cut-off frequency is
in the order of 4,5 mHz (about four times the estimation from
RAL).

In RAL, A, = (15£5) oting /{Upying ) - A typical value
of the turbulence intensity oy, /(U is around 0,12 and
for such value A4,,,, ~ (1,8+0,6).

wind >

long

U,
0,577 uind?
1.8 a

U,
= 1,1839—< wind)

long ~dy

fcut.long (135)

A

a lOTLg long

For a significative wind speed of (U, ,) ~ 10 m/s and a
wind farm of e = 3 km longitudinal dimension, the cut-off
frequency is in the order of 2,19 mHz.

In the Hovsere wind farm, A4,,,, = 4 (about twice the value

from RAL). The cut-off frequency of a longitudinal area with
A,,,, around 4 (dashed gray line in Fig. 53) is:

U . U .
Fotiong = 27917 Wnind? ¢ 304 Vuina) (136)
o lungN4 a l(m,g Alml_g:4 a
For a significative wind speed of (U, ,) ~ 10 m/s and a

wind farm of a = 3 km longitudinal dimension, the cut-off
frequency is in the order of 2,26 mHz.

In accordance with experimental measurements, turbulence
fluctuations quicker than a few minutes are notably smoothed
in the wind farm output. This relation is proportional to the
dimensions of the area where the wind turbines are sited. That
is, if the dimensions of the zone are doubled, the area is four
times the original region and the cut-off frequencies are
halved. In other words, the smoothing of the aggregated wind
is proportional to the longitudinal and lateral distances of the
zone (and thus, related to the square root of the area if zone
shape is maintained).

In sum, the lateral cut-off frenquency is inversely
proportional to the site parameters A, and the longitudinal
cut-oft frequency is only slightly dependent on A,,,. Note

agreement for Hovsere and RAL since it is dominated by
frozen turbulence hypothesis.

However, if transversal or longitudinal smoothing
dominates, then the cut-off frequency is approximately the

minimum of f;wm and fwt,m . The system behaves as a

first order system at frequencies above both cut-off
frequencies, and similar to %2 order system in between f
and f,

cut,long *

cut,lat

1.000
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ooio
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Fig. 53: Normalized ratio PSD .y yred(f) /PSD ey rumine(f) for transversal (solid
thick black line) and longitudinal areas (dashed dark gray line for A;,,, = 4,
long dashed light gray line for A,,,, = 1,8). Horizontal axis is expressed in
either longitudinal and lateral adimensional frequency a A, f/{Uy,» or

b At f K Usind)-

Conclusions

This chapter has introduced a simplified small signal model
of the torque variation based on the wind variation. the
simplified calculation of the aerodynamic torque coefficient
based on the torque of the turbine, which assumes that the
wind is uniform in the area swept by the turbine. From this
formula, a simplified small signal model has been derived to
estimate the torque when the wind conditions in the swept
area are not uniform

Based on this approximation, the equivalent wind has been
defined as the one that produce the same effects that the non-
uniform real wind field. This simplification implies that the
effects of the wind field, which cannot be measured directly,
can be estimated from an equivalent wind, usually estimated
from the measurements of an anemometer.

Thus, the aerodynamic torque has been computed
approximately with a simple formula from the torque

that the longititudinal cut-off frequency show closer
Normalized Wind spectra |;; | Filter Hy(f): Filter H,(f): | ¢y U,y turm(f)
white noise equalizer "3 rotor spatial Ve, l farm spatial 6‘13(f)=() colng
Hy(f) averaging averaging A
=
>
y T
| IRt i v Angular Freqg-domain | |Gain/N, shift & freq. scale: \I
: sl modulation N Fpulse(f) — N ; ﬂ,z;f% L1
: characteristics () 5 [ (9] NFpulse [E]e piode :
laae I
l :
l\ Rotational sampling model )
7

Fig. 52: Diagram of the proposed additive rotational sampling model for the off-line estimation of the equivalent wind in the frequency domain.
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coefficient and from the equivalent wind, derived from the
measured wind.

The equivalent wind speed contains a stochastic
component due to the effects of turbulence, a rotational
component due to the wind shear and the tower shadow and
the average value of the wind in the swept area, considered
constant in short intervals. The fluctuations in the
aerodynamic torque due to the real wind field along the swept
rotor area are introduced in the equivalent wind modifying its
spectra. This oversimplification works relatively well since
the vibrational turbine dynamics randomize the real
dependence of the generator torque with the rotor angle.

The combination of the small signal model and the wind
coherence permits to derive the spatial averaging of random
wind variations. A stochastic model that links the overall
behaviour of a large number of turbines is derived from the
behaviour of a single turbine.

The power spectral density of the equivalent wind of a
cluster of turbines is estimated from parameters of an isolated
turbine, lateral and longitudinal dimensions of the cluster
region and the decay factor of the spatial coherence.

Although the proposed model is an oversimplification of
the actual behaviour of a group of turbines scattered across
the area, this model quantifies the influence of the spatial
distribution of the turbines in the smoothing and in the
frequency content of the aggregated power. This stochastic
model is in agreement with the experimental observation that
slow changes are highly correlated among a turbine cluster
while fast changes are poorly correlated.

The small signal model used in this chapter is derived
mathematically. In the next chapter, a model based on the
blade element theory is presented. That model predicts torque
oscillations based on the wind field perturbation due to the
surface and the tower.



Chapter 4:

Variability of Power

in the Frequency Domain

4.1. Introduction

estimate the variations of aerodynamic torque.
However, the structural and drive-train vibrations result
into stochastic fluctuations in the generator speed.

In previous chapters, the wind has been analyzed to

The complexity of the mechanical vibrations, the turbine
control and the non-linearity of the generator power
electronics interactions affects notably the generator
electromagnetic torque and the turbine power fluctuations,
specially in the frequency range from tenths of Hertzs to grid
frequency.

There are many dynamic turbine models described in the
literature. Most megawatt turbine share the following
behaviour, considering the aerodynamic torque as the system
input and the power injected in the grid as the system output:
[212, 120, 122]

e Between the cut-in and rated wind speeds, the
system usually behaves as a low frequency filter of
first order with a time constant between 1 and 10 s.

e Between the rated and cut-out wind speeds, the
system usually behaves as an asymmetric band pass
filter of characteristic frequency around 0,3 Hz due
to the combined action of the slow action of the
pitch/active stall and the quicker speed controllers.

e At some characteristic frequencies, the turbine
mechanical vibrations, the power electronics and the
generator dynamics modify the general trend of the
transfer function. Generally, these effects are not
linearly related to the wind and the ratio of the
output signal divided by the input signal in the
frequency domain is not constant.

There are many specific characteristics that impact notably
in the power fluctuations between the first tower frequency
(usually some tenths of Hertzs) and the grid frequency. The
realistic reproduction of power fluctuations needs a
comprehensive model of each turbine.

The details of the control, the structural details and the
power electronics implemented in the turbines are proprietary
and they are not available. In contrast, the electrical power
injected by a turbine can be measured relatively easily.

Moreover, some fluctuations in power are not proportional
to the fluctuations in wind or aerodynamic torque. Thus, a
general transfer function cannot be obtained for the power
oscillation, respect the equivalent wind or the aerodynamic
torque, unless big errors are allowed.

The approach taken in this chapter is primarily
phenomenological: the power fluctuations during the
continuous operation of the turbines are measured and
characterized for timescales in the range of minutes to
fractions of seconds. Thus, one contribution of this chapter is
the experimental characterization of the power fluctuations of
three commercial turbines. Some experimental measurements
in the joint time-frequency domain are presented to test the
mathematical model of the fluctuations.

A literature review on experimental data of Power Spectral
Densities (PSD) and periodograms (averaged spectrum) of
power output of wind turbines or wind farms are presented at
the end of the chapter. The variability of PSD is also studied
in the joint time-frequency domain through spectrograms.

Other contribution of this chapter is the admittance of the
wind farm: the oscillations from a wind farm are compared to
the fluctuations from a single turbine, representative of the
operation of the turbines in the farm. The partial cancellation
of power fluctuations in a wind farm are estimated from the
ratio of the farm fluctuation relative to the fluctuation of one
representative turbine. Some stochastic models are derived in
the frequency domain to link the overall behaviour of a large
number of wind turbines from the operation of a single
turbine.

This chapter is based mostly on the experience designing,
programming, mounting and analyzing two multipurpose
measuring system installed in several wind farms through the
years 1998 to 2002 [52, 53, 137, 138, 139, 140, 141, 142,
143, 144, 145]. During that years, a set of programs devel-
oped in LabVIEW [146], C++ [147], a set of spreadsheets and
algorithms [148] and an analysis methodology was devel-
oped. According to the CIRCE Foundation [149], this
measuring system and its procedures has been the first
prototype of a multipurpose data logger, now called AIRE
(Analizador Integral de Recursos Energéticos), that is
commercialized by Inycom and CIRCE [150].

4.2. Overview of wind power
fluctuations

The power from a cluster of turbines is the sum of powers
from their turbines less the transmission losses. Since the
losses are usually small, the power fluctuations of clusters
are, basically, the sum of turbine contributions —or if a small
signal of power losses is used, a linear combination of turbine
powers [204].

The interaction between the wind fluctuations and the
turbine is very complex and a thorough model of the turbine,
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generator and control system is needed for simulating the
influence of wind turbulence in power output [151, 152]. The
control scheme and its optimized parameters are proprietary
and difficult to obtain from manufacturers and complex to
guess from measurements usually available.

The turbine and micro-meteorological dynamics transforms
the combination of periodic and random wind variations into
stochastic fluctuations in the power.

This chapter is focused in the variations of power in the
frequency domain, which is linked to equivalent wind
variations and to the distribution of almost periodic events
such as vibration, blade positions, etc. The spatial sampling of
the wind in the rotor and the frequency content of the
equivalent wind has been carefully considered in the previous
chapter. In the next chapter, the distribution of almost
periodic events such as the blade shadow and is studied.

Wind distribution inside the wind farm is studied in the
micro-sitting to optimize the wind farm layout. Wind
spectrum and coherence between turbines has been analyzed
in the previous chapters. Turbulence, turbine wakes, gusts...
are highly random and don’t show a definite frequency [46,
153]. Non-cyclic variations in the power are usually regarded
as the outcome of the random component of the wind. They
concern the control (short term prediction) and the forecast
(long horizon prediction). Artificial Intelligence techniques
and advanced filtering have been used for forecasting. Power
fluctuations of frequency around 8 Hz can eventually produce
flicker in very weak networks [154, 155].

An alternative to Fourier analysis is time series. Time
series are quite popular in stochastic models since its
parameters and its properties can be easily estimated [156,
157]. Even though the two mathematical techniques are quite
related, the study of periodic behaviour is more direct through
Fourier approach whereas the time series approach is more
appropriate for the study of non-systematic behaviour.

Both current and power can be measured directly, they can
be statistically characterized and they are straightforward
related to power quality. Current is transformed and its level
depends on transformer ratio and actual network voltage. In
contrast, power flows along transformers and networks
without being altered except for some efficiency losses in the
elements. That is why linealized power flows in the frequency
domain are used in this chapter for -characterizing
experimentally the electrical behaviour of wind turbines.

4.2.1. Random and cyclic fluctuations

Fluctuations of power output can be divided into cyclic
components (tower shadow, wind shear, modal vibrations,
etc.), wind farm weather dynamics and events (connection or
disconnection of the turbine, change in generator
configuration, etc.). The customary treatment of these
fluctuations is done through Fourier transform.

Cyclic fluctuations due to tower shadow, wind shear, etc.
present more systematic behaviour than weather related
variations. Cyclic fluctuations are almost periodic and they
present definite frequencies. Almost periodic means in this
context that the signal can be decomposed in a set of sinoidal
components (some of them non-harmonically related) with
additive (stationary) noise (i.e., polycyclostationary signals).
Since some frequencies cannot be expressed as multiple of

the others, the signal is not periodic in the conventional sense
(see Fig. 204).

Cyclic time variations are usually characterized from the
signal PSD (see for example the review from Gardner et al.
[158]). The magnitude and frequency of the cyclic
fluctuations can be characterized for each turbine model and
wind regime [52]. Thus, the cyclic fluctuations can be
represented by spectral density phasors revolving at the
oscillation frequency.

Turbulence has been previously characterized through its
power spectral density, which is basically the Fourier
transform of its autocorrelation. Thus, turbulence can be
represented by power spectral density phasors revolving at
the oscillation frequency with a random phase since
turbulence does exhibit neither a characteristic shape nor
timing.

Weather evolution is the outcome of slow and complex
atmospheric processes. Since weather evolution has a strong
non-linear behaviour, it not considered in this section. An
alternative statistical characterization of wind power
variability based on Markov chains, which suits better the
complex non-linear weather behaviour, will be presented in
the following chapter.

4.2.2. Major difficulties on the
fluctuation characterization

The torque drop due to rotor spatial sampling has a
characteristic shape (see Fig. 311 or Fig. 59). This torque is
filtered by turbine dynamics and the influence in output
power can be complex (see Fig. 204). The signals cannot be
considered truly periodic neither the characteristic
frequencies are constant (rotor speed is not constant due to
the wind) nor frequencies are harmonically related (some
frequencies cannot be expressed as multiple of the others).
Under some conditions —steady wind, short data length, etc—
the power can be considered a set of periodic signals
decomposable in their fundamental component f;; and their
harmonics &-f; ..

The structural resonance modes of the tower, blades and
cinematic train present a vibration behaviour with frequencies
different from the blade passing the tower frequency, f,.4.-

The turbulence adds a “coloured noise” overimposed to the
former oscillatory modes, modulating cyclic vibrations and
influencing rotor speed. The actual power is the outcome of
many processes that interacts and the analysis in the
frequency domain is a simplifying approximation of a system
driven by stochastic differential equations.

The first problem when analyzing power variations is that
the contributions from rotor sampling, vibrational modes and
turbulence-driven variations are aggregated.

The second difficulty is the fact that frequencies of almost
cyclic contributions are neither fixed nor are they multiple.
Fourier coefficients are defined for periodic signals, but a
signal with components not harmonically related is not longer
periodic.

The third difficulty is that frequencies of contributions are
overlapped. Fortunately, characteristic frequencies (resonance
and blade frequencies and its harmonics) have narrow
margins for given operational conditions, producing peaks in
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the spectrum where one contribution usually predominates
over the rest.

The forth difficulty is the turbulence, that introduces a non-
periodic stochastic behaviour interacting with periodic
signals. Different mathematical tools are customarily used for
periodic and stochastic signals, increasing the difficulty of the
analysis of these mixed-type signals.

The cyclic fluctuations of the turbine power can be
considered in the fraction-of-time (FOT) probability
framework as the sum of sets of signals with different periods
with additive stationary coloured noise and, hence, almost
cyclostationary (see the review from Gardner et al. [158]).
Since wind power is formed by the superposition of several
almost cyclostationary signals whose periods are not
harmonically related, wind power is polycyclostationary.

Therefore, thorough models of the wind turbines and
turbulence are needed for the analysis of power fluctuations.
In the following sections, a phenomenological and pragmatic
approach will be applied to draw some conclusions and to
extrapolate results from specific measurements to general
cases.

4.3. Mathematical framework

4.3.1. Definitions

According to [159], a very steady and a very uniformly
distributed wind together with a weak electrical network is
necessary for synchronisation to happen driven by voltage
drops. Experimental measurements [52] have corroborated
that the synchronisation of the blades is unusual. In addition,
the spectral model of the turbulence (128) showed that wind
fluctuations at frequencies much higher than f, ,, ., and

fwt’mg defined in (134) to (136) can be considered
independent because its coherence is very small.

Thus, fast fluctuations can be considered statistically
independent whereas slower fluctuations are linked basically
to weather dynamics. Fortunately, slow fluctuations can be
linked to equivalent wind fluctuations through a quasi-static
approximation based on the power curve of the turbines.

A) Aggregation of uncorrelated almost-cyclic signals
results on stochastic signals

As main wind characteristics are similar inside the farm,
the typical magnitude of the cyclic components would be
similar in all turbines. If the turbines blades are not
synchronized, the cyclic uncorrelated fluctuations due to rotor
movement have random phases.

Thus, the aggregation of cyclic fluctuations from the
turbines in a wind farm or in an area turns out to have a
stochastic behaviour. Moreover, the correlated fluctuations in
a wind farm or in an area are due to meteorology. Both
turbulence and weather have strong stochastic nature.

As an outcome, the total fluctuation from an area is best
characterized as a stochastic signal even though the
fluctuations from single turbines have strong cyclic
components. The properties of the total fluctuation can be
derived from the turbine fluctuations and their relationship
(especially the coherence among turbines).

In sum, the transformation of cyclic components into
stochastic components eases the treatment of area
fluctuations.

B) Dependence on the data length of the Fourier
transform of random and cyclic signals.

The Fourier transform of a signal of active power P(1),
recordedin0 <t < T, is P.(f):

= fo " p)e > tar= H{ P}

The units of f’T(f) are the same than the ones of P(#) per
Hertz. Thus, if P(#) is in MW, then P(f) is in MW/Hz and if
P(t) is in p.u. (per unit system), then P (f) is in p.u/Hz. The
subindex notation in P,(f) indicate the sample duration 7T of
the original time series and it is used in this chapter to
distinguish the Fourier transforms, the Fourier coefficients
and the stochastic spectral phasor densities.

(137)

If P(1) is a periodic component of period T' =1/f; in the
active power, its Fourier transform is a modulated Dirac
comb. The complex Fourier coefficient of order £, ]3; , 1s the
conventional Fourier transform of the signal during a period,
scaled by the period, at harmonic frequency f=*k f,=k/T
Vke Z.:

27tk

- 1 12
:—fP T dt——J{P(t)}:¥PT(f:kJ§) (138)
The units of P is the same than PTgt The amplitude of
the fluctuation of harmonic £ is P +P =2 P | in peak
values and its initial phase is Arg[P,]. he Fourier
coefficients are notated with the k subscript to distinguish

them from the Fourier transform.

Notice that the active power can be considered the
aggregation of stochastic noise and periodic components.
Since periodic components can be considered deterministic
with period T under the FOT probability framework, its
Fourier coefficients can be computed.

If P(t) is the stochastic component in the active power
recorded in 0<t< T, the conventional Fourier transform,
denoted by ¥, is scaled by a factor VT to achieve an spectral
measure whose main statistical properties do not depend on
the sample duration T. (139)

Pty e Ly L L p

B()=— =—93{P)}=—P.(f)
7ih 77 AP0t

The factor INT applied to the conventional Fourier

transform P »(f) to obtain P > (f) is between unity —used for

pulses and signals of bounded energy— and 1/T —the Fourier

coefficients P, used for pure periodic signals—.

Fortunately, the definition (791) has the advantage that the
variance of P ’ (f) is the two-sided power spectral density,
[P ( )|272 PSD,(f), which is independent of the sample
length 7" and it characterizes the process. ]3(,(]‘) will be
referred as stochastic spectral phasor density of the active

power or just the (stochastic) phasor for short.

Notice that the text or the subscript indicates the scaling
factor_applied to the Fourier transform. If nothing is stated,
then P(f) should be interpreted in this chapter just as P > (f),
the stochastic spectral phasor density.
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C) Stochastic spectral phasor density of the active
power

The instantaneous output of a wind farm or turbine can be
expressed in frequency components using stochastic spectral
phasor  densities. As aforementioned, experimental
measurements indicate that wind power nature is basically
stochastic with noticeable fluctuating periodic components.

The stochastic spectral phasor density of a power output
time series P(f) with duration T and zero initial time is:
jetn__1L T —jonf ¢
P(f)=P,(f)e’'=—=| P(t)e > 'at (140)
\/?fo
The signal in the time domain can be computed from the
inverse Fourier transform:

EO=NT [ By, =

=

=5

- 2ﬁij0°°ﬁg(f) ejz”ftdf] -
= Zﬁj; Pa(f)cos[Qﬂ'ft + gp(f)} df

where e is the base of the natural logarithm, j is the imaginary
unit, Re states for the real part of a complex number and ~
stands for complex conjugate. An analogue relation can be
derived for reactive power and wind, both for continuous and
discrete time.

(141)

Standard FFT algorithms use two sided spectra, with
negative frequencies in the last half of the output vector.
Thus, calculus will be based on two-sided spectra unless
otherwise stated, as in (141). In real signals, the negative
frequency components are the complex conjugate of the
positive one and a % scale factor may be applied to transform
one to two-sided magnitudes.

Fluctuations at the point of common coupling (PCC) of the
wind farm can be obtained from power balance equations for
the average complex power of the wind farm.

Neglecting the increase of power losses in the grid due to
fluctuating generation, the sum of oscillating power from the
turbines equals the farm output undulation. Therefore, the
complex sum of the frequency components of gach turbine
Prurbine i(f) totals the approximate farm output, P farm(f) :

Niurbines

Z ]Dturbme l(f) ej% v

i=1

Niurbines
-

ﬁ farm (f ) = 2 Prurbine L(f ) =

i=1

(142)

For usual wind farm configurations, total real losses at full
power are less than 2% and reactive losses are less than 20%,
showing a quadratic behaviour with generation level [160]. A
small-signal model of power losses due to fluctuations inside
the wind farm can be derived [161], but since they are
expected to be up to 2% of the fluctuation, the increase of
power losses due to oscillations can be neglected in the first
instance. A small signal model can be used to take into
account the network losses multiplying the turbine phasors in
(142) by the sensitivity factors 0Py, /0F,pine; estimated
from power flows with small variations from the mean values
using methodologies as the point-estimate method [162, 163].

4.3.2. Statistical properties of the sum
of stochastic spectral phasor densities

Periodic fluctuations appear as narrow peaks at their
harmonic frequencies in the spectrum, whereas random
fluctuations (which have neither a periodic pattern nor a
characteristic frequency) can be associated with the tendency
of the smoothed spectrum.

The discrete Fourier transform (DFT) divided by \T (the
square root of the sample duration) is the phasor 173(7 (f,t)
which vary randomly in time (even though fand ¢ are discrete
in logged data, the notation is maintained as if frequency and
time where continuous for convenience). The squared
modulus of the DFT_)diVidegl by T'is an estimate of the power
spectrum density |PU ( f7t)| in grey in PSD plots —such as
Fig. 205 which varies in time since wind, is stochastic.
However, its time average“<|Pn(f, t)I“}‘:an(f)H} is
approximately constant for certaln operational tonditiods and
it is an estimation of the actual PSD,(f) (see black thin line in
in PSD plots).

The PSDyy,,,(f) is the Fourier transform of the
autocorrelation function, Rp,,.,(t) provided the power output
of the farm can be considered a stationary random process. A
basic estimation of the power spectral density is PSDp(f) =
P*(f)/Af, where Af=1/T is the inverse of the duration of the
record and FP°(f) is the square of the spectrum density,
smoothed in the frequency domain to decrease the variance of
the PSD estimate [164, 165, 166). Wind farm or turbine
PSD, <|I_jf ( f)|> or < Prunes f)| , has been estimated as
the averaged squared DIE'T modulus of power output, scaled
by period T. This technique is called “averaged periodogram”
and its properties can be found in [167, 168, 169].

In PSD plots such as Fig. 205, the original power spectrum
is plotted in grey whereas the estimated PSD is in thin black
(linearly averaged periodogram in squared effective watts of
real power per hertz). Since the required frequency resolution
in this application is low, the power spectrum has been
smoothed in order to lower the PSD variance (the frequency
resolution Af has decreased N, times to reduce the PSD
uncertainty in the factor /N, ). In the analyzed cases
where power is measured each grid cycle, the values 10
<N, <100 have been suitable tradeoffs between frequency
resolution and variance of the estimated PSD. The PSD has
been estimated in the figures with N, =20 if nothing else is
stated.

ver.

The fluctuation of power output of the farm is the sum of
contributions from many turbines (142), which are mainly
uncorrelated. The sum of N independent phasors of random
angle of N turbines in the farm asymptotically converges to
a complex Gaussian distribution, P farm (f) ~CNI0, O pparm ()] »
of null mean and standard deviation o, (f)= ~No(f),
where o1(f) is the mean RMS fluctuation at a single turbine
at frequency f . To be precise, the variance o,%(f) is half the
mean squared 2fluctuation _e}mplimde at frequengy f a2(f)=
% |ﬁturbine i (f)| > :<Rez[ Prurbine 1(f)]> = < ImQ[Pturbine 7(f) i>
. Therefore, the real and imaginary phasor components
Re[Pjam(f)] and Im[Pjam(f)] are independent real
Gaussian random variables of standard deviation O pfarm(f)
and null mean since phasor angle is uniformly distributed in
[-m,#®]. Moreover, the phasor modulus |J_5 Jarm ( f)| has
Rayleigh|o ps,,,, (f)] distribution. The double-sided power
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spectrum |1’_5fm~m(f)|2 is an Exponentiaﬁ A= %a;ﬁl,.m(f)}
random vector of mean <|]_5 farm ( f)| =2a}2>farm( 1)
=1 PSDpjy(f) (the double-sided power spectral density is
half the one-sided power spectral density) [170, 171].

The estimate from the periodogram is the moving average
of N, exponential random variables corresponding to
adjacent frequencies in the power spectrum vector. The
estimate is a Gamma random variable. If the PSD is sensibly
constant on N, Afbandwidth, then the PSD estimate has the
same mean as the original PSD and the standard deviation is
N Nyyer. times smaller (i.e., the estimate has lower uncertainty

at the cost of lower frequency resolution).

A comprehensive literature survey on the sum of random
vectors can be reviewed in [172]. The statistical properties of
the wind power spectrum will be further analyzed in this
chapter.

A) Sum of two phasors with random angle and the same
modulus

Fig. 54 shows the instantaneous phasor diagram of a wind
farm with four turbines with similar uncorrelated fluctuation
level at angular frequency f Recall that the stochastic
spectral phasor density P (f) has been notated as P(f) for
simplicity. Phases ¢,, ¢,, ¢sand ¢, are random and its value
is uniformly distributed in [-m,+n] (uncorrelated fluctua-
tions). It should be noted that the phases of each turbine are
random when compared to the others because each turbine
has its own blade reference.

‘__&_Y;[Im}
-~ | S~

-

P(f)e j‘rg:g(f\)\ RS -

Fig. 54: Model of the phasor diagram at frequency f of a park with four
turbines with similar uncorrelated fluctuation level P(f).

The sum of phasors of equal frequency is another phasor
with a statistical distribution which will be derived in the next
sections. Finally, an expression for the phasor of a wind farm
will be obtained in function of the number of turbines N and
the frequency component of a single turbine, P(f).

Each phasor will be decomposed in real and imaginary
components, that correspond to the projection on horizontal
and vertical axis in Fig. 54. For convenience, the phasors will
be treated as complex random variables with some modulus
distribution in p.u. or in standardized variables and uniformly
distributed angle [-mt,+7 |.

B) Sum of two phasors with the same modulus

The sum of two phasor ¢ and % is another phasor with
random phase and amplitude 2 P(f)| Cos|(¢,—p;, )/2]|

The modus of the sum of phasors EHk = Fi + Fk of the
same amplitude P(f). is:

|Pess(9)| = Pslh = |PUpre "7 (e 77| =

- 143
= 2| P(f)| - |Cos| Z=Fx (143)
‘E”k(f)‘ = ‘P(f)f‘j 2P(f)e’ % }:
= 2 P(f){Cos(Z— k)
P(f)-e’" P(f)~ej @

i — Pk

Fig. 55: Sum of two phasor with same magnitude.

The cumulative density function (CDF) of the amplitude of
the sum of two uncorrelated turbines is:
CDFp (@)=

itk
—

=Pr Pi+k

<z

§x):Pr[2P(f)
;=P

Cos [ Vi

] wmm:
7]

The probability density function (PDF) of the sum
amplitude can be derived from its CDF:

=Pr

Cos >

ArcCos [

=1- —ArcCos[

™

Ho=cor, !

R R —
WW/P (f)—[2]

C) Sum of two phasors with different modulus

PDF,

itk

(145)

The sum of four phasors can be computed iteratively from
the former subsection.

F¢+k+l+m(f) = -’_:;Hk(f) + }_:;Hm(f) =

P Pu(f) + Pu(f)

= 146
= [Pin) + Pun| + o

The phasors obtained in the former subsection have
different modules and the result is a bit different from the
previous paragraphs. The modulus of the sum will be derived
by trigonometry. The projection of the phasor Piix(f) of the
turbines ¢ and,j in the axis of the sum of the four turbine
phasors is |Piti(f)| Cos ¢, (f). The projection of the
phasor P, (f) of the turbines [ and m in the axis of the
sum of the four turbine phasors is |F_ , (f)| Cos ¢, ,.(f) -

The phases ¢;,1(f)a and ¢, (f) are uniformly
distributed in [-m, w] and the function ArcCos(gp) returns a
number in [0, n]. The modulus of two vectors P;yi(f)and
Piim(f) are distributed according to (145).

/ Ez'+k:(f) + EHNL(f)

R‘,Jrlc(f)'e] Yﬂ/v.f-

Pi+k — Pl+m

P (f)'ej W]er(f)

I+m

Fig. 56: Sum of two phasor with different magnitude.
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Therefore the cumulative density function (CDF) of the
modulus of the phasor of the sum of four turbines is:  (147)
CDF,

o @=Pr( PP PN+ Palf) <y) =
= Pr(| Pisil(f)Cos (211N =0,k 10m (D) +
+ [Pren(N|Cos (1 (D=1 k1 14m(F)) <)

For the rest of this subsection, the dependence of
parameters with frequency will not be indicated explicitly to
shorten expressions. The projection of a phasor of modulus
P;,, in the direction of the overall sum is z;,, and it has the
following conditional CDF' (the explicitly notation of the
dependence of variables with frequency f has been dropped
for simplicity): (148)

CDF, (z|P,)=Pr(P,_, Cos(p,,,)<x)=

Ty 1 itk
=Pr| Cos(p,, ;)< =Pr LkaSArcCos[ L } =
itk L
ArcCos(z/P, )

™

The conditional probability density function (PDF) of the
projection, given P, can be derived from CDF" (149)

@|F )= —CDF ()=

PD L+l\| itk 1+k‘ i+k 2,2
P
Taken into account that the distribution of modulus r; of
the sum of two vectors has been obtained previously, the total
PDF of z,,, can be computed by integration. (150)

PDF, . :z: =
Tiy
if _ (@|P)-PDEP,.
f 1+1. j:l. 1

x

2 2
P
P, 2
t 2

= |2 | Im [ EllipticK [ 2P() ] ]
|z x

Finally, the total PDF of the relative modulus of the sum of
the four phasor is: (151)

2P(f)
PDFSi+k+l+m (y) = 2v—/12p(f)+?/

where 0 <y <4 P(f) and factor 2 take account that
©irr(f) and ¢, (f) are uniformly distributed in [-n, =]
whereas ArcCos(¢) returns a number in [0, nt], half the
interval.

) dP=
dP=

PDE, k(y—:c)PDFw k(x) dzx

The integral (151) doesn’t have a simple analytic solution
and must be computed numerically. The calculus of the sum
of phasors can be done iteratively. However, the integrals
cannot be solved analytically and the accumulated numerical
error can be noticeable for farms with more than 32 turbines.
The next subsection employs a general method to compute
the sum of any number of phasors using the characteristic
function of the modulus of fluctuation phasors.

D) Sum of any number of phasors

In some applications, we encounter a random signal that is
composed of the sum of several random sinusoidal signals,
e.g., multipath fading in communication channels, clutter and
target cross section in radars, interference in communication

systems, wave propagation in random media and channels,
laser speckle patterns and light scattering and summation of
random current harmonics such as the ones produced by high
frequency power converters of wind turbines [173, 174].

Any random sinusoidal signal can be considered as a
random phasor, i.e., a vector with random length and angle. In
this way, the sum of random sinusoidal signals is transformed
into the sum of 2-D random vectors. So, irrespective of the
type of application, we encounter the following general
mathematical problem: there are vectors with lengths

' uncorr =| Piuncorr | and angles ¢,=  Arg(Pi uncorr), in
polar coordinates, where P, ... and ¢, are random
variables. It is desired to obtain the probability density
function (pdf) of the length of the resulting vector.
turbines .
Z P &%

1y
i=1 uncorr

turbines —s
Z P Z"

i=1 uncorr

= ;;farm, (152)

uncorr

Py

A comprehensive literature survey on the sum of random
vectors can be obtained from [172]. This problem is often
solved through the joint characteristic function of the

modulus of B uncor -

If the turbines ¢ = 1 to N have approximately the same
phasor density modulus, P, ... = P;, then the PDF of the
modulus of the sum Py= [P, | can be computed according to
equations (9), (10) and (29) from [172] as:

=—fp0LwMMm}w (153)

where J, denotes the zeroth-order Bessel function.

PDFsp;(z

An analytical PDF can be obtained accurate enough for
N > 4 (farms with more than 4 turbines) using the asymptotic
. . 2
approximation Lim JoN (p) = e NP/,

2
PDFy,(z) f p 0[—;;] Nt gy =
2 (154)
z 1 z
=X | ——
(JN2R) 2|JN2 A

The PDF, (Py) for wind farms with N = 8, 16 or 32
turbines computed from exact formula (153) or computed
from the approximation (154) is very similar, as can be seeing
in Fig. 57. The approximate PDF of the modulus (shown in
red) corresponds to a Rayleigh distribution with parameter
R,

On =

N
™

=

& 0.4 /

50 N
=

0.2 7/ >
> Y\\
/ =
0 0.5 1.5 2
X= SN \/N Sl

Fig. 57: Normalized PDFy(Py) for w1nd farms w1th N =8, 16 and 32
turbines.
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E) Projection of the phasor in the horizontal axis

The projection of a phasor in the horizontal (or real) axis
corresponds to the instantaneous value represented by
phasors. P, Cos py is the instantaneous value of the
fluctuation (at frequency f).

If the modulus and the angle are independent random
variables and the angle is uniformly distributed in [0,27], all
the odd moments are zero. The 2r order absolute moments of
the projection, My, ;i , can be computed as:

M L=

27, proj

:ﬁ)MazﬂfO%(LP_N]COS(@)) PDF (LPN|) ;dcp dﬁ\

The relation between absolute moments of the phasor
modulus M '27”’ mod (respect 0) and the absolute moments of
the phasor proyection My, |, is:

—. = r2rcos(p)”

(o) i [T
(156)

for2r=2,4,6,8,

(155)

M, = [ o
2r, proj 7\/; |PN| E

where a =1, 3/8, 5/16, 35/128, 63/256...
0... (odd moments are null)

For example, the quadratic value of the proyection —i.e.,
the quadratic average of time-domain signal- is half the
squared amplitude. Hence, the RMS value of a phasor is its
amplitude divided by V2.

The distribution of the projection can be computed by
integration:

CDE,, (z) f CDF -
The projection in the real axis of a phasor with Rayleigh

distributed modulus and parameter oy is distributed

normally with zero mean and standard deviation oy .

:c/cos( ))dtp (157)

The real and imaginary part of a phasor with random
(equally probable) phase angle and its modulus Rayleigh
distributed are two identically distributed and independent
real Gaussian random variables. Thus, the squared modulus
has an exponential distribution with rate parameter
A=1/(20y) (also equivalent to a gamma distribution with
unity shape factor and scale parameter 2 oy ).

4.3.3. Spectral density of uncorrelated
oscillations in a group of turbines

The fluctuations of a group of turbines can be divided into
the correlated and the uncorrelated components. According to
Fig. 57, the Central Limit is applicable for the sum of
uncorrelated spectral components of more than 8 turbine
phasor densities and the sum distribution converges
assimptotically to a complex normal distribution.

The correlated fluctuation components are usually linked to
slow meteorological dynamics and they have been
characterized in the former chapter —see (115) and (127).
Thus, the correlated components are not considered in this
section.

The one-sided stochastic spectral phasor density of the
active power of a cluster of N turbines at frequency f is
‘P+ ‘—|P | |P |72|P (f)| In plain words,

the one-sided density is twice the two-sided density. The
amplitude of fluctuations at frequencies between f-Af/2

and f+Af/2 is |BE(f)|WAS -

The one—51d§d amplitude density of fluctuations at
frequency £, |Py(f)|, is a leigh distribution of scale
parameter o ) ( N( )|)\/2—/y7; where angle brackets (o
denotes averaging. In other words, the mean of P*( | is
(P = \/%r_/g oy (f) where o (f) is the RMS value of
the phasor projection.

The RMS value of the phasor projection o (f) is also
related to the one and two sided PSD of the active power:

= [2PSD, (f)=\[PSD; (f)

(158)

_Put into words, the phasor density of the oscillation,
‘P]\f ( f)‘, has a Rayleigh distribution of scale parameter
oy(f) equal to the square root of the one-sided power
spectral density.

For convenience, effective values are usually used instead
of amplitude. The effective value of a sinusoid (or its root
mean square value, RMS for short) is the amplitude divided
by V2. Thus, the average quadratic value of the fluctuation of
a wind farm at frequency f1is, according to (156):

(|l =Bl ) 2 = o400

Rayleigh[oy (f)]

PSD; (f) (159)

If a fast Fourier transform is used as ideal narrowband filter
and the Parseval’s Theorem is applied, an estimate of o (f)
is 2Af- <|FFTn:f/Af{P (kAL)}) (in Bartlett or Welch
methods, some smoothing or averaging is applied to obtain a

consistent estimate).

If fluctuations at a cluster of N turbines are independent,
then o, (f) zmol (f), where o, (f) is the mean RMS fluc-
tuation density at a single turbine and at frequency f The
mean phasor density is: (160)

O' O'
Haylezgh oy (f) V N V 1

If the real power of the turbine cluster is filtered with an
ideal narrowband filter tuned at frequency fand bandwith Af,
then the average effective value of the filtered signal is
am(f)\/zf and the average amplitude of the oscillations is
(| Py (D~ A \/_ (f)I\JAf-w/2 . The instantaneous value of
the filtered 51gnal %) N fAf() is the projection of the phasor
P*(f) 72! \/A_f in the real ax1s The instantaneous value
of the filtered signal squared, Py S, Af( ), is an exponential
random variable of parameter \=[No2(f)Af]"'. Taking into
account the properties of the exponential distribution:

<P]3fAf()>EIp = NUf(f)Af

distribution

VN B ()

(a0l

(161)

The RMS oscilation resulting from all the discrete
frequency components of uncorrelated fluctuations is the sum
of the contributions of each characteristic frequency. For a
discretized spectrum, the Parseval’s theorem is:

B (f)| is deterministic,

then <\13+( N = ﬁ*(f)| 20,0, shghtly blgger than if |P+(f)|

is Rayleigh distributed. During a short record, P (f)

constant and thus the ave\r/qge sample amplitude density would be
2

\N7/20,(f) §<‘]3;(f)‘>§ ay(f) -

can be fairly
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2
<Puncorr fluctuation

(t)>—%<2|13”(kAf)lAf>—

i (P2RASDAS = Zo (7NN

k=1

(162)

Notice that the factor 1/2 must be changed into 2 if two-
sided phasors densities are used. For a continuous PSD, the
sum transforms into an integral:

1 fJ,Ld
< Pu2n,(:orr Sfluctuation (t) > = 5 < \fl /T (kAf )| df >
1

— ”””qp” kAS)) df = f

According to (160) and (163), both the RMS value and the
spectral phasor density of uncorrelated fluctuations scale up
in a wind farm with a factor /N .

The distribution of <Pumw fluc mmm(t).> can be derived in
the time or in the frequency domain. In both cases,

is the sum of infinitesimal Exponential

(163)

2
P, uncorr fluc}%’u(tf,ion(t)
random variables.
If the modulus and phase of ]3+( ) are not linearly
correlated  at  different  frequencies fi»  then
P uctuation?) ) 10 (163) can be computed as the sum of
independent infinitesimal random variables with exponential
distribution. If o(f)is constant V fi<f<f, and null
otherwise, the resulting distribution conver%es to a normal

distribution with mean <P2 and standard

L. \/— 9 uncorr gl ctuation(t) .
deviation 2<Pumm fuctuation't 5 In = practice, the

fluctuation spectral density o(f) do depend on frequency and
the sum of correlated gammas with different scale parameters
can be computed with algorithm proposed in [175].

Power dips due to a blade passing in front of a turbine
resembles pulse dips, which have a wide frequency spectrum.
The correlation coefficients of frequency components will be
derived in the second part of this work.

One or two sided sums of phasors are consistent —provided
all values refer exclusivelly either to one or to two side
spectra. Most differences do appear in integral or summation
formulas — if two-sided spectra is used, a factor 2 may appear
in some formulas and the integration limits may change from
positive frequencies to positive and negative frequencies, as
in (163).

4.4. Sum of partially correlated phasor
densities of power from several turbines

4.4.1. Sum of fully correlated and fully
uncorrelated spectral components

On the one hand, slow fluctuations (f< 10~ Hz) are mainly
due to meteorological dynamics and they are widely
correlated spatially and temporally. Slow fluctuations in
power output of nearby farms are quite correlated —see (115)
and (127)- and wind forecast models try to predict them to
optimize power dispatch.

On the other hand, fast wind speed fluctuations are mainly
due to turbulence and microsite dynamics [176]. They are
local in time and space and they can affect turbine control and
cause flicker [177]. Tower shadow is probably the more
noticeable fluctuation of a turbine. It has a definite frequency

and, if the blades of all turbines of an area became eventually
synchronized, it could be a power quality issue. But
synchronization is very rare since the only synchronizing
forces might be turbine wakes and voltage drops in the grid.

The phase ; (f) implies the use of a time reference. Since
fluctuations are random events, there is not an unequivocal
time reference for use it as angle reference. Since fluctuations
can happen at any time with the same probability —there is no
preferred angle ¢, (f)—, the phasor angles are random
variables uniformly distributed in [-n,+n] (i.e., the system
exhibits circular symmetry and the stochastic process is
cyclostationary). Therefore, the relevant information
contained in ¢, (f) is the relative angle difference among the
turbines of the farm [178] in the range [-m,+m|, which is
linked to the time lag among fluctuations at the turbines.

If the N turbine fluctuations at frequency f are completely
synchronized, all the phases have the same vahmemp( (fﬂnd the
modulus of fully correlated fluctuations = “ “"
arithmetically.

N
| farm, con Z i, (07r
If there is no synchronization at all, the fluctuation angles
/) at the turbines are stochastically independent. Since
P, uncorr(f) has a random argument, its sum across the wind
farm will partially cancel and inequality (165) holds true.

N
=P (164)
i=1

N
D+
%, UNCorr
i=1

N
‘ farm, uncorr(f)‘ - f) < Z|ﬁ;,+uncorr(f)| (165)

i=1

If there is no synchronization at all, the fluctuation angles
/) at the turbines are stochastically independent. If the
number of turbines N >4, the central limit for the sum of
phasors is a good approximation and (160) is applicable.

This approach remarks that correlated fluctuations adds
arithmetically and they can be an issue for the network
operation whereas uncorrelated fluctuations diminish in
relative terms when considering many turbines (even if they
are eventually very noticeable at turbine terminals).

4.4.2. Sum of partially linearly
correlated spectral components

Inside a farm, all the turbines exhibit a similar behaviour
for a given frequency f and the PSD of each turbine is
expected to be quite similar. However, the phase differences
among turbines do vary with frequency. Slow meteorological
variations affect all the turbines with negligible time lag,
compared to characteristic time frame of weather systems
(i.e., the phasors P,,p,.(f) have the same phase).
Turbulences with scales significantly smaller than the turbine
distances have uncorrelated phases. Fluctuations due to rotor
positions also show uncorrelated phases provided turbines are
not synchronized.

(Bliined) =B D) + (P )

If the number of turbines N >4 and the correlation among
turbines are linear, the central limit is a good approximation.
The correlated and uncorrelated components sums
quadratically and the following relation is applicable:  (167)

(166)
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P+

turb, corr

P+

turb, uncorr

<\Wm \> < (ﬁf>+N< (ﬁf>

where N is the number of turbines in the farm (or in a group
of close farms). Since phasor densities sums quadratically,
(166) and (167) are concisely expressed in terms of the PSD
of correlated and uncorrelated components of phasor density:
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source of fluctuation in large clusters of turbines. The cluster
admittance J(f) is the relative transfer function of the mean
fluctuation density of the farm g @‘3 , respect the
mean turbine fluctuation density, .

(BL.) _ [PDyy 1
(P D) N PSPy D)

farm

’<|§_I turbine

J(f)=

(170)

PSDf(LTm(f) ~ ‘ZVQ‘PSDturb7 corr(f) + ‘Nv"PS‘Dturb7 unwrr(f) (168)
PSDtm‘b(f) = PSDtm‘b, (:07‘7'(f) + PSDtm‘b, uncarv'(f) (169)

The correlated components of the fluctuations are the main

turbine
Note that the phase of the transfer function J(f) has been
omitted since the phase lag between the oscillations at the
cluster and at a generic turbine is meaningless if the turbine
position is not specified.

TABLE II: SUMMARY OF STATISTICAL PROPERTIES OF UNCORRELATED SINUSOIDAL FLUCTUATIONS IN A CLUSTER OF N TURBINES

Assumptions Spectral fluctuation density is deterministic and can happen at | Instantaneous fluctuation of frequency fat
P any time => phasor P (f) of fixed modulus and random angle. |time ¢ P (f) has normal complex distribution
D+ -
Phasor Pl (f) of f_i'xed modulus and random angle. P*(f)is a complex Gaussian random variable
P DfT B )‘ ( = 5<‘Pl+(f )‘ - ); 6 ¢ is the Dirac Delta  |with zero mean and standard deviation oy(f),
- o PJr N
1 turbine [ = standard deviation of the projection of (]?_ (]:QW f(to’ al(f))
. . ol . P =Re[B* (e '] ~ N (0, 0,(f))
in the wind the p asor )e mean RMS density of the ‘ P* ~ Rauleiah ( o ( f))
farm instantaneous ﬂuctuation at frequency f in one turbine 1 et gy )
1 T 1| =z
PDF”+ owtz(x):— VOSIJS\/EUl(f) PDFl‘f’Jr(f)\(x): 9 eXp|—3
[Br()e™ 1] 202 — ! o1 (f) 2{oy(f)
. P;*(f) is a complex Gaussian random variable
2 turbines 1 2 L
in the wind PDE . f)\ = vV 0<z<~2 a,(f) with zero mean and standard deviation oy (f),
farm, ”\IQUz(f) - 7T oy(f) = V2 ou(f)
statistically = -
uncorrelated o5(f) = ‘Pl+(f)‘ =2 i(f) B (f) ~CN (0 2 il )
Br() = ~20,(f) 2 0,(f) P, (t)=Re[B}(f) e ] ~ N(0,v20,(
_'+z ( . PDFﬁ+(ﬂ8_;2ﬁft(m) = 2—21m EllipticK 2 2,f() e[ 2 (f)@ ( 0'1 )
EXD+5 () i i |:v| z ‘P;(f)‘ ~ Rayleigh((), V2 al(f))
. ﬁj\f (f) is (or converges to) a complex Gaussian random variable with zero mean and
stdev. crN(f):\/Nal(f) :
= P{(f) ~ CN (0, VN o,()));
= Re[lf"J\J[r (f)] and Im[f’gf (f)] are independents with normal distribution: N (O, JN o, (f )) ;
* The instantaneous uncorrelated fluctuation amplitude density at frequency fis:
N turbines |, =
BY(f) ~ Rayleigh(N'N
o BV ~ Rayleigh (YN o(9))
farm, = The mean fluctuation amplitude density is (| P () =v2 oy (HV7/2 =1.253VN oy(f)
statistically .
uncorrelated = The mean fluctuation amplitude density squared is | Py (f)? ~ Ezponential (2 N o( f)) }
(N> 4)
* The instantaneous uncorrelated fluctuation density at freq. fis
N = —g2nft
Bih = | Py 0=Re|Py(N) e |~ N (0,VN o,(f)
N -
_ B fon 1/ =
22:1 » The variance of instantaneous power output in time interval 7' is f T’l %<\PAT (NP >df
* The one-sided power spectral density of the wind farm fluctuation is PSD; (H=02(f)
N
« If the real power of the turbine cluster is filtered with an ideal narrowband filter tuned at frequency fand
bandwidth Af, then the average RMS value of the filtered signal is o, (f)y NAf and the average amplitude of
the oscillations is o, (f)}y NAf-7/2 .
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Since turbine clusters are usually not negatively correlated,
then the following inequality is valid:

VN SIS N (171)

The squared modulus of the admittance J(f) is
conveniently estimated from the PSD of the turbine cluster
and a representative turbine using the cross-correlation
method and discarding the phase information [179]:

PSDpy,...(f)  PSD,, . ()  PSD_, . (f)
Jg(f): Pf /():NZ turb,c N turb,unc
PSD Pturb(f ) PSD, turh(f ) PSD, mn-b(f )

If the PSD of a representative turbine, PSDp,, ,(f), and
the PSD of the farm PSDp, (f) is available, the
components PSD, ., . (f) and PSD,, . (f) can be

estimated from (168) and (169) provided the behaviour of the
turbines is similar.

(172)

At f < 0,01 Hz, fluctuations are mainly correlated due to
slow weather dynamics, PSD, , ....(f) < PSD, , . (f),and
the slow fluctuations scale proportionally PSDp, . (f)
~N 2P‘S”Dmb_m,(f). At high frequencies f>0,01 Hz,
individual fluctuations are statistically independent,
PSDtm,bymw,T(f) > PSDWb‘CW(f), and fast fluctuations are
partially attenuated, PSDPMm( f) =N-PSD, , . (f).

An analogous procedure can be replicated to sum
fluctuations of wind farms of a geographical area, obtaining
the correlated PSD,on o) and uncorrelated
PSD, o uncore(f)  components. The main difference in the
regional model —apart from the scattered spatial region and
the different turbine models— is that wind farms must be
normalized and an average farm model must be estimated for
reference. Therefore, the average farm behaviour is a
weighted average of individual farms [180] with lower
characteristic frequencies. Recall that if hourly or even slower
fluctuations are studied, meteorological dynamics are
dominant and other approaches are more suitable.

4.4.3. Estimation of wind farm power
admittance

In the previous sections, the equivalent farm squared wind
has been derived assuming that equivalent squared wind is a
multivariate Gaussian process with spectral covariance matrix
EUZGq(f ) .

According to (99), wind farm admittance J(f) can be
estimated from the equivalent farm squared wind (115) or

from the equivalent farm wind (121). (173)
J ( f) ~ PS DPfarm (f ) _ Q farm PS‘DTfamn (f ) _
PS. ‘DPturbmf (f ) Qfmb PSDTturbine (f )

1
_ <§p”7T7TQfﬂ7”m RfUTmN C ( farm? )\farm)> PSDUzeq’fm,m (f)
<§p(m 7TQtwbRtmbC ( turb? )\turb) > PSDUQr%q,turb (f)

In a wind farm with turbines of the same model and
functioning at similar operational points:

Qfa””’” - ( th‘”-i >tu7>bimzs = (174)

Afm“m: < >\7 >tu7*bm,cs: )\ (175)
efarm = ( 97 >turbineb‘: 0 (176)

2 — D2
Rf‘”’” < Rl >tm’b17nes =R (177)

Cl (ef‘””’”’ /\far‘m) - < Cq'ri(eﬂ )\L) >tu7‘b7’nes (178)
3 1
507y = 2B N CYONPIDy o)
3
Q R C (07 )‘) P SDU 2eq,turb (f)

turb” “turb
:N-Cq(e,)\) PSD e, fmn(f) PSDUZ% f{mn(f

Cq (67 )‘) PSDU:)eqﬁturb(f) PSDUzeq.,tm‘b(f

=C,(6,\)

(179)

=N

If all the turbines experience similar equivalent squared
wind  spectra, ie.  PSDp,, (f) = PSDys, (f),  then
approximation (116) is valid and the following ratio can be
computed:

PSDUZeq,twb (f) N2 i=1 =1 77]

where 57;-]- (f) is the complex coherence of effective quadratic
turbulence at frequency f and at turbines ¢ and j.

(180)

Therefore, the wind farm power admittance J(f) is the
sum of the complex coherence of effective quadratic
turbulence among turbines:

S SRRt

As stated in (120), the equivalent turbulence and effective
quadratic coherence are roughly equivalent, % (f) = 3;(f),
provided the second-order approximations (93) and (118)
are valid.

Thus, the admittance J(f) can be estimated as
PSD oy ared ) TPSD oy 1umin ), the smoothing factor of the
area (132). For the rectangular region shown in Fig. 51, the
admittance is:

(181)

lon, q f
<Uw7ﬁ77,d >

A

» “Tlong

b
J(f)w@[< o f]fg (182)

Uwind >

4.5. Parameterization of the power
output spectrum

The actual spectrum of power from a wind turbine depends
on many parameters such as turbine technology and wind
regime. Kaimal (11) and Von Karman (14) wind turbulence
spectra corresponds to a low pass filter of fractional order r
=5/6 and cut-off frequency related to the integral time [153].
The peak of wind PSD has a characteristic time usually in the
order of minutes and the turbine dynamics are negligible at
such slow frequencies (a quasi-static approach can be precise
enough in most cases).

A simple model (183) will be used to characterize power
fluctuations in partial load generation from the grid point of
view. It will be used also to compare spectrum main
characteristic of spectra available in the literature.

PSD,(f) = (E2(H) = %H' () C(f)  (183)

where either PSD,(f) or <Pf( f)> are the two-sided PSD
of the turbine or the farm real power. The factor % has been
introduced since PSD,(f) is the two-sided PSD and H"(f)
corresponds to one- s1ded T ]presentation (f > 0). The one-
sided representation of H7(/) have been selected to compare
more easily the parameters from the literature, where one-
sided plots are the standard for real signals and because only
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positive frequencies are customarily considered in transfer
functions.

H™(f) is the smooth part of the PSD due to turbulence
and G(f) is the squared gain which models the periodic
components (PSD peaks at f;,4. and its harmonics). G(f)
can be understood as the squared module of a filter bank that
amplifies turbulence at some characteristic frequencies (blade
frequency, tower resonance frequency, etc.) to match
experimental data.

H'(f) can be parameterized approximately in the range
from milihertzs to 35 Hz as:

1

S+ (8 )
H* =P |——"=7
(f)=F g

where 7, f, f, and P’ are parameters adjusted from
experimental PSD.

(184)

The PSD of real or reactive power output has several
components:

e Output of a system of fractional order r’ slightly usually
bigger than unity (1 < r’< 1,75). The slope of |H(f)| in
a double logarithmic plot at mid frequencies (10> Hz < f
< 10 Hz) is r’ In all measurements and in almost all
analyzed references, the order of power output is superior
to the usual wind order r’ =5/6 = 0,833 from von
Karman, Davenport or Kaimal PSDs. This indicates that
the turbines attenuate wind oscillations of high
frequency.

e The cut-off frequency f; = 1/7; indicates the transition of
constant PSD to the constant slope 1/(27) in a double
logarithm plot. Frequency f;is usually in the range of
milihertzs (first time constant 7; is in the range of
minutes). If PSD has a constant slope in low and middle
frequencies, f; = 0.

e The scale factor is P3. At 1 Hz, the PSD is
approximately P’ and at very low frequencies, PSD is
approximately constant with value P’ f™".

e In some turbines, the PSD is approximately constant at
frequencies higher than f,. At f>> f the noise floor is
B- f2’2’. If PSD decays with the same slope in a double
logarithmic plot at middle and higher frequencies, the
noise floor is negligible and the second time constant is
very small, 7, = 1/f, ~ 0.

Since 1 <r’< 1,75, H(f) can be approximated for f>>f

(i.e., f> 107 Hz) by:

+ ~ —2r
H(f) = R +F
where 7 &~ r’ is the approximate order of the system and it
can be computed as the slope of |H(f)| in a double
logarithmic plot at mid frequencies, f; < f< f,. If PSD remains
approximately constant at high frequencies, the value of noise
floor for frequencies between f,=1/7, and 35 Hz

(maximum frequency of interest in flicker analysis) is

Py~ (2"-1) Py

The deviation of the actual system from the spectrum trend
is modeled as a multiplicative factor G(f), which can be
considered approximately unity except at blade frequency
fotade = 3frotor = 3p (for a rotor with three blades) and its
harmonics. G(f) is significantly above unity at frequencies

f where the system presents a periodic pattern. If turbine

(185)

dynamics and its control damp fluctuations of some
frequency range, G(f) is bellow unity at those frequencies.

PSD shows peaks at blade frequency ( fuq.=
3Q ., /2m)=3p for a rotor with three blades) and its
harmonics due to wind shear and aerodynamic effects as the
blades pass in front of the tower.

Exact frequency of fluctuations can be very important for
avoiding mechanical resonance modes in the design of a wind
turbine, but they play a secondary role in the grid. The main
power quality concern due to fluctuations is flicker level.
Since weighting filter on flickermeter varies smoothly with
frequency, the frequency value of is not as important as in
mechanical resonance studies. Moreover, the PSD shows
some wide peaks at blade frequency harmonics indicating
modulation (i.e., periodic fluctuations have actually variable
frequency and amplitude). A simplified admittance function
G(f) with a few harmonics of blade frequency f4. can
have enough precision in most cases: (186)

G(f) =1 + ng(S (f - k-ﬁ)lade) ~
k

(P))’ :
~ 1+T5(f)+91 & ~thiade) + 95~ =3 y10ac)
1
where ¢ is the delta of Dirac function. G(f) concentrates the
accumulated relative error of H(f) at the center of the
frequency band (k — ) fy10de < f <k + %) lhiade - If the
modulation of the fluctuations needs to be represented, then
&(f—fyieqe) can be replaced by a notch filter such as:

‘ 2/ 7
o f— ~ L 187
(f -ﬁ)lade) BandT/I%iT(;tLh—»O (f2 — f 2)2 ( )
14 blade
Band Width- f*

where the bandwidth parameter (in Hertz) controls the
modulation of the fluctuations.

The delta impulse at origin is due to the mean value of

power, (P(t)). The rest of terms can be estimated with the
following expression:

(k‘l’%)fl;ladf (k+%>fz‘)ladf
2 PSD,(f)df — HH P\
‘/;k*%)ﬁmm P df f;k, i, T

H+ (k fi;lade )
where the factor 2 is due that PSD,(f) is the two-sided PSD
—simmetric respect origin—, integration limits corresponds

only to positive frequencies and g, corresponds to one-sided
representation (k>0).

g = (188)

At full load generation, wind fluctuations of frequencies
bellow 0,05 Hz are strongly attenuated in electrical power
output. Recall that frequency analysis must be used with care
because wind is a stationary stochastic process only if
meteorological conditions do not vary significantly. In
general, parameters P, P, r, 7y, 7, and g;; must be
estimated for the fundamental operational modes of the
turbines. Since the turbine dynamics at very low frequencies
is driven by the meteorological evolution where operational
conditions do change, non-lincar models can be more
appropriate to model very slow changes.
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4.5.1. Estimation of power variance
during a time interval

Often, the variance is computed not from instantaneous
power but from mean averages integrated during a short
period At multiple of half grid period. Since the available
data in this work is measured based on half grid periods, then
the corresponding Nyquist frequency is fy,,.c = 1/(2A) <
fyie- The maximum frequency considered in the flicker
standard IEC 61000-4-15 [181] is 35 Hz. Power oscillations
of frequency higher than the network frequency (f,,,/~=50 or 60
Hz) has negligible influence in flicker and it can be
considered as waveform distortions (their interaction with the
grid is different than slower fluctuations).

The variance of power computed during a time interval T’
from data recorded each At seconds can be computed from
(185) and (186) through Parseval's theorem, assuming that
fluctuations of different frequencies f > 0,01 Hz typically
have uncorrelated phases:

UPTAt_Qf/AtPSD df f/AtH+

T27 1_2At 2r—1 1
%+P [__
r —

f)df ~
(189)
~h

2
oAl T +ng HE (K fyjgq)

where 2 factor has been included since PSD,(f) is two-
sided and only positive frequencies are considered in the
integral limits. If O'P r.a; 18 computed directly from discrete
PSD,(f), take into account that the integral transforms into
a sum, DC term should be excluded and Nyquist frequency
should be accounted only once (without the 2 factor).

If the model is extrapolated up to the maximum frequency
of interest f, ,,, the variance of power can be estimated as:

2r—1 1-2r
T _f_;;rid

o 1 +P2[-f;]7'id_

Taking into account the actual uncertainty of estimated

1
= [ 9 H (k£ (190)

2 o
Opr™ A

B

parameters P, P, rand g, and the fact that fg,,id>> T, the
following approximate expression is suitable:
T2r 1 )
UE’T ~ P — +med+zgsz+(ngmdc) (191)
k

Since wind evolves due to meteorological dynamics, wind
is not a truly stationary stochastic process. The weather
evolution increases the variance in power output. In fact, if P,
has been estimated from raw power output (without de-
trending the weather evolution), formulas (190) and (191)
include variance due to meteorological dynamics. If weather
forecast is employed as an input of the variability model, the
variance due to the unpredictable component of the wind (i.e.
stochastic wind turbulence) and foreseeable wind evolution
(i.e., slow weather evolution) should be accounted separately.
In fact, this approach improves the estimation of P, and the
turbulence length of the wind in Kaimal and von Karman
turbulence models. In [182], a method to detrend turbulence
and weather evolution in measured wind variance is presented
(a similar approach can be used for power output data).

Since fluctuations of different frequencies typically have
uncorrelated phases during continuous operation, the variance
of instantaneous power is half the integral of the power
spectrum. In other words, the expected variance of
instantaneous power is half the area beneath the PSD plot in

linear axis plot. Moreover, the linear averaging of power
spectrum (used to estimate the PSD) does not change the
variability of instantaneous power.

The value and bandwidth of PSD peaks are influenced by
frequency resolution, recorded signal, window function and
the estimation method (Welch’s periodogram, ARIMA
models, etc). Fortunately, the wvariability content in a
frequency band has lower uncertainty than the PSD
estimation at a single frequency.

For time spans of minutes or smaller, the fluctuations of
different turbines are highly uncorrelated and the PSD of the
turbines sums the wind farm PSD (i.e., the PSD in p.u. units
of turbines and the farm is the same at f> 0.001 Hz).

For time spans of quarters of hour (f<0.001 Hz), the
fluctuations of turbines inside a farm are quite correlated and
the simple spectrum of the turbines (i.e., the modulus of the
Fourier transform of the instantaneous power) sums the
simple spectrum of the farm.

If all the phasors had had the same angles, the standard
deviation of instantaneous power would have been half the
integral of the simple spectrum. In such case, the frequency
analysis would have been based on the spectrum modulus
instead of the PSD. Measurements have shown that the angles
of phasors are significantly correlated only at the tripping of
turbines or wind farms or at very low frequencies (for
example, in a gradual weather change leading to the evolution
from no generation to full generation or the reverse).
Fluctuations of very low frequency are related to
meteorological dynamics, which are out of the scope of this
work. Abrupt changes of instantaneous power will be studied
in time domain with Markov chains in the following chapter.

In conclusion, the PSD is a consistent estimator of wind
power variability for the time span of interest.

4.6. Estimation of parameters from
measured data

4.6.1. General features of measured
data

The smoothed periodogram (module averaged Power
Spectrum Density) has proved suitable PSD estimator. There
is a trade-off between removing noise and frequency
resolution, but a data record of several minutes measured at
50 Hz is usually enough to obtain a good PSD estimation.

The PSD of the wind agrees, up to some extent, to the
usual Kaimal wind spectra (i.e., system order ~ */).

Slow fluctuations are prevalent in the turbine power (the
spectrum quickly decreases at frequencies beyond f,,,,. since
both wind spectra decreases and turbine dynamics act as a
low-pass filter). The fluctuations do not have a narrow
frequency margin; they are spread in wide frequency bands.

Even though rotor torque at low-speed shaft has strong
periodic components due to rotor position (see Fig. 311), this
modulation is largely filtered by the gearbox, the drive train
and the generator dynamics. The resulting power fluctuations
have neither the characteristic shape of Fig. 311 nor a true
periodic signal. The fluctuations in power vary their
frequency and amplitude slowly, probably because the
randomness of the wind interacts with turbine resonance
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modes of frequency similar to blade frequency (interference
of two oscillations of similar frequency). The rotor speed of
the turbines varies slightly and the sum of the fluctuations due
to turbine modes and blade frequency modulates
instantaneous power output (see for example Fig. 190). The
PSD of power show peaks at rotor and tower resonance
frequencies and their harmonics (see Fig. 205 and Fig. 206).
In some turbines, sub-harmonic %5 (f= 2f,,,), sub-harmonic
Vs (f = */3f.00r), and sub-harmonic '3 (f = f.,), have been
found, probably related misalignments in the blades and
excitation of low frequency turbine oscillation modes.

Superposed to the almost periodic component, there are
random variations due to wind turbulence that can be
identified as the background spectrum trend after removal of
cyclical oscillations. The power output PSD background
corresponds to a system of fractional order between 1 and 2.

The switching events can be clearly noticed in the WT, but
the effect in the substation of the park is quite weak. This is
mainly due to the independent operation of the WT in a farm
and the diverse wind conditions that each WT experiences.
Thus, if switching events are fast enough, there is low
probability that more than two turbines are connecting their
generators at the same time.

There is a small probability of resonance or turbine
synchronization along a wind farm. A time-frequency
analysis has been performed to detect a possible resonance.
Some methods with large time-frequency resolution as
Wigner-Ville Distribution (WVD) and S-Method (SM) have
been tested, but they generate cross-terms because of the wide
range of frequencies in the signal. In fact, the Short Fast
Fourier Transform (SFFT) is the method more stable and less
influenced by cross-terms of the tested techniques. In the
SFFT, the Fourier Transform is applied to a small window of
the signal. If a frequency appears remarkably perceptible in
the correlogram, an eventual resonance of that frequency has
happened during that elapse. Finally, some examples of the
application of the time-frequency analysis to wind power are
shown in this chapter using SFFT.

4.6.2. Procedure to estimate model
parameters

The adjustment of parameters of the model (184) is
somewhat subjective, since the standard least square fitting
method overweight frequencies where PSD is bigger and
where the spectrum has more points per decade. Generally,
low frequency deviations have more influence in total fit
error.

Several fitting methods have been tested for fitting P;’, 7,
f, and £, whilst minimizing >_g,” using standard mathematical
tools. One method has been developed based on the manual
fit procedure (see Fig. 58). This procedure is quite simple and
it gives reasonable performance for the estimation of P,’, 7’
although the estimation of f, and f, can be further improved.

Sample PSD,*(f) units are effective square Watts per
Hertz and it is plotted in light gray (see Fig. 187). The term
effective or rms refers to the fact that the integral bellow the
PSD,(f) is the signal variance according to (192). These
units are consistent with the effective or rms values of
voltages and currents.

[ Initial guesses for f; ~0.01 Hz and f,~ 15 Hz. ]

v

Estimate P,’and r’ from low-frequency data
through the exponential fit:
PSD*(f)=P, Exp(r )

L+ (f/h)

fl 2 4 f2
and weighting proportional to 1/f

where 7= Ln V 0<f<fraae/ 2

(only low-frequency data is considered)

v

Estimate f; from very low-frequency data through
the linear fit y=a + b z
where f,=Va, z = f”?and

1/r'

1
y= y
L+ (f/h)
Vv 0< f<0.02 Hz (only very low frequencies are

PSD* (/)

'

i

considered for estimating f;)

A
Estimate f, from high-frequency data through the
linear fity=a + b
where f,=1/Vb, z = f*and

1
y=(f+£) PSD—T(f) -

1
YV f> 5 Hz (only high frequencies are considered

for estimating f;)

Refine fitting? Yes

Fig. 58: Basic procedure for estimating P,’, 7°, f; and f,.

The running average of PSD,’(f) is the smoothed
periodogram and it is ploted in black. The average blade
frequency is indicated in vertical yellow line. Red line is the
model (184) (the output of a system of fractional order r
between 1 to 1,75 with a zero and a pole excited by white
noise). In the cases analized, the frequency of the pole is
generally in the range f; < 102~10° Hz and the zero
frequency is usually f, 2 7 Hz.

On the one hand, the zero characterizes the frequency
where the spectrum no longer decreases, i.e. the noise floor of
the spectrum (if there is no noise floor, then f, o). Since the
noise floor is quite small, it is influenced by the measurement
accuracy.

On the other hand, the pole characterizes the frequency
where the spectrum starts decreasing. Since it occurs at very
low frequencies, it is biased by the duration of the sample. If
Ji £ Nguootning/ T, where T is the duration of the sample and
Nipootming 18 the effective number of samples in the smoothing

filter applied to the spectrum to decrease its uncertainty, then
the estimate of f; is unreliable and only upper bound of f; can
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be given. In the cases presented in this section, 7' is from
200s to 800 s and the effective smoothing is N,,min™
0,443-20 = 8,86 samples (cut-off frequency of a moving
average of 20 samples, in sample units). Therefore, pole
frequencies bellow 0,01 to 0,04 Hz (depending on the sample

duration) cannot be estimated from these short samples.

However, f; can be estimated from data of lower time
resolution but with longer duration records. During the
measuring campaign, only the average values of one or two
second spans were recorded during several days due to
storage limitations. These records allows to study very low
frequency behaviour, up to the Nyquist frequency (0,5 or
0,25 Hz). For very long series, the number of samples in the
original series is very big and special techniques may be
applied to avoid running out of memory while the PSD is
being estimated. Note also that very long records can include
meteorological changes and different operational modes of
the turbine (these features will be analyzed in the last
chapter).

A dark blue line is added sometimes to indicate the
variance U%’T. / of the signal filtered up to frequency f.

f

U%,T,f = 1/TPSD;(f)df (192)
Sometimes, a green line is added to indicate the
accumulated error of the model from frequency f up to the

Nyquist frequency (25 Hz). (193)

accumulated error :ff%AtPSD}'(f) df —ff%m H(f)df

In PSD plots such as Fig. 187, the bar chart are the values
of ¢, V k>0 computed from (188) and the color of the bar
indicates that g, is positive (red) or negative (blue).

4.7. Estimation of parameters from the
literature

A literature review on experimental data of power output
PSD from wind turbines or wind farms are presented. In most
cases, the fluctuation level S)can not be computed from the
literature data. Recall that many papers show the discrete
Fourier Transform of real power, which is essentially the
squared root of the PSD times the frequency resolution Af . If
Af is not stated, the PSD normalization constant is
unknown. In other cases, the units of PSD are not pointed out.
Even though the PSD depends on the employed estimation
method —specially its peak values at periodic frequencies—,
the power content in a frequency band is less sensible and
therefore, suitable for comparing fluctuations at different
locations.

Table III shows the adjusted parameters of (183) from
measurements taken by the author or estimated from the
references. Unfortunately, there is not enough information in
most references to estimate S;, f; or the interval variance of
power a%,T .

Finally, recall that the turbine or farm can be approximated
by a system with transfer function S(f) excited with white
noise of unity variance plus a unity DC component.

4.8. Conclusions

In the former chapters, the wind has been analyzed to
estimate the variations of aerodynamic torque. However, the
aerodynamic torque interacts with the structural and drive-
train vibrations. Consequently, the power injected in the grid
has a stochastic nature even in total absence of turbulence.

There are many specific characteristics that impact notably
in the power fluctuations between the first tower frequency
(usually some tenths of Hertzs) and the grid frequency. The
realistic reproduction of power fluctuations needs a
comprehensive model of each turbine, that is usually
confidential and private.

One contribution of this chapter is the experimental
characterization of the power fluctuations of three
commercial turbines with a multipurpose data logger
designed and installed by the author of this thesis. This
multipurpose data logger has posteriorly evolved into a
commercial product called AIRE (Analizador Integral de
Recursos Energéticos).

The variations of power during the continuous operation of
turbines are measured and experimentally characterized for
timescales in the range of minutes to fractions of seconds.
Some experimental measurements in the joint time-frequency
domain are presented to test the mathematical model of the
fluctuations.

The admittance of the wind farm is defined as the ratio of
the oscillations from a wind farm compared to the
fluctuations from a single turbine, representative of the
operation of the turbines in the farm. The partial cancellation
of power fluctuations in a wind farm are estimated from the
ratio of the farm fluctuation relative to the fluctuation of one
representative turbine. Some stochastic models are derived in
the frequency domain to link the overall behaviour of a large
number of wind turbines from the operation of a single
turbine.

A literature review on Power Spectral Densities (PSD) and
periodograms (averaged spectrum) of wind power are
presented. The variability of PSD is also studied, a step ahead
from the literature, in the joint time-frequency domain
through spectrograms.
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TABLE III: COMPARISON OF SPECTRUM PARAMETERS OF POWER OUTPUT

Source 51 R Ty (s) Remarks
(kW</Hz)
[52], NM-750 kW, SCIG 1,35 1410° 0 Fixed speed, stall regulated turbine at Valdecuadros.
[52], Gamesa DFIG 640 kW 1,23 610° 0,5 Variable speed, pitch wind turbine at Remolinos, S; high
[52], 17 x 640 kW wind farm, Gamesa 123 10° 05 Remolinos wind farm with variable speed, pitch controlled
pitch contr. DFIG ’ ’ wind turbines, .S; high.
[52], 27x600 kW turbines, Vestas pitch 11 10° 0 Borja wind farm, pitch control and almost fixed speed
controlled VRIG ’ (opti-slip control), S; high.
[183], 5 x 500kW stall-regulated ~1.9 0 Bockstigen  stall-regulated offshore wind park with
offshore wind farm ’ variable speed turbines at low winds
[183], 5 x 500kW offshore ~1,6 0.2 Constant speed operation at medium or high winds
[184], 2,5 MW wind farm 0.63 0 Fixed speed operation.
operating at 500 kW, fixed speed ) Noticeable tower shadow pulsation.
[184], 2,5 MW wind farm 13 08 Good agreement also for r ~1 and 75=0. Anti-flicker
operating at 500 kW, variable speed ' ' algorithm avoids tower shadow pulsation
[185] 2x225 kW wind farm 1,03 Two 225 kW pitch-controlled turbines.
[186], 4 x 180 kW Alsvik wind farm 1* 0.24  vyinq = 14 m/s, low turbulence wind at Gotland
[186], 4 x 180 kW Alsvik wind farm 1,1* 0.24  vyina = 14 m/s, wake operation
[186], 4 x 180 kW Alsvik wind 1,15 0.24  vying ® 10 m/s, low turbulence wind
[187], 10 x 500 kW wind farm 1 0 Spectrum of real power, fixed-speed, stall-regulated
[187], 10 x 500 kW wind farm 0.86 0 Spectrum of reactive power, fixed-speed, stall-regulated
[188] 7 x 1.5 MW ENRONWIND EW 0.7~ 10- At full power, almost constant PSD from 0,05 Hz (at
offshore wind farm at Utgrunden 1.4 20 medium and low power, constant PSD from 0,1 Hz)
[189]7 x 1.5 MW ENRONWIND EW 15 Real and reactive power shows an almost linear
offshore wind farm at Utgrunden ) relationshipup to 17 Hz: AQ ~ AP /10
[152], MADE AE46/1, 660 kW 1 0 Stall regulated turbine, fixed speed, SCIG
£“11§9;0]5’ 2431 180 kW, Alsvik wind farm, ~1 0 Spectrum of real power. Generator fluctuations near 10 Hz.
[190], 4 x 180 kW ,Fig. 5.2 b) ~0,8 0 Stall regulated turbine, spectrum of reactive power at Alsvik.
[[43], 180 kW, constant speed, soft shaft 1.1 0 Soft shaft damps high frequency oscillations down
[43], 180 kW, constant speed, stiff shaft 1.1 3 Stiff shaft increases oscillations faster that 1 Hz
I[\}I?/IlZ]E)OO[/;th]urb?;e a£ 19931]]/’5 2 Mw, 13(1)47‘ ~158 0 Medium power operation (8~9 m/s)
‘[Lllrgblillje[ ;tg?; tgfi [v}/igrﬂjsf)el\f(;yg NM2000/72 12?4 ~16 0 Rated power operation (14~15 m/s)
[T447] 500 kW stall regulated turbine ~1,5 ~20 Constant speed, stall regulated wind turbine
[194] . ml}ltl-megawatt turbine, ~0.7 ~500 0 Simulation results without reference to real measurements
coordinated pitch controller
[194] multi-megawatt turbine, traditional Simulation results without reference to real measurements,
1 ~300 0 .
controller K, high.
[195], 2-bladed, teeter hub, down wind, 1,15~ 2530 0 PSD of the turbine operating in a wind-diesel autonomgus
stall controlled 11 kW turbine 1,24 system is 3 times bigger than operating connected to the grid.
[196], 500 kW fixed-speed, stall- 1.45 46 0 Wind farm and turbine power output shows a ~/N ratio
controlled wind turbine ’ ’ for f>0.07 Hz
p p 7
Lllgzg;lrselgl;lsa];d PSD (not experimentally 1,15 ;1119 i At high winds, PSD decreases in a factor of 10.
[47], 8 x 55 kW ENERCON-16 turbines 0.62 ~1§)'4’2 0 Wind farm and turbine fluctuations show ~/N ratio for
at Cuxhaven wind farm ' pu/Hz f>0.09 Hz and N ratio for /< 0.03 Hz
[198], 4 x 180 kW wind farm at Gotland 1,25 ~64 0,17  Spectrum of real power. Stall-regulated, fixed speed.
[198], 4 x 180 kW wind farm at Gotland  0.8~1 ~6.4 0 Spectrum of reactive power
[199], GE 3.6 MW, DFIG, pitch Spectrum of mechanical power at low winds
regulated 1.025 0 (not electrical power output)
[199], GE 3.6 MW, DFIG, pitch 16 0 Slow mechanical fluctuations are attenuated by constant
regulated ’ power control at high winds.

* The spectrum fit neither a single slope in the double —logarithmic plot nor a slope and a horizontal zone at high frequencies. The
value indicated is the mean slope, but they should be considered carefully.
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Chapter 5:

Almost Periodic Fluctuations

In The Time Domain

5.1. Blade angle difference among
turbines in a wind farm

The nature of turbulence and vibrations are different. The
equivalent wind fluctuations due to the turbulence are
broadband stochastic processes with no characteristic
frequencies. However, vibrations and electrical oscillations
are almost cyclostationary stochastic processes, usually with
several noticeable narrowband components.

The influence of blade position in a single turbine power
output has been analyzed in the annex C and in the literature
[43, 44, 81, 154, 207, 208]. The almost determinist behaviour
used in the annex C and in the reference does not represent
the real stochastic nature of the turbine torque, that is the
outcome of many random vibrations, most of them fueled by
the rotor spining. Moreover, the electrical system interacts
with the mecanical vibrations, damping some frequencies and
introducing new oscillations.

This chapter focuses on the instantaneous overall effect in
a cluster of turbines, assuming a deterministic behaviour of
the turbine torque or power, which is a more conservative
than actual random fluctuations. In any case, it will be
derived that the sum of the power variations from more than
four turbines converges approximately to a Gaussian process
despite of the process nature (deterministic, stochastic,
broadband or narrowband), analogously to the martingale
central limit theorem. The only required condition is the
negligible effect of synchronization forces among turbine
oscillations.

According to [159], a very steady and very uniformly
distributed wind together with a weak electrical network is
necessary for synchronisation to happen driven by voltage
drops. Experimental measurements [52] have corroborated
that the synchronisation of the blades is unusual. In addition,
the spectral model of the turbulence (128) showed that wind
fluctuations at the frequency of the blades crosses the tower
can be considered independent because it is much higher than
Joutsar @04 F 5, » defined in (134) to (136),.

If the synchronization forces are negligible, the cyclic
uncorrelated fluctuations due to rotor position have random
phases. As wind characteristics are similar inside the farm,
the magnitude of the cyclic components would be similar in
all turbines. The angle (or phase) difference between blades
of turbines 7 and j is ¢; ;/3 and it is uniformly distributed in
[—m,+7]. Therefore, phase difference of harmonic & in
turbines ¢ and j is k ¢; ; , which is also uniformly distributed
in [—m,+7].

The frequency decomposition poses the burden of
computing phase relationships and time-domain approaches
are advantageous. However, they are closely related and some
interesting results will be derived. For example, the
approximate flicker emission of a wind farm is derived from
measurements of a single turbine.

5.2. Tower shadow and wind shear
effect in the wind farm power

In the third chapter, a method to compute the relation of
blade angle on rotor torque has been computed -see for
example Fig. 311. The interaction between the rotor torque
fluctuations and the turbine is very complex and a thorough
model of the turbine, generator and control system is needed
for simulating the influence of wind turbulence in power
output. The control scheme and its optimized parameters are
proprietary and difficult to obtain from manufacturers and
complex to guess from measurements usually available.

This chapter is focused in almost periodic variations of
power in the time domain, such as the blade shadow, from a
phenomenological point of view.

Both current and power are straightforward related to
power quality. Current is transformed and its level depends
on transformer ratio and actual network voltage. In contrast,
power flows along transformers and networks without being
altered except for some efficiency losses in the elements.
Since real and reactive power is less affected by the factors
external to the self turbines, the parameters selected to
characterize the electrical output of wind turbines are the real
and reactive power. Notwithstanding this fact, the model is
also applicable to the rotor torque in case the drivetrain and
generator can be assimilated to a linear, time-invariant
dynamic system.

The power dips due to blade position will be represented
by negative pulses in real power. Since all blade angles are
equally probable, the pulse is distributed uniformly in time ¢
€ [0, T7, where T is the period of the pulses (the period in
Fig. 59is T'=1s).

For a turbine of three blades, the period in seconds is
T=20/9,,, , where §_, is the rotor in r.p.m. and the
conversion factor is 60 s/min divided by 3 blades in the rotor,
equal to 20 blades/r.p.m. The effective period of a wind farm
—whose turbines can have different 2, — is the average of
the periods of its turbines.

rotor

Since the occurrence of pulses is not correlated, usual
techniques for the computation of the sum of identically
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distributed independent random variables are applicable.
They involve iterative computation of convolutions or the
inverse Fourier transform of the characteristic function to the
power N.

0.98 r

0.96

Power output (p.u.)

0 0.5 1
Time (s)

1.5 2

Fig. 59: Power output at a single turbine with blade rate 1 Hz, depth of tower
shadow <= 0,06 p.u. and average power loss = ¢ T / T =0,0075 p.u. (the
power dip shapes are rectangular, triangular and Gaussian).

TABLE IV: PROCESS OF COMPUTING THE DISTRIBUTION OF FLUCTUATIONS IN
A WIND FARM DUE TO TOWER SHADOW.

1. Compute the PDF of the pulse.
2. Compute continuous Fourier transform of the PDF.
(bpulse (f) =¥ { PDFpulse (y)}

3. Compute the PDF of the wind farm as the inverse Fourier
transform of the PDF Fourier transform to the power N,
¢Wind farm (f) = [¢1)ulse (f)]N (N: the number of
turbines in the wind farm).

4. Quantify the power quality of the wind farm from its
PDF.

PDFindtam (y) = F' {¢wind farm (f )}

Note that F,,..(f) is the conjugate of the characteristic
function of the pulse distribution, ¢(f). Note also that
F{PDEF,,1..(y)} can only be computed analytically in a few
cases.

The pulse will be characterized by its energy loss o T
(area between power pulse and unperturbed power) and its
maximum depth cv .

Tower shadow of shapes rectangular, triangular, cosine and
Gaussian have been compared to test the shape influence in
overall behaviour of the farm.

Ptllrbinc(t) = PO - fpulsc(t) (194)
|-
o|l-—| |t-p| < T
fpulseA(t): | | (T < T/2) (195)
0 |t-,u| >T
o) |t-,u| <T/2
f = T 196
pulseD(t !O |t'ﬂ| > T / ) (T < ) ( )
2
fgaussian pulse(t) = ae—(ﬁ(t_M/T) (U = T/ v 271—) (197)
St COS[M]] [t-p] < T
fcos pulse (t) = 2 T (198)
0 [t-p| > 7
Maz(fue(t)) = o (199)
n+T/2
Pulse Energy Loss= fufT/2 ouse (V)dt = a7 (200)

Pulse Energy Loss .
= —
time between pulses T

Average Power Loss= (201)
where o is the depth of the pulse, 7 is the characteristic width
and p is the time position of the pulse. For convenience, the
origin of time will be chosen in the center of the pulse (1=0).
Tower shadow duration is small, in the order of 1/8 of period
according to [50] and Fig. 311, because the solidity of the
blades and the tower radius are small. The torque pulse
depthdepends on the blade pitch, rotor speed and wind speed.
The power pulse depth, a, depends additionally on turbine
inertia, type and control of the generator.

5.2.1. Distribution of the fluctuation

The first step is the computation of the distribution of the
pulse. If the pulse is symmetrical about its mass center, its
PDF is the inverse function divided by half the pulse energy.
Then, the CDF can be computed, taking into account the
symmetry of the pulse and taking the positive branch (¢ >0)
of the inverse function of f,,..(%).

CDFpulse (y) = Pr[f ulse (t)<y] -

P
:PI‘[t> fpulse_1 (y)|0<t<T/2}

Assuming 0<t <T/2, 0<y<a and 1=0
(symmetric pulse centered in time origin), the general formula
is:

(202)

£ 1pulsc\/1:0 (y)

CDFpulsc (y):1 - T / 2

(203)

From (203), the distributions of fluctuations of a single
turbine due to triangular, rectangular and Gaussian pulses are:

CDFpulscA (y):]_ - w

T/2
27 27 (204)
= PDFpulseA(y):a_T +|1- T 5(y)

1 Yy >«

T T
CDF, @)= 1- - U+ Uly-0)=
— [ T] ) T ¥-0) 1-L0<y <a
T

T T
= PDFpulseD(y): 1-— 6(y) + ?6(?/ - Oé) (205)
7 |Ln(a/y)
DF,us =1- it VA
Pl W=7
(206)
T
= PDFyue () =——"
Zaussian T YN 7TL’I’L(O[ / y)

where U states for the Heaviside unit step function and 6 for
the delta of Dirac.

The characteristic function ¢(w) of this distribution is the
complex conjugate of the continuous Fourier transform of
PDFpulse(y) :

(z)turbme* (w) = j;) e_J o PDFpulse (y) dy

where the asterisk denotes complex conjugation and j denotes
the imaginary unit. Since the tangent of the pulse is horizontal
at some points (at least at the maximums and minimums),
PDE,s(y) contains essential singularities. Therefore, the
Fourier transform of PDF, . (y) should be computed
analytically.

(207)



Ch. 5: Almost Periodic Fluctuations in the Time Domain 65

The pulsating power of a wind farm with N turbines is the
sum of individual power pulses, supposed identically
distributed independent random events. The corresponding
characteristic function is ¢,pine” (W) = Guind farm (W) . Thus,
the PDF of the wind farm deviation can be computed as
inverse Fourier transform of the complex conjugate of
¢’wind f(m'm(w) : (208)

1 +00

PDFAPwmd /(er(y) = ﬂ

The characteristic function of a wind farm with rectangular
power dips shown at Fig. 59 corresponds to a binomial
distribution. This makes sense since the number of
simultaneous pulses in a wind farm is the probability of the
number of successes in a sequence of NN independent “pulse” /
“no pulse” experiments with success probability p = 7/ T
(the relative width of the pulse). Therefore, the instantaneous
fluctuation in the wind farm follows a Binomial distribution:

N T\u/ @ . \N-y/a
7 (-7)

y/a
N-y/a, y/a+1) (210)

CDFxpwind farmO (y) = Il—'r/T (
where I)_, 7 is the regularized incomplete beta function.

] o [¢L7lrb7n: (w)]N dw

(209)

PDFAPwind farmO (y) = [

Fig. 60 shows the CDF of the deviation of power output at
a wind farm due to tower shadow effect. Pulse sum (p.u.)is
the ratio of the experienced power deviation relative to the
maximum deviation which occurs when all tower shadows
happen simultaneously. As the number of turbines in the wind
farm increases, the relative deviation is more stable and it
tends to its average, (y) = a{y/a)=aNp.

l, x x x -

CDFwind farm [ V]
o o o
~ o ®

o
N

0 0.2 0.4 0.6 0.8 1

Relative farmm power fluctuation : y / N a
Fig. 60: CDF of pulses at a wind farms of 1, 3, 5, 10, 20 and 50 turbines
(starting from upper part at zero fluctuation). The parameters of the pulses
correspond to Fig. 59 and rectangular shape (p =7/ T = 0,125). The discrete
CDF (210) has been evaluated at midpoints to account that real pulses are
continuous and derivable.

The standard deviation of the wind farm power output y is:

T T
Oy = a0y, =Q /Np(l—p):afm T_l (211)

which scales with N instead of being proportional to the
number of turbines N. The probability of simultaneous tower
shadows events at most turbines is very low, as can be seen in

the figure, CDF,(3(y)) ~ The probability of
exceeding a certain amount of power dip is the
complementary CDF:

[ }pmd >y]:1' CDFAP};/md(y):IT[g—FL N_E] (212)
arm arm ? « «

The average power loss due to tower shadow is (y) (there
are exactly N pulses in a period 7).

w =7 0

Since turbine rotor angles are independent random
variables, the variance of wind farm power output due to

turbine blade position, 0112 , can be computed as: (214)

N
single ) dt = TOZT (213)

pulse

2
+T /2 1 p+7/2
tdt— | [ finge(t) dt
o =N\ 7y a0 [T 1 e
B
A 0.001
O
-
s
-q%i 0.00001
o
g 1.x107}
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e
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Fig. 61: Probability of farm output exceeding the normalized deviation y/N

« for farms with of 1, 3, 5, 10, 20 and 50 turbines as in the previous figure.

A) Numerical computation of tower shadow effect.

In most cases, integrals (207) and (208) cannot be
computed analytically. In such cases, the convolution can be
computed numerically through discrete FFT or numerical
integration.

Since  PDF,,.(¥) contains essential singularities
whichever shape it has, the spectrum does not vanish at high
frequencies and the numerical Fourier transform is not
accurate (only analytical transform is suitable). The
computation of N-fold convolution through repetitive direct
numerical integration also introduces significant errors at
essential discontinuities, aggravated by the iterative process
of calculus.

Thus, usual numerical methods to compute PDFyid tarm (V)
such as FFT and numerical integration introduce significant
errors. If the number of turbines is big, the distribution of
power output can be approximated by a normal distribution of
average power loss (213) and variance (214).

If the number of turbines is small, the second order
approximation can be not enough precise. The following
approach is based in the discretization of the pulse silhouette
into segments and it is valid even for small wind farms. A
rectangular pulse can be decomposed into two segments (up
and down). The number of turbines in the “down” state
follows a binomial distribution (the multinomial distribution
for two options). Therefore, the farm fluctuation is the pulse
height « times the number of turbines experiencing tower
shadow effect.

If the pulse is approximated by more piecewise segments,
the combinations of segments obey a multinomial distribution
instead a binomial distribution.

For instance, the turbine pulse of Fig. 62 is approximated
by tree segments (notice that for convenience, the shape has
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been inverted vertically to operate with usual pulses instead
of power dips). Therefore, the wind farm CDF of the power
deviation can be computed summing probabilities
corresponding to the combinations of segments which
generate an output bellow level y.

CDFAPwmd farm multinomial (y) =

Yy Yy
Yy Yo ) ) o (215)
— . n.. . Yy b g N ThTh
_Z 2[11,7,2,71—11—12]“1 ay” Gy
=0 i,=0
where the multinomial coefficient is:
n n!
o R 216
(21’7“2’" gl 7'2) il (n—i —iy)! (216)
! ! !
I .
I I !
! ! !
S ! ! !
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Fig. 62: Discretization of a pulse dip into tree segments taking the mass

center of each segment.
| |

Fig. 63: Discrete counterpart of the continuous pulse dip of Fig. 62. Notice
that the energy power loss (area beneath the pulse) of both pulses are the
same.

The discretization of a continuous pulse has the following
advantages:

e The computation of PDF, . (y) is avoided. Moreover, if
PDF,(y) is needed, it can be computed as the
probability mass function PMF,,.(y) of the segmented

pulse.

e Since a wind farm usually has more than 10 turbines, the
approximation of the continuous pulse shape with its
discrete counterpart does not introduce significant error.
Furthermore, the discrete CDF,q o (y) can be
interpolated to account that real pulses are, actually,
continuous and derivable, as in Fig. 60 or Fig. 61.

e The sums in (215) can be computed efficiently and the
CDF of the wind farm does neither degenerate nor loss
accuracy for wind farms with many turbines. In addition,
this algorithm is numerically stable since the essential
singularities are avoided.

e For wind farms with many turbines, the pulse shape can be
approximated to a rectangle with relatively small error in
CDEF, ;.4 jarm(y) because the shape of the turbine pulses is
blurred in the wind farm output (both distributions
converge for wind farms with increasing number of
turbines provided the two pulses has the same energy loss).
Therefore, a reduced number of segments are enough to
characterize the pulse shape.

o A similar method can be used to compute the distribution
of the power gradient. This can be helpful to assess the
variability of power output due to blade position instead of
the power deviation.

5.2.2. Rate of tower shadow events

The alignments of blades with their tower axis are [tower
shadow] events whose time occurrence can be modeled as a
stochastic process. The number of tower shadow events in the
period T'is the number of turbines in a wind farm, .

The event rate or event intensity A(t) is the number of
events per unit time and its average can be computed as 4, =
(A(t)) = N/ T since in one period exactly one blade of all
turbines of the wind farm passes in front of its tower
(provided all turbines were spinning approximately at the
same speed). The event rate A, can be thought of as the
probability that a blade alignment occurs in a specified
interval.

A) Prior probability distributions

Since there is no explicit time origin and there are no
appreciable synchronizing forces, the event can occur at any
instant with the same likelihood and /, is constant. This
implies that the time between consecutive events (called
interarrival times) are independent random variables. The
only interarrival time distribution with constant hazard rate is
the exponential. The waiting time At until the first
occurrence is a continuous random variable with an
exponential distribution (with parameter 4,). This probability
distribution may be deduced from the fact that

Pr(At, = Pr(N

interarrivial > t) 0 in interval (O,tD =

events

Mt
=€ o = 1- CDFExpmmntml(/\D)(t) (217)
For exponentially distributed events, the Poisson

distribution is the probability distribution of the number of
events that would occur within a preset time .

Pr(Noyents = k in interval (0,t]) =

—Xot k (218)
= PDFPoissmz(A“ f)(k) = #

The Erlang distribution describes the waiting time until £
tower shadow events have occurred when inter-event time is
distributed exponentially (the Erlang distribution is the
distribution of the sum of % independent identically
distributed random variables each having an exponential
scattering). The probability density function of the Erlang
random variable is:

Pr(Atwaitmg S 3 | N

events

= k) =

o (219)
= CDFErlang(k,)\u)(t) - H

where y(-) is the lower incomplete gamma function. The
probability density is:
ATt

PDFErlng(k-,)\o)(t) = (k — 1)!

(220)

B) Including periodicity in probability distributions
During normal operation, turbine speed fluctuates slightly.
Multi-megawatt turbines spin at €2, = 8~20 rpm, implying

rotor
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blade periods 7= 1~2,5 s. During a short time interval, the
turbine speed can be considered constant and the time interval
between two consecutive tower shadow events of the same
turbine is (approximately) 7. If all turbines of a wind farm
rotate at the same approximate speed €2, , each turbine
must experience one and only one tower shadow event in the
interval (0, 7] with uniform probability.

The implications of periodicity can be included in the
probability of the number of tower shadow events in a time
interval At using Bayes’ theorem, provided 0 < At < T
and 0 <k < N:

Pr(N, .. =kin (0,t]|N,... = Nin(0,T]) =
Pr(N,  =kin(0,t])-Pr(N  =Nin(0,T]| N, =kin(0,t])
a Pr(N,,.,. = N in (0,T])
B PDEpjison(n 1) (k)-P DFPoisson()\O(T—t))(N — k) B
- PDFPoz'sson(AO T) () ;
N " k " N—Fk
= i [?] [1—?] (221)

The PDF of the number of tower shadow events in an
interval ¢ is a binomial distribution of N trials, k events and
event probability p = ¢/T. (This equation is equivalent to
(209), where the pulse width 7has been replaced by the
interval time t, and the depth ratio of the power dip at the
farm y/a has been replaced by the number of pulses, k).

The probability density of the waiting time #, until the &"
occurrence can be computed using Bayes’ theorem, provided
O0<t<TandO<k<N:

PDF(waiting timet for kevents|N,,,...=N in (0,T])=
PDFwaiting time (t) .PDFwaz'tmg timc( T—t |Nevents:N in (0’ T] )
for k events N —F events

PDF

waiting time (T)

for N events
PDFErlang(k,)\o) (t) 'PDFErlang(ka,)\o)(T - t)

PDFPoisson()\ T) (N)

DR

The PDF of the waiting time ¢ resembles the binomial
distribution of N-2  trials, k-1 successes and success
probability p = ¢t/T, multiplied by a normalizing factor.

N _2 N—k-1

k-1

N -1
T

(222)

C) Evenly distributed tower shadow events

The interarrival time between pulses £ and k+1 will be
denoted At(k) = At,,,. The interarrival times are not
constant, but it has a mean value (A#(k)y = Ato= T/N.

The expected number of tower shadow occurrences during
the time unit is the inverse of the mean interarrival time,
Jo=1/Aty= N/T and 4 is also the average frequency of
occurrence, measured in hertz, and the average blade rate of
the wind farm. At an instant ¢ between pulses k and k+1, the
instantaneous frequency A(t) of tower shadow events at the
wind farm output can be computed as A(t) = 1/At,;,,. In
Poisson process theory [200], the event rate A(¢) is the
process parameter, whereas the interarrival time At(k) is an

outcome of the process. When the number of wind turbines is
big (N>T/7 or A, T > 1), the density of blade events A(¢) is
more significant than the interarrival time At ;. ;.

At an instant between pulses &k and k+1, the instantaneous
angular frequency w; of tower shadow at wind farm output
can be computed as w(t) =2 n A(t) = 2 n/At;,,. The
angular frequency will oscillate around its average value
(wi(t)y =2m A= 20N /T.

The spectrum of a time interval will show a somewhat
wide peak, revealing that tower shadow frequency is not
definite. Thus, the spectrum at the wind farm output will
resemble a frequency modulated signal of carrier frequency
f = /1().

If two blades are crossing the tower with a time delay 4
less than the pulse width 7, the averaged frequency will be
(wi(t)y = 2n (N-1) /T. Tower shadow events are considered
approximately simultaneous if A¢,,,, < 7and it can happen
several times during a period 7. If this phenomenon occur
several times in a period T, the averaged frequency will be
(wy(t)y =21 (N-k)/ T, where k is the number of approximately
simultaneous tower shadows in the period The probability of
A(t) < 1/ can be computed with the interarrival distribution
(217). In a wind farm with many turbines, £ can likely have
appreciable values.
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Fig. 64: Power output of 5 turbines with blade position uniformly

distributed. The parameters of the pulses correspond to Fig. 59 and Gaussian
shape.
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Fig. 65: Overall tower shadow effect at the wind farm output as the sum of
individual turbine power of Fig. 64.
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Fig. 66: Individual tower shadow pulses of Fig. 64 and their sum (notice the

diminution of fluctuation due to the smoothness of Gaussian pulses).
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Fig. 67: Individual tower shadow pulses of Fig. 64 with triangular shape and
their sum (notice that the fluctuation of the pulse sum increases with the
sharpness of individual fluctuations shape).
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Fig. 68: Individual tower shadow pulses of Fig. 64 with rectangular shape
and their sum (notice that rectangular pulse shape is the contour that
produces the most variable output at the wind farm).

D) Calculus of the instantaneous frequency harmonics
with evenly distributed pulses.

The continuous Fourier transform of a single pulse centred
in time origin and symmetric is:

Fsingle pulse (f ) =¥ { fpulse (t> } = f _tmt; fpulse (t)

tm

= 2f T e (t) cos(2mf t) dt

even symmetry

]27rftdt

(223)

The continuous transforms of the rectangular, triangular
and Gaussian shapes are:

F

1 pulse[:l (224)

2f acos(2nf t) d :W—fsm(wf )

B pusen () ZQITOé [l—m]cos(%rft) dt=
0 T
2al — cos(2mf T)] (225)
T eyt
- e
B glaussian H=2 j; Tae cos@rft)dt=aTe ™ i (226)
pulse

The frequency spectrum of the tower shadow can be
computed considering the sum of the wind farm as the
convolution of one pulse with a train of pulses (comb
function) at the interarrival time A rate. The convolution is
equivalent to multiplication of the Fourier transforms. The
transform of the tower shadow pulses at constant rate A s
another train of pulses at frequencies f = Am and
amplitude A pulse()\ m). Therefore, the coefficients c,, of

the new Fourier series are ¢, = 2\ F , (Am) [201].

= <wam> — icm cos(27r)\m t) +

*° Q. < jwt
+Re fo NS; (w )—i—(CN[ \/:Sdncorr(w)] e/ dw

(except shear and tower shadow)

P

e (1) (227)

Where :

<me~m > = mean power output. It includes the average power
loss due to wind shear and tower shadow (DC term
component of the Fourier series of tower shadow
undulation, ¢y /2=aT\).

A =A(t) = instantaneous blade rate of the wind farm. The
fluctuation of A(f) can be modelled as a modulation of the
tower shadow oscillation.

ingle pulse (A™) = continuous Fourier transform of a single,
centred pulse at frequency [ (t) = mA(f) .

=2\ F ..(Am) = coefficient m of the Fourier series or

the fluctuation at harmonic m of the blade rate. The tower

shadow fluctuation usually decrease with blade rate A, as

can be derived from (228).

2a

——sin ( TAT m) rectangular pulse

Tm

@
L R { 1—cos ( 2rATm )] triangular pulse (228)
emiAT
—7r()\ 'rm)2 .

2aT e gaussian pulse

cp= twice the average power loss due to tower shadow

events:
=2A f sm e
o0 pu se

=2 (Avemge Power Loss) —2a Ll
T

¢y = L1m F.

single pulse

t)dt=
(229)

Picor(f) = turbine power fluctuation at frequency f, corre-
lated with the rest of turbines in the wind farm. Its modu-
lus is the correlated component amplitude and its argu-

_, ment is the phase difference referred to the time origin.

Piuncorr(f)= turbine power fluctuation at frequency f,
uncorrelated with the rest of turbines in the wind farm.
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CN (O,W Piuncorr( f)) is a complex normal random
number with zero mean and standard deviation
JN Piuncorr(f) (i.e., the modulus follows a Rayleigh
distribution and the argument is uniformly distributed in [-
7T, +7)).

The tower shadow oscillation frequency (fig. (%)) scale
linearly with the number of turbines of a wind farm, but its
amplitude do not scale in factors N or ~/N . Rectangular
power pulses have Fourier coefficients that generally do not
increase with the number of turbines. Triangular power pulses
have Fourier coefficients that generally decrease with the
number of turbines since {(A(¢)) = N/ T. For some values of
A, the effect of wind shear and tower shadow is minimum
(for instance, Fy(w,(t)) = 0 when A\ = 2 T -rectangular
pulses- or A = 7 -triangular and rectangular pulses-).

Note that (wam >, A and P;(f) are parameters of a
stochastic process and their values varies according to the
system operation. The explicit dependence of time has been
dropped to simplify notation. Note also that N is the number
of turbines functioning, which can be different of the number
of installed turbines in the wind farm.

One important result of this section is that the effect of the
tower shadows at a wind farm can be eventually compensated
if the turbines could be controlled to distribute their rotor
angle evenly. However this is not practical because this
control would impose the same wind speed at all turbines.

5.2.3. Modulation of the pulse density at
the wind farm with randomly distributed
pulses.

When N>T/7 (or equivalently 4, 7 > 1), the effects due
to the sharp shape of the pulse diminish and the main contri-
bution to wind farm fluctuations is due to the possible con-
centration of tower shadow events in a part of the period 7.

In a real wind farm, the pulse rate A\ is not constant in the
period. Fundamental harmonic (m = 1) measures how much
the pulses are concentrated in half period. The order 2
harmonic (m = 2) measures if the tower shadow events
occurs preferably every 7/4 seconds.

The event density at a given time ¢ is A(¢) (this will be
used in the next subsection for computing the modulation of
power output).
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Fig. 69: Individual tower shadow pulses with Gaussian shape and random
blade position corresponding to a wind farm with N = 20 turbines spinning at
Q=20 rpm (1 blade/s).

A) Estimation of coefficients of Fourier series of random
pulses

Blade positions inside a turbine can be understand as ran-
dom. However, each 1/3 rotor revolution, a blade crosses the
tower. The rate of tower shadow pulses is the number of
blades divided by the mean rotor speed, A= blades / Q,y10, -
The instantaneous power due to tower shadow and wind shear
is periodic with period 7' = 1/ A. In general, the pulse is not
centred at the time origin and the Fourier coefficients will be
complex numbers except the DC component (term of zero
order).

If turbine speeds are equal, power is cyclic with period T
and there are N tower shadow events in each cycle. There-
fore, power can be decomposed in its Fourier series of
harmonics of fundamental angular frequency f, ,,=1/7 .
As power is a stochastic magnitude, the coefficients of
Fourier series are stochastic complex values (coefficients are
not real since instantaneous power is not symmetric with
respect to time origin).

]27rfl.)lade mt (230)

farm

= > Refe,
m=—0o0o

The distribution of the complex Fourier coefficients ¢, ,
m = 0, can be estimated taken into account that:

e Fourier transform is linear and, thus, the transform of wind
farm output is the sum of the transform of the individual
turbines:

27 ! Pllllﬁlnc z( Ml) } - ZZ 1J{ Furlgmc 7'( — Ky ) ] (231)

e The Fourier coefficient for a single turbine whose tower
shadow event coincides with time origin can be obtained
from the continuous Fourier transform of a single pulse,
centred in time origin, Fygie pulse (W -

2mm 2 2mm
2)\F:sin e(_) :_Fém ( ) 232
pu Sle T T pll% ( )

—

Cm Lm le turbme
w1t jpu ses at

e The tower shadow can occur at turbine ¢ at any time
1, with equal probability. Hence p, is uniformly distrib-
uted in the period [0, 7).

e The circular time shift property of Fourier transform
implies that { ulbeb } = e—jw g {fpuISES (t)} 5
where f;,.5(t) is the pulse traln centered in the time
origin, f,ses(f — 41;) is the pulse train displaced p, time
and w is the angular frequency.

turbine 7

¥ [fpulﬂcq (t - Mz)] = e*jw ng {fpulsc train centered (t)]’ (233)

n time origin
F fpul:ae:a (t - ,UJL) 5
turbine ¢

e  Therefore, the module of the Fourier transform of a
pulse is independent of its position and can be easily

=

(234)

in time origin

fpul:’e train centered( )]’

calculated:
2 2mm
o i, = 7| P (T)‘ )

e Since 4, is uniformly distributed in [0, T, the argument of
F{f mes(t —p;)} is also uniformly distributed in
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[-7,+7]. Thus, the angles 27y;/ T and 27w,/ T at which
pulses ¢ and £ occur are independent random variables.

Q%M ~ Uniform|0, 27]

ej27rm/t,, /T

i ~ Uniform|0, T] = (236)

e If m=0 and m € N, is a phasor of unity
modulus and random argument. For the usual number of
turbines in a wind farm (N > 4), the sum of these

j2mmy; /T
phasors, > e , 1S approximately a complex normal
random variable with zero mean and standard deviation

N /2 (see Fig. 57 and

e Table II).

N +j 2mm

Hi
2T

N/2)

e If m=0, ¢,is the sum of N phasors of random
argument and fixed module.

_ 2 27;m ) i e+j@m

Cm = —
i=1

~ CN(0, m=0, meN (237)

o F;in le

T pulse

e Summarizing, the complex Fourier coefficients ¢, are,
approximately, complex normal random variables with
zero mean and standard deviation oy, .

(238)

~ CN(0,0%,) (239)
o, = /2N Fo 2mm V m=0 (240)
m T pulse T

The argument of ¢,, is uniformly distributed in [-,-+m7]
and the modulus |c,, | has a Rayleigh distribution with
parameter o

The zero order coefficient ¢; or ¢, is twice the DC
component of the signal (i.e., twice the average wind farm
power).

<CO> = 2<Pfarm> (241)
a) Product of complex coefficients of Fourier
series.

The covariance of two complex Fourier coefficients ¢,
and ¢, is (242)

*

ot 12 (e = (o) e = (o)) )={ee

2 | e i N
F pulse[ T] Z € r F
i=1 =1
N .27 N 2mm
2m™m 2mn R R I
= Fpulbe T Fpulse T Z € T Z € g
T T i=1 j
The case m = 0 or n = 0 is the multiplication of the DC
component of the signal, which is a real number. Mean power
during a blade period T and tower shadow can be marginally
considered low correlated and almost statistically independent

given some operation conditions. Therefore, the covariance of
a phasor and the zero order Fourier component is null:

Covle,,, ¢y] =0

(243)

(independent random variables)

Notwithstanding this fact, the product of any Fourier
Coefficient by a constant such as ¢, has non-null variance.

Varley, ] & (c) Varle,] (244)
(eo)>

>0

If n = m, the covariance is zero because E,;-c'n’* has a
random argument uniformly distributed (circular symmetry)
[202].

Covle,,, c,] =0 m=n or m=0 or n=0 (245)

The only non- -null covariance case is n = m = (0 because
&G = e and the product is a non-negative real
random variable and its average is non-zero and positive. It is

also special because |c,, | and itself is fully correlated.

The pseudo-covariance can be also computed (it can be

used to derive the flicker contribution of turbine tower
shadows). (2406)
Covley’, &) = (& — (&) (& — (&) = <m-a> =
2mn il j ,u 2mm N ] ,u
:< pulbe( )Z T 7 pulse( )z@ T ' ]>:
i=1 i=1
2m 27mn N _j 2;71 s N y 27;n s
= Fpulse T Fpulse T z ze
i=1 i=1
Except if m =0, ¢TI s phasor of unity modulus
and random argument since m € N. Therefore, the pseudo-
covariance is always zero due to its circular symmetry
Covlc,,, &1 =0 Ym, ¥n (247)
for any value (even for m = n).
The product of independent complex normal variables with
zero mean is another random variable with circular symmetry
but the modulus is not Rayleigh-distributed. Therefore, the

product of two independent complex normal random
variables is not another normal.

Pr[ ;‘C_,: <y
= CDE_ _((y)=CDE ~ ~(y) = CDE -~ (s)=
— . (248)
_f f " PDFR(M m |) PDFRm (‘Cn, D d‘cm ki|c7l| =
leu]h lezqh
y Y
=1— K, VY n=m
%z, %¢ & 96,

where K, is the modified Bessel function of second kind and
unity order. This distribution is similar to a Gamma with
shape parameter between 1 (exponential case) and 2
(Rayleigh case). Its PDF is:

PDEF—

CM

F—
C‘H

Cl!l.

Cm

(4= CDF 1 (1)

(249)

Y
y Yn=m

|
5

G g UEm O-En
“m ‘n

where K|, is the modified Bessel function of second kind and
zero order.

In conclusion, the product of Fourier coefficients
(conjugated or not) of different order (n = m ) is a complex
random variable with circular symmetry and modulus
distributed as:

(250)

= |Cn||cm| ~ 08’”2

Cm ~ Cp

|

Y
D) K 0
Tén Tem Tén

The average of the modulus of the product of the Fourier
coefficients is computed by integration:
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*

<C77L.C7l >_<C77L.C7l >:<Cm.cn >:
(251)
7‘[ yPDF~—(y)dy:§05m o Vn=m

The second order centered moment of the modulus of the
product of the Fourier coefficients is: (252)

— 2 Y
<(|Cm||cn|) >:f0 Y’ P DEg o) (y) dy = 403, 05, n=m

In the convolution of Fourier coefficients, many of these
complex variables must be summed and they can be replaced
by complex normal variables with the same standard
deviation (the second order approximation of the random
variables). According to (155) and (252), the second order
statistical approximation of the product ¢,,-¢c, or ¢, -c_n’ is
a complex normal with the same average than its projection
(zero) and variance equal to the second order centered

moment divided by two: (253)

sk _—

Cm*Cp ™ CptCp CN(O \/_O'FWU(,H ) n=m, n=0, m=0
approx

The product of a harmonic coefficient and the zero order
term, which is a constant, has the complex normal
distribution:

o~ CN(o ¢ o3, ) (254)

The case where n =m =0 1is special because
o = |em|? and the product is a non-negative real
random variable (no longer circular symmetry). It is also
special because |c,, | and itself is fully correlated and the
conditions used in to derive the CDF of the product does not
hold for the product of Fourier coefficients of the same order.

— 2
Pr[ € Cp = Pr[ ¢, = CDF_,(y) =
=Pr([e,, | < ¥y | =CDR—(5)=CDFp 1 (V)=
=1—exp|— (255)

20, 2

‘m

which corresponds to an exponential random variable with

— — 2 .
rate parameter A and mean A\~! = 20,2, | is an
exponential random variable:

— —2
— ; 2
0 Co = |G | ™~ Exponentzal(QU% ) m=0  (256)
— ¥
The average of ¢, -¢,, is not null:
% 2
2
c -C ={(]c = 20 m=0 (257)
mem m Ezxponential distr. “m

Therefore, the variance of ¢, is:
Covlc,,, c,,] —<

Summarizing, the covariance between Fourier coefficients
are:

*

—_— —

Cm 'Cm

Var[c )=

0 m=nor m=n=0
(259)

2 _
20% m=mn=0

Covle,, ¢,] = [

The second order centered moment of the product of the
Fourier coefficients of the same order is:

<|C | _f y PDFEJpanmtml@gm )( )dy = 80'% (260)

and its variance is:

_ _ o2
Varl|en ] = (|enl') = (len ) = 403,* (261)
The product |&,[° is a real number distributed

exponentially. Even if exponential distribution is significantly
different from a real normal distribution, the second order
approximation can be acceptable in sums of a high number of
random variables. The second order statistical approximation
of |e[F is (262)
2

—

Cm

NExponentml(QaF ) ~ N(Qaq 2 204 ) m=0
mo 7 raw
approx
According to (155) and (260), the second order statistical
approximation of the phasor product 57;2 is a complex
normal with zero average and variance:

T2~ (CN(O\/—m )

" approx

(263)

m = 0

B) Experimental variance of mean power in interval T

It is convenient to define ¢, as twice the power for one
period given some operational conditions. Most standards
assume that the operation conditions for the turbine remain
roughly the same during 7, = 10 minutes. For usual
distances inside a wind farm, uncorrelated fluctuations
predominate for smaller timescales than T}, whereas power
variations with longer characteristic times are mostly
correlated (see p. 79 o El} Since there are exactly N tower
shadow events in each cycle, the tower shadow power loss
per cycle is constant and ¢y do not vary with tower shadow

distribution.

If operational conditions of a turbine during 10 minutes
remain constant approximately, the variance of mean power
during each interval 0002 /4 is:

%

g 2 2 = 2
2 = 4: :<Pfarm2 >_<Pfa77n> _< Z Cm > (264)
m=1

2

Var

The variance o~ can be estimated as the sample variance

a-f’{)?:
0.2 o 600/T ) o 600/T 2
= Py (k) —|— Pk 265

where P, (k) is the average power of interval k of the 10
minute interval (600 seconds or 600/T periods).

Alternatively, the variance of the coefficient is the energy
in the frequency range 1/600 Hz to 1/2T Hz. If the
periodogram of the real power <|S Prarm (f) |2 is available
(averaged power spectrum density or PSD), o, */4 is:

0,’ 1
4 5f%i§<|51’fa7m(f)|2>df

The zero-order phasor can be understood as a phasor with
random phase (but it approximately does not vary during the
interval 7) and modulus with absolute second moment
M, ea = 20602. In fact, the zero-order phasor correspond
to a stochastic process with frequencies between the range
1/600 Hz to 1/2T Hz. Taking into account that these
frequencies are very low, the dynamic characteristic

(266)
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0Py, /Ov can be used to estimate the variance of power
from the spectrum of wind speed v .

C) Root Mean Square (RMS) value of the power
fluctuations due to tower shadow and wind shear at the
wind farm output

The Root Mean Square (RMS) value of the power
fluctuations, RMSy,,,,, is a figure that characterizes the
overall oscillation of a the wind farm output due to tower
shadow and wind shear. It is the standard deviation of the
sum of power pulses or the root of the squared sum of the
modulus of Fourier coefficients. The calculus of RMSy,,,
from Fourier coefficients can be derived using Parseval’s
Theorem.

s I 1 s
RMSAP/’(M‘m = 5 Z |C | = 5 Z Cpm * Cpy (267)
1 00
<RMSAPfarm2>:EZ< >: ZOO’U Cons m
=1 m=1
00 2
=> o0, = Z @Fplﬂsc(%m /T)| (268)
m=1 m=1 T

The RMS value of fluctuations can be also equivalently
derived for any single pulse shape using the following
relationship:

(RMS s py2) =
+T/2
=N _f T/2 %1345

Mean value of squared RMSy,,, for rectangular,
triangular and Gaussian shape of pulses as defined in (194) to
(201) is:

2
1 piT)2 (269)
- [?fT/Q fsin le(t) dt]

pulse

) aTZ/ T
(RMSppyrm” ) = N[—] (k— — 1) (270)
T T
where the constant &£ depends on the pulse shape
T +T/2 ) 1  rectangular pulse
k= inele D) dt=12/3_ triangular pulse  (271)
o 7V -T/2 pube 1/v2 gaussian pulse

The distribution of RMS f(m,f can be derived from the
distribution of wind farm power output.

CDFRMS2 APfarm (.’1?) = CDFAPwmd farm (\/; +Na T/ T) (272)

where CDFp pying farm (%) has been computed for rectangular
and discretized pulses in (210) and (215), respectively. Recall
that the standard deviation of farm power has been calculated
also for rectangular pulses in (211) and all results coincide.

In farms with a many turbines, the distribution of farm
output y due to tower shadow converges asymptotically to a
normal distribution with mean (y) = Na 7 /7T and variance
Var(y) = <y2 - <y>2> = <RMSAPfa7"m2 > . ThllS, the
modulus of the fluctuation, RMSA pfopm » 1s distributed as a
Rayleigh random variable with scale parameter equal to
standard deviation of the underlying cyclic stochastic process
[203].

Lim RMS pjury. — Rayleigh (J(RMSxpjurn” ) )

273)

The average of RMS farm 18 @ bit smaller than the squared
root of the RMS farm mean since quadratic averages weigh
up larger values. (274)

> ~ \/gJ(RMSAPf(M"m? > < \/< RMSAP-famLQ >

Mean RMS},,,, for rectangular, triangular and Gaussian
pulses is shown bellow.

aT T T
(RMSAPfarm> ~ Tm\/% k?—l

Since usually 1 < T'/7 = 6 ~ 10, the fluctuation is also
proportional to the square root of the relative width of the

pulse /7 /T , approximately.

W

Notice that RMS pfy,,, 1s proportional to the pulse power
dip amplitude a and to the square root of the number of
turbines VN and the relative width of the pulse, . [7/T .

< RMSAPf(M"m

(275)

<RMSARfarm = (276)

appr 01

D) Distribution of the gradient of power (time
derivative of power) due to tower shadow effect

The derivative of farm power is a measure of the variability
of farm output with time. Whereas RMSy,,,, only account
the deviation from the average of the power output, the
distribution of time gradient of power dP,.,, /dt measures
how quickly are the oscillations due to the position of the
turbine blades.

The distribution of the gradient of power (time derivative

of power) can be computed using properties of Fourier
transforms in a similar fashion to the previous section.

dP [e'S) 92 ., .27Tmt
fom _ Re| S j e e T 277)
dt m=1
dP, ? 13.(2 2 *
form - 5 Z ke Cn Cm =
dt 2. =\ T
' (278)
% 2 L 0 2
_ 1y [@] Coie, o] = 3 [%_mam}
2 m=1 T m=1 T
Using the results form (240) and (265), the sum is:
APy 2 > [27m 2N 2
farm m™m ™n
= F s 279
< dt > mZ:1 T T pulse ( T ( )

Notice that square pulses presents infinite derivative at
flanks and its quadratic average is infinite (real pulse are
continuous functions). For triangular and Gaussian pulses, the
RMS value of the time derivative is:

o s
dearm ’ _ 7T
dt [ N an sh
A= gausstan shape
N2 1T

The RMS value of the derivative of farm power is
proportional to turbine pulse height o and to the square root
of the number of turbines ~/N . Notice that the time
derivative of farm power is inversely proportional to square
root of the product of turbine time constants. If the turbine
pulse is symmetric respect its peak, as all the pulses presented
in this work, the distribution of power gradient is also
symmetric respect to zero level.

triangular shape

(280)
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5.3. Contribution of periodic
components to Flicker

The fluctuations in voltage are strongly influenced by the
external grid and they are several orders of magnitude smaller
than the power fluctuations. Due to these difficulties, IEC
61400-21 measures current and then voltage fluctuations are
derived from the current, instead of using directly voltage
measurements.

5.3.1. Voltage variations of induced by
power fluctuations

The approach followed in this section is based in [204],
where a simplified model of the wind farm is derived based
on the fourth-pole equivalent representation of the electrical
elements, the distributed layout of the turbines, the stochastic
nature of power output and small-signal analysis of the grid.
The model is based on the circuit of Fig. 70 and its
parameters can be obtained from [160] (see annex A for
further information).

Grid’s equivalent
seen from wind farm

Equivalent circuit of
the farm grid

Rju:+ij P+jQ Zseries
U, .
E 5= § 2l A z:Pmr’bines
S =5 G | ¢ D )
N 28 > =l B Ql‘urbmcs
S Py E
s
= J—
JE— _ 3 =

Fig. 70: Small signal model of the farm.

The approximated voltage variation can be obtained from
the small signal model:

Urcc
where P and @ are the real and reactive generated power of
the wind farm at the point of common coupling with the grid
(PCC), U, is the nominal voltage at PCC, Rj;, and Xy, are
the equivalent resistance and reactance at PCC.

AU =~

approx

(281)

A) General model

According to (281), the voltage drop in the fictitious grid
can be computed approximately as a linear combination of the
real and reactive power spectra:

R

AU = e p ¢
approz U p Upce

Q(f) (282)

During continuous operation, the variations of real power
are bigger than the oscillations of reactive power. However, it
is usual that Ry, << X/, at high voltage (see Table XV) and
reactive power variations can influence notably AU(f) .

If the dynamics of reactive power are important, then the
characterization of pulses (Section II of this chapter) should
be based on the fictitious voltage drop AU(f) instead of real
power P(f). Moreover, the modeling of stochastic
fluctuations should be based on PSD,,(f) instead of
PSD,(f) . Elsewhere the methodology remains the same.

For convenience, a fictitious power fluctuation can be
computed as:

Xf'i(*
S=P+—"Q
Rfic
Thus, the voltage at the PPC of the farm can be expressed
according to Fig. 70:

(283)

Uppol) =U+AU U, +BU

PCC PCC

P(t X 0=
()+R—Q()—

fic

—U, +8U

pPCC

(p)+%<@>+AP(t)+Z—f"AQ@} (284)

‘fic
=U, +BUpq <S> +BU, ASE) =

- <UPCC > —8 UPC(,' f: Re

m=1

—_

Jmuw,t

cC €
m

—

where ¢ are the phasors of the almost periodic voltage
fluctuations based on the fictitious power S instead of P.
The voltage sensitivity coefficient respect the fictitious power
is 3. It can be expressed in terms of the apparent short-circuit
power S}, s and the network impedance angle v, .

Rfu’ _ COS(%)

/B:
Sk,fic

- (285)
UPCC

B) Model for constant power factor

At frequencies f <<f, ., the dynamics of reactive power can
be discarded. Thus, a quasistatic relationship between active
and reactive power is sometimes accurate enough.

Assuming  that the voltage-current lag  angle

©(f) = arctan(Q(f) / P(f)) at PCC is approximately
constant under some operational conditions, then voltage

deviations are proportional to power deviations:
Rﬂc + Xﬂc'tan(@)

Upce
where (3 is a sensitivity coefficient of voltage to power
fluctuations. It can be expressed in terms of apparent short-
circuit power Sy j., its network impedance angle ¢ and
voltage-current lag angle ¢ .

B Rpio+X ;. tan(p) - cos(Yy Hsin (v ) tan(p)
Sk,ﬁc

AU =~

approx

P =B UpccP (286)

(287)
Upcc?

Thus, the voltage at the PPC of the farm can be expressed
with random phasors, according to Fig. 70:

Upcc(t) =UgtAU =Uy+ BUpccP(t)=

=U, +ﬂUPCC(<P)+AP(t)>: (288)
=(Upcc )—BUpcc Z Re[q e.imwlt]
m=1

where (Upgc) = Uy +BUpcc (P) is the average voltage
for the given operational condition. In fact, (288) is the small
signal model for voltage respect its mean value (Upcc ) . The
parameters (Upcc) and [ are actually random variables
which depend on nearby loads, generators and grid
configuration. Their characteristics can be estimated from
measurements or from power flow simulations and they can
be considered constant during blade period 7" (around 1 s).
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5.3.2. Standard IEC 61400-21 approach
to flicker emission from wind farms

Standard IEC 61400-21 [205]states flicker emission
assuming flicker is inversely proportional to Sj ;. and
computing separate flicker contribution of continuous
operation (mainly due to tower shadow and wind variability)
and contribution of switching events (such as connection and
disconnection of turbines and other components) [206, 207,
208].

The flicker coefficient for continuous operation, ¢ (v ), is
the normalized short term flicker for 10 minutes measuring
interval and S 5o = 1pu. in (287), ie., sensitivity
coefficient 8 = cos(¢) + sin(¢) tan(y). The flicker
coefficient for continuous operation and annual average wind
speed v,, c(ty,v,), is the averaged 99" percentile of
¢ (4 ) for and voltage. Nonetheless, for usual real network
impedance values at PCC of a wind farm, [ range from 0.1
to 0.005 for p.u. power values.

Since the distribution of the Fourier coefficients has been
derived, it is possible to compute the Flicker that a wind farm
would produce in a fictitious grid as defined in IEC61400-21.

A) Flickermeter functional blocks

According to IEC 61000-4-15 [209], the flickermeter is
divided into functional blocks (see Fig. 71). The first block is
a normalizing voltage adaptor with proportional constant
1/{Upcc ). The output of the first block is a signal
proportional to voltage and unity mean (i.e., per unit voltage
respect its average).

leﬂZRe

m=0

/m w,t

(289)

The more difficult blocks to compute in the frequency
domain are the quadratic demodulator (block 2) and quadratic
multiplier (block 4) since squaring in the time domain is
equivalent to convolving in the frequency domain. The
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k

2.

m:(k-&-l)/

—

d=-2B¢,+

— Gk,

Cn—k Cm

DS

m=k+1

(291)

(k odd)

The even order coefficients of the squared voltage are:

Z

=ER)+

] (k even)

&y = —28¢ + 3 ( Grs ot

+Z et T

m=k-+1

Cm CL m

(292)

The statistical distribution of phasors can be computed
from results from previous chapters. As the stochastic sum
includes infinite terms and distributions of different types, the
Central Limit can be applied to substitute exact distributions
with approximated normalized random variables (i.e., second
order statistical approximation). Notice that the main
contribution to d, is 23¢, , which is a complex normal
quantity of zero mean. The sum of components of d; can be
neglected since ﬁo(ik < 1. This is equivalent to the
approximation:

((U)-

AUY = (UY-2Aa0(U) +AU? ~

(UY'—2a0(U) )

~

For usual network configurations, the fluctuating voltage
deviation due to periodic components in wind power at PCC
is AUpce <107 p.u. and therefore, AUppc?<10° p.u.

The linear approximation (293) is implicit when standard
IEC61400-21 states that flicker level is proportional to the
short-circuit impedance at PCC, the high ratio Sy . /S, tur
recommended or the independent flicker contribution of
continuous and switching operation.

Using the properties of complex normal variables, the
output of block 2 (quadratic demodulator) at harmonic k dj,
for k& = 0 will be approximately a normal random variable
with zero mean and variance O'JA‘Q :

—

convolution in the frequency domain requires the summation  d, Lo~ CN (0, A ) V k=0 (294)
of the product of Fourier coefficients. Taking into account the 2" order approz
transforms of the sines and cosines of the Fourier series, the * kisodd.
Fourier coefficients of the squared input at block 2 can be k-1
computed from the auto-convolution of the farm power = 4ﬂ2 2+ ﬂ4 Z 200, O'gk7m2 +
output =(k+1)/2 (295)
—_ o0
The Fourier coefficients of a squared voltage d;, can be
dl;‘ h ffici fclllu . .V 1 g lL_. + 54 Z 2J€m—k20—?”m2 ~ 4ﬁ20'gk2
computed from the coefficients of the original signal ¢, . mT
) s — mut o kiseven.
~ 1 _ LWyl
U, 0 = d() = 1~ 283 Re[q, ™|+ )
m=0 2 2 2 4 4 4 2 2
290 -2 =4 . - 20. ‘0.
s — . . 2 0 . ' ( ) Udk: ﬁ O.‘:k T ﬁ ack/Z + 6 % . O.Cm Uck—m +
mw, mw, =
+18Y Relc, e’ || = 2+> Re|d, ™™ m=2)+
m=0 m=0 A x ) ) ) )
. 20, . ‘x40 296
The odd order coefficients of the squared voltage are: +5 ZL:H Cm—k © B % (296)
m=~K
* k= 0. The DC component d, is a special case because it
Block 1: Block 2: 2 Block 3: Block 4a: Block 4b: | ;. Block 5: Flicker
Upco (t [ Uut A A 1LCR(T O flick
PC& Voltage Uy “(fy Squaring ! (7 Weighting 1) » Squaring g_(fL Smoothing fh(’k(f): Statistical ik» Severity Level
adaptor demodulator | = d(t filters analysis  |Fflick Py
\_Lamp model Eye model Brainmodel Instantancons
Lamp-eye-brain chain model Flicker Level

Fig. 71: Simplified block diagram of IEC Flickermeter according to IEC 61000-4-15
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is not a phasor, it is a real number with nonzero mean.

dy =2+ ﬁQ Z Exponentm'l(/\m71: 20577L2)

m=0

297)

The finite sum of independent exponential variables of the
same scale parameter )\, ! is a gamma distribution. This is
not the case because ), ! decreases with m (the spectrum
vanishes for high frequencies). Since the number of
independent random variables to be summed is infinite, the
second order approximation is suitable. The average of d; is

(do) -

()(2 5

m=0

Cm

2>2(1+62<RMSASf(m2>) (298)

where <RMS A Sf(an > is the average quadratic fluctuation of
the wind farm fictitious power output, defined in (268), and
oz, is the standard deviation of ¢, , defined in (240).

The variance of d; is ad02 , the sum of the variances of the
independent exponential random variables:

o0
2 _ 4 4
og,° = E 40
) 6 ‘m

m=0

(299)

Thus, the second order approximation of d, is a normal
real variable with the same average and standard deviation:

dy ~ N({do), oy)) (300)

The weighting filters of block 3, as named in IEC 61000-4-
15, is equivalent to the multiplication of Fourier coefficients
by the filter transfer function at the harmonic frequency. The
phase displacement introduced by a filter in a stochastic
signal with circular symmetry does not alter its statistical
properties since the phase of the signals is random [203].
Therefore, the variance is multiplied by the modulus of the
transfer function, Fy;,.;, 3(w), squared at the corresponding

ck 3
frequency, f(t) = ¥ {U poc (W) * By 3(“’)}'

f(t) = Re ﬁ' eJ T =

0,05T <k<35T 2 o)

- o\ kLt
= Z Re dk: E)lock:S (k?)ej T

0,057 <k<35T

e 0,06T <k<3T.
27k 2 ok 2

Uka = UJkQ Bhtock 3(7) %452Uak2 Fyjock 3(?) (302)
where o= 2 is the variance of the Fourier coefficient k of the

weightec{]C voltage fluctuation (output of block 3) and
Fyoer 3(w) is the weighting transfer function defined in [209]
between 0,05 Hz and 35 Hz and zero elsewhere (ideal pass-
band sinc filter). Recall that the pass-band filter removes the
DC component of the signal.

The fourth block is another quadratic multiplier and its
output can be computed with formulas (295) to (296), taking
into account that now its input signal, g(), is band limited.
Using the properties of complex normal variables, the &
Fourier coefficients of the output of the of block 4 (quadratic
multiplier), g ,will be approximated by normal random
variable with zero mean and variance a(sz for k = 0:

Floor(35T)

gt)= Y Re
k=0

.27
gt (303)

5 ~ CN(O,O’@’A:)

k o
2" order approzimation

k=0 (304)

where floor means rounded towards the smaller integer.

e kisodd.
k Floor(35T)
2 2 2 2 2
0. = 20% o7 + 205 0% 305
Ik 7‘2 fm fkfm Z fm—k fm ( )
m=(k+1)/2 m=Fk+1
 kisevenand k£ = 0.
k Floor(35T)
2 2 2 2 2 4
0. ‘= 20% o5+ 205 o2 +o0: 306
9k Z I Je—m Z Im—k Im ( )

Jiy2

m=(k/2)+1 m=Fk+1

The DC component g, = 2(g(t)) is a special case
because it is not a phasor, it is a real number. The average of

. . . . 2
go 18 {go ) and its variance is Ty -

20+ 2

Im

(90 >< Zo Exponential(\, '= 2077”2

> 0,057 <m<35T

o, % = E 4o+ 4
90 fm
0,057 <m<35T

(307)

After performing the squaring, a first order low-pass filter
must be applied. Therefore, the output of block 4 can be
computed as:

2k \|?

F;ﬂock 4 (T)

where o e > is the variance of the instantaneous flicker
coefficient k. Fy,., 4(w) is the transfer function of the first
order displacement filter.

O fick, 1 = Ug,f (308)

B) Stochastic characterization of instantaneous flicker

Block 5 is a statistical classifier. Since the stochastic
characteristics of the signals have been tracked along each
block, the percentiles of the instantaneous flicker can be
computed from the variance of Fourier coefficients of
instantaneous flicker and the mean and variance of DC
component.

The Fourier coefficients of the instantaneous flicker
flick(t) are the result of two stochastic sums of complex
normal and non-normal distributions followed by weightings.
The result of this process can be approximated by a normal.

flick(t) ~ N (Nﬂicka o ﬂick) (309)

where fig., is the average of the instantaneous flicker level
and o g . is the variance of the instantaneous flicker
(output of quadratic demodulator).

The complex coefficients g; have null mean except the
zero order component, g,. The average of the instantaneous
flicker 1. is just half the zero order coefficient of g(t)
since the block 4 does not alter DC value.

fgier = ( flick(t)):%@o): 2. 9

0,067 <m<35T

(310)

The variance of the instantaneous flicker, UfhckQ , is the
sum of the variance of the mean flicker, 0902/4, plus the
variance due to the projection of the phasors in the real axis.
According to (156), the variance due to the m phasor
projection is half the sum of the second order central moment
of the Fourier coefficient modulus divided by two, i.e.

2
O flick, m -+
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1 Round(35T)
Uﬂick:2 = Za-gOQ + Z O flick, m2 (31 1)
m=1
Therefore, assuming normal distribution of the
instantaneous flicker (309), the short-time flicker P, is:
P, = \/0, 5096 pgicr, + 0,6879 0 i (312)

Since the terms multiplied by 3* are negligible respect the
term multiplied by 4% in (295) to (296), the blocks 1 to 3 of
the flickermeter behaves almost linearly. The mean fip;, and
the standard deviation oy, of the instantaneous flicker are
approximately proportional to o® > N /T. Thus, P, is
approximately proportional to /N /T « 3 and P, can be

estimated as:
P, =« ﬂ\/g Coef,(T,T)

Or alternatively, it can be expressed in grid parameterers:

(313)

P, =Coef, (T, T)L\/E[COS(wk Hsin(v), ) tan(gp)]

k fict
Where:

* Coef(T,r) is a coefficient that depends on the tower
shadow shape, its characteristic width 7 and the blade period
T . 1t is usually between 0,1 and 0,2.

* /Sy is the relative depth of the tower shadow «
compared to the short circuit ratio at PCC, S} s.; . This factor
is usually bellow 0,03/ N for grid connected wind farms
(according to typical tower shadow effect and usual grid
codes).

e N/T is the wind farm blade frequency. The formula
(313) has been derived with all the N turbines spinning at
the same speed, but it can be extended substituting N /T by
the average number of blades that crosses a tower per second,
(A).

« cos(¢y Hsin(ey ) tan(yp) is the functional dependence of
flicker with impedance angle ), and voltage-current lag
angle ¢ . This factor is usually bellow 0,5 for high voltage
grids (see Table XV).

Recall that for usual conditions, the flicker emission of
continuous at PCC is far below 1 for grid connected wind
farms.

P, < 0.004/NN (emission at PCC)  (314)

At medium voltage and high voltage, the capacity of the
grid to be perturbed is shared among generators and loads
(IEC 1000-3-7 [210] asses this capacity). As tower shadow is
a continuous process and it has been computed through the
mean and variance of instantanecous flicker, the cuadratic
summation law is more suitable than the cubic summation.

The low flicker emission at PCC makes very difficult to
relate measured flicker and the output of near wind farms.
The authors of this article performed several test in various
wind farms with a conventional flickermeter and the
influence of nearby loads masked the influence of the farm.

The flicker coefficient ¢ (1) ) defined in Standard IEC
61400-21 is the flicker that the farm would emit if it is
connected at a PCC with 1 p.u. short-circuit impedance and
impedance angle 1 . Notice also if ¢ () ) is given for some

1y, and ¢, the flicker for other operational conditions can be
computed. (315)

C('LZJk) = ‘Pst,fic ’ - =

=Coef, (T, ) Si \/g [ cos (1) Hsin(1,) tan(p) ]

n
where «/ S, is the relative depth of the tower shadow «
compared to the nominal power of the turbine.

The wind farm flicker coefficient cyng farm(% ) can be
obtained from the flicker coefficient of a single turbine,

Cuwind turbme( 1/}k ) : (3 16)
n turbine 1
win = —\/W win = == Cwin
¢ fa,m(rlz( d}k ) Sn farm Ct?zri)(fne( d}k ) \/W Cturbffinc( wk )
IEC61400-21 also defines the flicker coefficient for
continuous operation, ¢ ( Uy, U, ) , which is the 99%

percentile of ¢() ) and can be obtained also applying the
1/~/N factor.

In Table V, Coef(T,7) has been adjusted with an even
mesh of 198 points with blade period 0,5 s <7 < 1,5 s and
characteristic rate 0,05 s < 7 < 0,25 s.

TABLE V: APPROXIMATED TOWER SHADOW EFFECT ON FLICKER

Coef, (T, T) MSE
. 0.100711 B
Gaussian T0.0673857 0.218744 3410
0.0216745
Triangular 0.251499 ¢ 4310°
70.0607005
0.091558 B
Rectangular 70.0698291 £0.226092 4310

C) Gaussian pulse

The fitted model (with 3,4:10° mean square error ) of the
flicker produced by Gaussian pulses of fictitious voltage (or
power) is:

0,100711 0,2 0,327
Coef (T, ) = 0.0673557 0218744 > [~ 4 (17)
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Fig. 72: Flicker coefficient for a farm with Gaussian rotational effect.

D) Rectangular pulse

The fitted model (with 4,3-10° mean square error ) of the
flicker produced by rectangular pulses of fictitious voltage (or
power) is:
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~0,2514997%0216™5 (.24

Coef, (T, ) = pRITTITTE ~ T (318)
1
~ 0.26
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Fig. 73: Flicker coefficient for a farm with rectangular rotational effect.

E) Triangular pulse

The fitted model (with 4,3-10°mean square error ) of the
flicker produced by rectangular pulses of fictitious voltage (or
power) is:

0,091558 0,242

0.38
.
Coef, (T, 7)= ~ —0,205 —] (319)
1 ) )
70.069829,0,226092 [T T
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Fig. 74: Flicker coefficient for a farm with triangular rotational effect.

The lower percentiles 0,1% and 1% in the fifth functional
block of the flickermeter are more dependent on the exact
statistical distribution of instantaneous flicker. The non-linear
behaviour of squaring blocks and the actual non-normal
distribution of instantaneous flicker are supposed to be an
important source of uncertainty. The authors plan to work
further to asses the wuncertainty introduced by the
approximations used in this approach, comparing this model
with the results of Monte Carlo simulations.

5.4. Contribution of aperiodic
components to Flicker

5.4.1. Ssmplified PSD for flicker
estimation

Since very slow and DC components ( f < 0,05 Hz) of
PSD don’t influence flicker, the model (184) has been
simplified for 0,05 Hz < f < 35 Hz . In Fig. 205, the PSD
shows a wide peak at blade frequency due to the varying
amplitude and frequency with harmonics and sub-harmonics.

7

Their effect on flicker depends on the product of sensitivity of
flicker to that frequency |Fwwm ( f)| defined in [209], times
the power content of the frequency range (i.e., product of the
width by the amplitude of the peak).

Thus, the PSD can be approximated by the spectrum of a
system of fractional order r» (1 < r < 1,75), plus the tower
shadow effect S, (a delta impulse ¢, at frequency f,) and
the noise floor S,. In the frequencies of interest for flicker
analysis, 0,05 Hz < f < 35 Hz, the following approxima-
tions are valid:

(S (1))~ N Sy (S0 So(f~ho)+ 7 +Sy)  (320)
Ufarm2(f):%<Sfm'm2(f)> (321)

Sjarm () ~ CN[0,0 upm (f)] (322)

S farm (f) ~ Rayleigh [Of(”m (f)] (323)

Typical values for r,f,, Sy,5; and S,can be derived
from the PSD (see Fig. 205 to Fig. 271) by regression

analysis.
TABLE VI: PARAMETERS OF THE PSD MODEL OF REAL POWER TURBINE
OUTPUT (321)
Significance Range
System order of the turbine real power
output excited by the wind turbulence (i.e., 117
" half the slope trend of PSD in a double ’
logarithmic plot)
51| Overall fluctuation level of the turbine (i.e., 10"
5,2 | the PSD trend line at 1 Hz) in p.u. units ~107
Squared average of tower shadow power
So o > 5~100
oscillation relative to S;
0.5~2
fo Mean tower shadow frequency Hz
s, Squa}red noise level on power output 0~0.01
relative to .S}
S Nominal power of the turbine 0,3~5
" MW
N Number of equivalent turbines in the farm 1~50

Notice that in general, harmonic peaks are narrow and their
power content is low. Sub-harmonics can have noticeable
power, but their flicker sensitivity is low. These terms can be
added explicitly to (320) as delta impulses. Nevertheless,
models more complex than (320) are also suitable. For the
sake of simplicity, S, can include not only tower shadow but
also its harmonics and sub-harmonics approximate effect if
the following estimation is used:

2

88Hz| 1 _9 |F;ue7ﬁ hit (f)|
= (5 arm,Q(f) _f 2 S ]9—de
0 0,05Hz[51< f > 2 |Fweight(f0)|2
88H-( 1 o f?
= Joe| 5 S 0) =1 —SQ]fO—de G24)

If PSD does not fit the model (320) at frequencies between
8,8 Hzand 35 Hz, another delta impulse term S; at
frequency 8,8 Hz < f; < 35 Hz can be included in (320):

2

: T F;uei h (f)
53 B 8385}1 [Sll<5fdrm2(f)>f2,52 ]ﬁdﬁ%z
weight \/3
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~
~

35Hz[ 1 (325)

-3

_ 2 _e2r J
8.8Hz Sl<Sfarm (f)> f 52]1]33 df
Approximations (324) or (325) assume no correlation of
fluctuations included in terms Syor S3. If this assumption

does not hold, formulas must be modified accordingly.

These formula indicate that the relative importance of
fluctuations is proportional to f* up to 8,8 Hz and then
proportional to f~3.

Spectrum angle ¢y, (f) is a random variable uniformly
distributed in [—m, +7]. Consequently, the complex phasor
Stam (f) is a complex Gaussian random variable of zero
mean and standard deviation o ., (f) :

S'farm (f) ~ CN [07 O farm (f)] (326)

5.4.2. Flicker contribution from a
parameterized PSD

The computation of flicker from a PSD is analogous to the
computation from Fourier Coefficients, except that the
coefficient variances are replaced by spectral densities and
some sums are transformed into integrals. Since the
derivation of the linearized model has been carefully derived
previously, only the main results are outlined. The PSD of
the squaring demodulator (block 2) is:

2
PSDH() ~ 45°PSDE ()| Fypo o 21 )| (327)

The average of the instantaneous flicker, O’/%h-ck, can be

computed integrating PSD?+ :

8,8Hz
~ [ +
Wi ~ [ PSDF () df

The PSD of the instantaneous flicker at low frequencies,
0,10 Hz < £ < 34,95 Hz, is: (329)

(328)

2
PSD;Zrzrk(f) ~ Q‘F;)lock 4(271.-}[)‘ ’
f N N 35Hz N N
[ ff , PSDE(f-0)-PSD;(9) 0 + ff PSD(9-f)-PSD} (9) dﬂ]
vV 0,10Hz < f < 34,95Hz
The PSD of the instantaneous flicker at higher frequencies,

35,05 Hz < f < 70 Hz, is significantly smaller since block 4
attenuates notably these frequencies: (330)

2 35
PSD}i )22 By o271 )| /., PSD3(f-0)-PSDY @) v

Y 35,05Hz < f < T0Hz

The variance of the instantaneous flicker, 0']272- . » can be
computed by integration:

s [FH o T0Hz .
[ PSDIX(f)df + fg o PSP (331)

0,05Hz

Thus, thee flicker level can be estimated through (312) and
another coefficient depending on 7 can be computed provided
the tower shadow is computed separately and noise floor is
small.

Py = BYSN Coefyr)
where Coefy(r) ~ 5,06051 — 6,96771r + 2,86515r7

(332)
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Fig. 75: Flicker coefficient (332) for a farm with simple PSD

5.4.3. Estimation of total flicker during
continuous operation(periodic and
aperiodic)

A) Continuous operation

Even though both periodic and aperiodic components are
present in the fictitious power, both components are
statistically independent. Assuming the linearization of the of
quadratic block and second order statistics, the total flicker
can be estimated from the individual components.

The second order approximation for the instantaneous
flicker is:

. [ 2 2
-ﬂZCk(’,ontop(t) ~ N Fogicin T Hpick,20 | O ﬂick.1+‘7f1ick,2) (333)

Thus, the flicker level can be computed assuming
normality and approximate sum of variances:

st,contop ~

~ C\/ 0’5096(Nﬂz'ck,1+Mﬂz‘ck;2) + 0,6879\/ g ,%zz'ck:,l"‘%?“hckz

where ( is a scaling factor added to fit the flickermeter tests.
It is required to give a maximum perceptibility output of 1 for
a AV/V of 0.25 % at a modulation frequency, f of 8.8 Hz.
(this is the modulation frequency at which we are most
sensitive to flicker from an incandescent light bulb).

The factor ¢ varies from 750 to 1850 depending on the
applied calibration signal since this model is intended for
stochastic input signals instead of deterministic ones. The
accuracy can be increased if all filters are fully implemented
since some filters in this model have been replaced with ideal
filters for conceptual simplicity. However, a full
implementation -non stochastic— of the frequential
flickermeter is required to decrease notably the uncertainty in

Py contop With deterministic signals.
the

Since linearization of quadratic block slightly
underestimates the flicker, an assumable approximation,
specially valid if one variance is significantly bigger than the
other, is:

(334)

2 2
k1T hicks S O pick1 T ficka (335)

The former approximation is sensible since some
assumptions made in this work may underestimate a little the
flicker coefficient (independence of fluctuations, neglected
terms in convolutions, and N>4). In fact, (335) assumes some
correlation between periodic and aperiodic fluctuations:
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‘Pst,contop% C\/ 075096(/#11’(*,1+“ﬂick,2) + 076879(Ufli(:k,1+Uﬂz’ck,2) ~

~ 2 2
~ Bt Fs

Finally, the contribution from periodic and aperiodic sums
quadratically assuming the upper bound (335):

~ | p2 2
Pst,contop ~ Pst71+Psz‘,,2 -

2
ZCﬂ\/ﬁ\/%COBff(T, T)+ SlCoefQQ(r)

(336)

(337)

According to (285) or (287), the actual sensitivity
coefficient of voltage to power fluctuations 3 can be
expressed in terms of SCR, power factor angle ¢ and the
network impedance angle 1, as:

cos (1 Hsin(ey ) tan(p)
= (338)
SCR-S,-N
Thus, the flicker level for continuous operation is:  (339)

cos(¥, Hsin(y, ) tan

P
SCrS NN

st,total ~

@ Ja® ,
¢ ?Coef1 (T, 1)+ 8,Coefy (r)

Assuming typical values for high voltage according to see
Table XV and Spanish minimum value of SCR, the upper
bound is:

2 S.
\/SO; C’oeff(T, T+ Sf; C’oef;(r)

40N N

(340)

‘Pstﬁcontop < C

B) Decreasing annoyance due to Flicker in turbine
clusters

Flicker levels can be eventually noticeable at nodes
electrically close to wind turbines with stiff drivetrains and
squirrel cage induction generators connected directly to very
weak grids or in stand alone applications. But these
conditions are not common and the flicker contribution of
wind power is rarely an annoyance.

On the one hand, actual turbines have massive inertias,
relatively soft drivetrains and electronically controlled
generators. Thus, the torque periodic components are trans-
formed in a kind of stochastic fluctuations in active and
reactive power of lesser magnitude (i.e., real power fluctua-
tions from those turbines do no longer resemble pulses).

On the other hand, grid codes usually require a minimum
Short Circuit Ratio, SCR. It is the ratio of the short circuit
power at the point of common coupling of the grid, \S; p¢(, to
the installed wind power, V'S, in a cluster of NN turbines.

(341)

For example, the Spanish regulation [211] requires SCR
>20. In order to meet this requirement, big clusters of wind
turbines are connected to high voltage nodes where S, ¢ are
bigger (see Table VII).

TABLE VII: TYPICAL SHORT CIRCUIT VALUES (FROM [212]).

Typical value of S, pcc

30.000 MVA
10.000 MVA

Substation voltage

400 kV
150 kV

70 kV 2.500 MVA
30kV 1.300 MVA
15kV 500 MVA
10 kV 400 MVA
400V 16 MVA

The short time wind farm flicker level can be obtained
from the farm coefficient c,ng farm( ¥k ) :

c .
P pec= Cuing W) nowindfarm _ tir %B(wk) S,-N =
’ o Sy.pec JN  SCRS, N
i, V)
~ SorIN (342)
Since flicker coefficients for a single turbine

Cwind farm( W ) are typically between 4 to 10 [205, 213] and
typically SCR >20 in Spain, the flicker level in a farm is
expected to be low:

P

S.pec (343)

1
<—=x1
~ 2N

Therefore, the flicker level during continuous operation at
PCC is usually bellow unity and power fluctuations do not
produce major irritating flicker.

5.5. Spectrum of the eye output and the

average instantaneous flicker

The average instantaneous flicker level can be computed
from (302) or (310). Taking into account that first three
blocks are almost lineal and considering that the PSD has
random phase, it is possible to estimate the contribution of
each frequency to instantaneous flicker. In the following
graphs, the blue lines are the PSD of the eye model output
f(t) and the red line is the area beneath the PSD from the
left, which equates at the right s, the mean instantaneous
flicker level. The frequencies that contribute more to flicker
are where red line increases quickly.

For the fixed speed, stall turbine the principal contribution
to flicker is due to tower shadow (rotor and blade frequen-
cies). The contribution of frequencies 5-7,5 Hz is small.

ENCER

zoc2
e
24527
22527
2082
15627
1.68:2
1.45-.2%
1.21:-zi

LOE2

5.08-3]
5.0E-39

40E-3]

e

L0553 1 b i LW | He

01 L 0 I 40 SO 5@ G EI W0 0 L0 120
Fig. 76: PSD of squared voltage variations f(t) and its integral g, (beta=
0.001) for a SCIG (fixed speed, stall regulated) wind turbine.

In the 600 kW Vestas opti-slip turbine (variable resistor
induction generator with pitch control), the influence of tower
shadow (rotor and blade frequencies) is negligible. The the
flicker levels are the lower of the measured turbines and its
due mainly to frequencies 4-12 Hz (see Fig. 77)
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Fig. 77: PSD of squared voltage variations f(t) and its integral g, (beta=
0.001) for a VRIG (opti-slip) wind turbine.
In the doubly fed induction generator, Fig. 78, pitch
regulated turbine, the influence of tower shadow (rotor and
blade frequencies) is small. The flicker is due mainly to

frequencies 4-14 Hz.
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Fig. 78: PSD of squared voltage variations f(t) and its integral gy (beta=
0.001) for a DFIG (variable speed) wind turbine.
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Fig. 79: PSD of squared voltage variations f(t) and its integral g, (beta=
0.001) for Remolinos wind farm.

The Remolinos wind farm, Fig. 79, shows a similar behav-
iour than the single turbine. The average instantaneous flicker
level g, in the wind farm is approximately the value of
measured wind turbine times the number of turbines in the
wind farm (18). Since Py is fairly proportional to /4, , , the
flicker emission of the wind farm can be computed from

measurements of single turbmes:PSt’ farm ™ NPst) turbine

provided the short circuit powr is the same at the turbine and
at the point of common coupling (PCC) of the farm.

Actually, the short circuit power at the farm PPC is, to
some extent, proportional to the number of turbines. In terms
of the short circuit ratio (SCR), the farm flicker emission is:

P - Pst, turbine
I SoRAIN

In other words, the flicker emission of a farm is reduced
typically in a factor YN respect the turbine emission. More-
over, the flicker is rarely a power quality problem in farms
because the short circuit ratio is high due to transmission
network requirements (SCR > 20 habitually).

(344)

5.6. Conclusions

Power fluctuations in a farm are related to relative blade
positions of the turbines and wind turbulence. The rotor can
have any angle with approximately the same probability and
turbulence is mostly uncorrelated for different wind turbines.
Thus, the overall behaviour of a large number of wind
turbines can be derived from the operation of a single turbine.

Correlated fluctuations scales proportional to the number
of turbines N whereas linearly uncorrelated fluctuations
cancel partially among turbines and they scale up typically in
a factor VN. Oscillations from fractions of hertz to power
supply frequency are mainly uncorrelated and their sum
across a wind farm can be estimated using stochastic analysis
commonly applied in other areas such as multipath fading in
communication channels, clutter and target cross section in
radars, interference in communication systems, etc. but its use
in wind energy is novel.

The distribution of power deviations, the speed of power
output variations, the distribution of blade position in the
turbines and the flicker emission due to blade position are
estimated using analytic formulas and a few parameters of the
turbines. The model can be completed with small-scale site
models to extend its applicability and improve its accuracy.

The flicker emission of a farm is reduced typically in a
factor VN respect the turbine emission. Moreover, the flicker
is rarely a power quality problem in farms because the short
circuit ratio is high due to transmission network requirements.

The wind farm oscillation amplitude due to uncorrelated
sinusoidal turbine fluctuations is a Rayleigh random variable
of with scale parameter VNN times the uncorrelated fluctuation
of a single turbine. The instantaneous fluctuation is distrib-
uted normally with standard deviation VN times the turbine
uncorrelated fluctuation. The squared instantaneous fluctua-
tion shows a gamma distribution with unity shape factor.

The power fluctuation when a blade passes in front of the
tower can be represented by power dips. The number of
simultaneous tower shadows happening at an instant is a
binomial random variable. Tower shadow events are charac-
terized as a generalized Poisson process and its average
frequency is N times the tower shadow frequency of a single
turbine.



Chapter 6:

Characterization of wind gusts

wn the time domain

6.1. Introduction

he wind speed fluctuations are defined in this chapter as

the deviation of the instantaneous wind speed in the
longitudinal direction, AU,;, from the average value,
(Uyina), (usually computed averaging 5-60 minutes). The
changes in the wind direction are not considered since the
wind speed has a more steady behaviour than its module.

Although the probability distributions of wind speed
fluctuations, AU, fits a Normal distribution respect the
average (U,;,s) during periods shorter than one hour, the
observed accelerations have wider distributions (‘longer
tails’) in general [221].

In words, the probability of extreme accelerations is bigger
in reality than the predicted by a normal model and the real
sample distribution has bigger extreme values than a normal
process with the same average and variance.

Despite these deviations from the normal behaviour and
because of the lack of a better description, the gust, defined as
the maximum wind speed during a measurement period of 5-
60 minutes, is often calculated using a Gaussian process as an
approximation and then a transformation is usually applied
[223].

The characteristic shapes of gust events are described in
[214, 215, 216]. For calculations of the mechanical loads on a
wind turbine rotor, it is necessary to have detailed
information about the spatial structure of the 3-D wind field.
The Mann turbulence model [94] is actually preferred to the
Veers model [217].

The interactive program EquiWind [218] for the generation
of random samples of equivalent wind gust has been
developed. Many of the graphs presented in this chapter have
been obtained with this program.

6.2. Statistical distribution of wind
variations depending on turbulence
mechanism

On one hand, the approximating the equivalent wind as a
Gaussian process is a reasonable estimation for small
disturbances since small-scale turbulence is the outcome of
many  independent  (considerably low  correlated)
contributions. On the other hand, big wind variations (big-
scale turbulence) are due to external forces which are
correlated and hence, the experimental probability tails of
extreme events are remarkably heavier than the ones from a
Gaussian distribution.

One of the key points in the probability theory is the
Central Limit Theorem, that states that under quite general
conditions, the distribution of the sum of many independent
random variables converges to a Gaussian distribution.
According to this theorem, the Gaussian distribution (also
known as Normal distribution) is suitable for describing a
wide range of experiments and experimental data [219].

The wind difference AU ;0= Uping— (Uwina ) for lags of
a few seconds is, according to [214], leptokurtic (positive
excess kurtosis ranging from 0 to 3) and quite symmetric
(skewness ranging from -0.4 to 0.3). For short time scales, a
normal process is a reasonable approximation for small wind
variations but it underestimates bigger gust by more than an
order of magnitude comparing to real measures, especially at
complex sites since wind deviations are leptokurtic.

The measure of the frequency of occurrence of rare events
requires long records, but these records are not customarily
available and some assumptions must be made to guess a fair
probability from limited data.

Extreme weather conditions are due to the chaotic
atmospheric behaviour. The statistical distribution of extreme
wind variations depends on the prevailing mechanism
involved in gusts: the macroscopic wind speed depends on
microscopic system dynamics with strong interactions
ranging from tiny to very large scales and this is a challenge
for meteorologists and chaos theorists. Despite the abundant
research done in atmospheric turbulence, this topic is far from
concluded and it is out of the aim of this thesis.

Notwithstanding these facts, normality could be a
compromise between accuracy and traceability and a sensible
choice for its remarkable theoretical properties. However, the
estimation of extreme events should be corrected to account
the real behaviour of the wind.

In general, the normal approximation is an adequate
estimate of the probability of the more frequent wind
variations (deviations from the wind, in relative terms, less
than two times the intensity of turbulence). However,
experimental measurements have shown that the extreme
variations  of  wind (A Uuyd/(Uping) > 2 Cpuwind)  are
underestimated by the normal distribution. The PDF of wind
deviations during a few seconds is close to a broken line in
logarithmic scale at larger deviations (i.e., double exponential
tails) [220, 221, 222, 223, 224]. The probability density in a
semilogarithmic-scale converges to two lines —typical of the
Laplacian distribution, also called double exponential
distribution — instead of converging to a parabola —Gaussian
or normal distribution.
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In the subsequent subsections, some turbulence mecha-
nisms are compared to the observed distribution of wind
turbulence. A naive analysis of the turbulence will be shown,
where some mechanisms are negligible; others are important
or even dominant at certain scales or in some events.

6.2.1. Wind distributions in the
literature

The results of an extensive measuring campaign with a
LIDAR sensor of wind between 40 m to 220 m above the roof
of the Institute of Aeronautical Design at the University of
Stuttgart can be seen in the report [225]. In Fig. 80, the
distribution of wind speed variations AU,,,, respect the
average at 120 m in intervals of duration 7'=1,5s,4,5s, 15
s, 48 s y 162 s (graphs displaced from top to bottom) show
that the average occurrence frequency resemble a broken line
to two lines that meet at the average semi-logarithmic scale.
To avoid overlapping charts, the graphs have been shifted
downward. The points correspond to the measured occurrence
frequency and the lines correspond to the fitted probability
density function in [226]. According to Fig. 80, the wind
speed variation A U,,,, follow a Laplacian distribution instead
of a Gaussian distribution.

log1g p(Svp)

SVh [G]
Fig. 80: Measured and fitted probability density of instantaneous wind minus
the instantaneous wind at T'=1,5s,4,5 s, 15 s, 48 s and 162 seconds before
(from top to bottom). For great clarity, the plots are displaced downwards.
Reproduced from M. Wichter et al. [225].
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Fig. 81: Probability distribution of longitudinal wind variations (u) respect
the average longitudinal velocity (U) in Oak Creek (California) at 80 m. The
dark blue line corresponds to the actual probability density and the light pink
line corresponds to the normal distribution fitted from data (the vertical axis
is in logarithmic scale). Reproduced from G. C. Larsen, [221].
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The Fig. 81 shows the wind speed variations A U,,,, in Oak
Creek (California) at 80 m above the surface. The wind speed
variations A U,,,, are adequately characterized by the normal
distribution up to |AU,pd/{ Uping) < 2,8 O ey bUt bigger
wind variations are underestimated by several orders of
magnitude.

The actual distribution of wind variations can be obtained
transforming the normal process to other process with the
target probability distribution. The simplest memory-less
transformation is a continuous and strictly monotone function
that maps each point of the actual distribution into a point of a
normal process with the same mean and variance.

The distribution of the lateral wind component in Fig. 82
fits even better to a broken line than the longitudinal wind.
Thus, the lateral wind has a Laplacian distribution, also called
double exponential distribution. For example, the
transformation (352) convert the normal process z(t) into the
observed process y(t), which has a Laplacian Distribution,
that some authors consider that belongs to the family of
generalized Gaussian distributions [227].

10
T

I
-0.5 AZ'I \ 0.5 1 1.5
/MY
/oo |1\

F A

0.000004 \

——Measured PDF
—— Gaussian PDF

PDF

viU
Fig. 82: : Distribution of lateral wind variations (v) respect the average
longitudinal velocity (U) in Oak Creek (California) at 80 m. The dark blue
line corresponds to the measured probability density and the light pink line
corresponds to the normal distribution fitted from data (the vertical axis is in
logarithmic scale). Reproduced from G. C. Larsen, [221].

In fact, Fig. 83 from [228] shows a very good fit of power

generated hourly in a wind farm and in Western Denmark to a
double exponential distribution.
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Fig. 83: Changes in average generated output from wind farms, based on
hourly averages. Reproduced from B. Fox et al. [228].

The data measured at the airport of Florence in [229, 230]
also show a Laplacian distribution of AU,,,,. In those works,
a model based on superstatistics was used (this term is used to
refer to the stochastic properties of the statistical parameters).
Those works present a generalized Boltzmann factor which
fits a generalized g-exponential distribution from the
measured quantiles. A Laplacian distribution has been added
in the experimental distribution of Fig. 84 for comparison
with the normal distribution and the g-exponential.
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Other authors [231, 232, 233] have fitted the experimental
data to a family of stable distributions. For instance, Fig. 85
shows the wind speed deviations during a 58 day measuring
campaign during the years 1998-1999 in the Dansk platform
Roedsand at 30 m above the Baltic Sea.

Longitudinal difference distribution
\ u {t)=VfWY05(t) ) Vfwvzsm

0

mean = -0.052

o =226

skewness = -0.67 i .

kurtosis = 9.63 i A -
B Corrected eq 3

zq1=0.75
e1=11

5 =297
q=1.42
¢2=015
corr = 0.063

° (b) -

U=(u-<u>)lo)
Fig. 84: Comparison of the experimental probability distribution of AU,
(circles), the Gaussian distribution (dashed red curve), the g-exponential
distribution for q=1.42 (solid thick black curve) and the Laplacian
distribution (a blue dot-dashed broken line) in the Florence Airport.
Reproduced from S. Rizzo and A. Rapisarda [230].
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Fig. 85: Measured and fitted probability density of instantaneous wind minus
the instantaneous wind at 7' = 10,2 s, 10 s, 20 s, 200 s and 2000 seconds
(from top to bottom). For great clarity, the plots are displaced downwards.
Reproduced from F. Bottcher, St. Barth, and J. Peinke [231].

In a generic case, an adjustable distribution (such as the
generalized Gaussian  distribution, the g-exponential
distribution, the Type IV Pearson distribution, stable
distributions or the type I Gummbel distribution for extreme
value) could be adapted reasonably well to the frequency of
occurrence of wind variations in a pilot site. The
transformation f of the normal process observed is obtained
by equating the cumulative probability distribution of the
adjusted observed process y(t) and the distribution standard
process x(1):

CDE,)[y(1)] = CDE, ) [x(?)] Vy(t) = flz(t)] (345)

In the following sections, some mechanisms involved in
the turbulence will be analyzed to discern the complex
relationships that emerge. To understand the atmospheric
interactions, the main mechanisms will be compared,
indicating their importance and scale of influence.

6.2.2. Simplistic models based on energy
or momentum transfer

A) Wind distribution driven by geostrophic wind

In the free atmosphere (at 1 km or higher above the
surface level), the geostrophic wind has a low vertical
component and the influence of the orography is smaller. At
higher levels of the atmosphere, the wind can be considered a
2-D random vector Uyng, free atmosphere @nd it can be modelled
by a complex normal random variable, which has circular
symmetry (all directions are equiprobable) and Rayleigh
modulus distribution.

The wind direction changes in the surface layer due to
orography and Coriolis forces (Ekman spiral), resulting in
some preferred wind directions. However, the modulus of the
speed at the atmospheric boundary layer |UWM1 L: U ying can
be considered a fraction of the speed at geostrophic layer due
to the momentum transfer due to air viscosity. If the
proportional factor is fairly constant, then the modulus of the
wind speed at geostrophic and boundary layer has the same
type of distribution, i.e., a Rayleigh distribution.

Since the previous assumptions are oversimplifications,
real wind modulus distribution at atmospheric surface layer is
usually represented by a Weibull distribution, which is the
generalization with one extra parameter of the Rayleigh
distribution. The Rayleigh distribution is a particular case of
the Weibull distribution with a shape factor k = 2, typical of
the wind distribution in mild climates.

B) Turbulence driven by momentum exchanges

Notice that considering the wind a normal process is
equivalent to assume that speed deviations in the considered
direction are due primarily to random momentum exchanges
(neither pressure differences nor energy exchanges).

In laminar regime, friction governs the fluid and then the
prevailing process is the momentum exchanges by viscous
forces, which are proportional to relative velocity differences
in the flow. Laminar regime happens at low wind speeds,
stable meteorological conditions and low roughness surfaces.
In such regime, flux speed is primarily the outcome of the
sum of many momentum exchanges.

The momentum exchanges can be in the same direction
than the wind (longitudinal direction) or transversal (vertical
or lateral). However, only the stream wise components
produce noticeable effective turbulence, as aforementioned.

Since momentum is proportional to wind speed and
momentum frictional exchanges are proportional to wind
speed curl (a linear operator on spatial speed differences), the
central limit indicates that AU,,, is approximately a
Gaussian process if the momentum exchanges due to
viscosity are uncorrelated.

C) Turbulence driven by power exchanges or by static
pressure changes

In turbulent flux (typical of high wind speeds, gusty wind,
unstable conditions or rough surfaces as brave sea and dense
vegetation) the viscous forces decreases. In such situations,
the fluid can be dominated by power exchanges and energy
balance.
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Since the mass density of the air near the ground surface is
fairly constant and the wind speeds are much smaller than
sound speed, then the air flow is fairly incompressible. Given
that the viscous forces are small in comparison to inertial
forces in the stream, then the viscosity of the flow can be
neglected (inviscid flow). Then the energy per unit volume
along a streamline is fairly constant provided there is no heat
or energy contribution and the Bernoulli equation is
applicable to any streamline in an Eulerian reference:

2—1— P9 R~ energy per unit volume
(3406)

where U,  is the speed measured in an Eulerian reference

(i.e., the wind speed measured with an anemometer) and the

static pressure is p.

1 _
D +5pai7' U

wind

The air density p,; is almost constant in the atmospheric
boundary layer for short lapses. In a fixed reference, the
height h and the gravity constant ¢ in the anemometer are
constant. However, the height h and the pressure p can
change along the streamline and the streamline is not constant
along the time.

If there is a power or heat transfer in the flow, the
volumetric density of power exchange can be computed
deriving the former expression:

Volumetric density of power exchange =

jt P45 Puir|Usina g h|= (347)
= Pair® -d+d—p+pvg%
air @ | Y win gr  Paird
where ~the modulus of the wind acceleration is
0 = d|U,|/dt.

The kinetic energy density is, expressed in the longitudinal,
vertical and lateral components (see Fig. 86):

2
/2 = Pair (U120ng+ Ugertical+ Ul%zteral)/Q

pair|U (348)

wind

Fig. 86: Control volume laterally limited by stream lines upstream the
turbine.

The kinetic energy in terms of the wind components is:

2 —772 2 lf 172 2
A(Uwind) - Uwind_ < Uwind > ll)fLJ vertical latemlﬂ< Uwind >

~ U]2{mg - <Ulo'ng > + g (349)
where ¢ is the random variable ¢ = U? erticar T U fatemﬁ
< Ul%mg > - < Ugnnd

The kinetic energy density variations are due to potential
energy density and local pressure deviations.

e If the squared longitudinal wind component Uf,mg and
the wind speed modulo A({UZ,,;) could be considered
the outcome of many uncorrelated contributions,

including ¢, then Up =~ and A{UZ;,) could be

considered a Gaussian process. In that case, Uj,,, would
be distributed as a non-central chi random variable. Since

Upny > AU,,) and U, > AUS,,,) » the quadratic
relationship can be linearized without much error and
both U, and U, ., would be approximately normal
processes.

e However, for small relative changes in velocity,
acceleration of the wind could be considered a normal
process. Then, the acceleration integral, Uy, , would be

also a normal process.

The slight asymmetry of U, fmy can be explained from
energetic arguments. However, the general model of energy
transfer is too complex for the purposes pursued in this work
it would require a dynamic model of energy transfer and the
estimation of parameters usually not available.

D) Turbulence driven by dynamic pressure gradients
respect the flow

According to the Taylor’s Hypothesis, the total derivative
of any conserved field variable is negligible in a Lagrangian
framework. If the energy per unit volume is computed in a
Lagrangian reference [234] moving at the average stream
speed f U ima ) TeSpect an Eulerian reference, such as Fig. 86,
then the energy per unit volume is:

energy per unit volume =
2
%pair (Amed) + Pair9 h

The static pressure in such reference is P(wind) - .The
dynamic pressure is £%pAU,,. , where AU,,, is the
deviation from the average flow speed and + is the shortened
notation of Sign(A U,,,,)- Even though total negative pressure
must be always positive, negative dynamic pressures are
possible.

(350)
~ p(Uwhld):t

If the Bernoulli equation is applied in the Lagrangian
reference assuming applicable the Taylor’s Hypothesis, the
total energy (350) would be fairly constant —neglecting power
transfers. In the new reference, the streamlines corresponds to
eddies floating in the stream. If the vertical size of the eddies
is small, the height influence is negligible. This is equivalent
to assuming that the total pressure (the sum of static and
dynamic pressure) is fairly constant along the stream lines.
Under the Bernoulli assumptions, an increase in the static
pressure would imply a decrease in dynamic pressure and
vice versa.

The dynamic pressure in the Lagrangian reference moving

with mean flow speed is £p,; (AU, ,)*/2 , where the signed
deviation from the mean speed, squared, is

j:(AUwind)Q: Sign(Uwind_ < Uwinrl >) (med_ < Uwind >)2
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The speed deviation from average flow, squared and
projected in the longitudinal axis, cos()(AUme)* is
expected to be proportional to the dynamic pressure
imbalance streamwise respect the vicinity (i.e., the mean
flow) in incompressible air.

If dynamic pressure were the main driving mechanism in
turbulence and this pressure were the sum of many random
and independent contributions, then cos()(AU,nq)> could
be approximated by a Gaussian process. In such case, the
wind distribution might be interpreted as the signed squared
root of a normal process corresponding to the dynamic
pressure surplus (plus sign) or deficit (negative sign) respect
the vicinity (i.e., the dynamic pressure computed from the
flow speed in a Lagrangian reference moving at the mean
flow rate).

Fig. 87 shows that if cos(¢)(AU,q)° Were normal, then
extreme values of AU,;,s would have lower probability,
contradicting the measurements. In other words, its
probability tails would be lighter than those form a Gaussian
distribution (i.e, extreme events would be even more
underestimated!). In addition, the distribution would be
bimodal, in contradiction with the real measures.
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Wind deviation divided by stantard deviation , AU/o
Fig. 87: PDF of a normal random variable X (solid blue line) and the
distribution of +X"* where X is normal (dashed purple line). Both
distributions have unity variance and zero mean

E) Distribution of AU,;,, assuming +(AU, . )% is

normal
If the behaviour of £(AU

wind)l/ 2 were normal, then the
extreme deviations of the wind speed AU

wing Would be more
probable (see Fig. 88). However, the distribution of AU, .
would be very leptokurtic, overestimating the probability of
extreme events (the actual kurtosis [214] ranges from 0 to 3
but the kurtosis of the rooted model is 8,67). In other words,
the actual distribution of AU, . is not as sharp at the mode
as the rooted model (purple dashed line in Fig. 88) neither as

smooth as the normal distribution (blue solid line in Fig. 88).

Therefore, the +(AU,, ,)"/> model can represent the
extreme wind deviations due to the linearly logarithmic
asymptotic tail probability. However, this model does not
represent adequately the small wind deviations, more related

to the viscosity.

wind

=3

S

(=)
-

PDF of normalized wind deviation

Wind deviation divided by stantard deviation, AU/o
Fig. 88: PDF of a normal random variable X (solid blue line) and the
distribution of +X* where X is normal (dashed purple line). Both
distributions have unity variance and zero mean.

6.2.3. Constant probability of
acceleration direction change

The speed in one direction has a maximum or local
minimum whenever the acceleration changes its direction.
The multiplicative process in the turbulence leads to a
probability of acceleration reversal fairly constant.

Moreover, if the acceleration component in one direction
(e.g. longitudinal) has a constant probability of sign change,
the velocity (its integral) will have a Laplacian or double
exponential distribution. In other words, if the probability of
having a maximum or minimum speed is constant, then the
resulting distribution of the maxima and minima will be
Laplacian.

The small deviations related to small scale turbulence are
not so leptokurtic [221]. The wind variations related to
greater scales, such as the hourly wind differences usually
have bigger kurtosis [228] and its probability is more similar
to the Laplacian distribution.

6.2.4. Multiplicative processes in
turbulence due to energy cascade

The difference of turbulence velocity is typically modelled
as a multiplicative process, which is meant to capture the
basic picture of energy cascade in turbulence. The turbulence
have a multifractal nature due to the energy transfer involved
in the eddies. Experimental studies have shown that the
turbulence velocity field in the inertial range can be described
reasonably by power law scaling [250].

According to Tabeling [235], flows in the atmosphere and
in the ocean develop in thin rotating stratified layers, and it is
known that rotation, stratification and confinement are
efficient vectors conveying two-dimensionality. In the
simplest cases, pure two-dimensional equations must be
amended by the addition of an extra-term, characterizing the
effect of Coriolis forces, to represent physically relevant
situations. This term generates waves which radiate energy, a
mechanism absent in pure two-dimensional systems. In more
realistic cases, topography, thermodynamics, stratification,
must be incorporated in the analysis, and indeed full two-
dimensional approximation hardly encompasses the variety of
phenomena generated by these additional terms.
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Approximation in the form of homogeneous and isotropic
turbulence is quite crude for describing many geophysical
applications. Usually, there are two reasons why this
approximation can be violated. One of them is a rapid daily
rotation characterized by a small Rossby number, Ro « 1.
This case is typical for problems of meteorology and physics
of the ocean where its influence is principal [236].

The introduction of rotation leads to substantial rearranging
of the flow, both in the physical and in the wave spaces. In
spite of this, the Coriolis force itself does not produce work. It
can redistribute the energy between the scales and lead to
inverse cascades, which is known in direct numerical
simulations (DNS) as an increase of the kinetic energy on
large scales [237] predicted in the renormalization group
theory [238]. As a result, the slope of the spectrum of the
kinetic energy changes from —5/3 to —2 [239, 240]. This
change is closely related to the break of the energy transfer
over the spectrum [239].

Moreover, the addition of heat transfer leads to the
transformation of cellular convection to the cyclonic
convection.

6.3. Conclusion on turbulence
mechanisms

Experimental studies have shown that the turbulence
velocity field in the inertial range can be described reasonably
by power law scaling [250] related to multiplicative
processes.

The flow rotation increases the kinetic energy on large
scales [237] predicted in the renormalization group theory
[238]. As a result, the slope of the spectrum of the kinetic
energy changes from —5/3 to —2 [25, 240].

The atmosphere shows transitions between stable
conditions that can last a few days. A normal process does not
reflect the non-stationary wind behaviour during long
intervals of time [247].

In [241, 242], a model based on superstatistics and the
generalized Boltzmann factor is derived, obtaining a g-
exponential curve distribution. In [243, 244, 245], a model to
fit stable distributions is derived from wind variation data. In
[246] extensive measures are performed.

Some authors claim that a normal process scarcely reflects
the non-stationary behaviour of the weather during long time
spans, which shows transitions between stable meteorological
conditions lasting a few days. Gusts also have an intermittent
behaviour [247].

In [247], a non-Gaussian wind model based on wind
intermittency and continuous random walks has been
proposed. This effect is due to weather dynamics and can be
treated as a Markov process with state jumps [248].
Alternatively, a simulation method of inhomogeneous, non-
stationary and non-Gaussian turbulent winds is presented in
[249] based in the coherence.

The exponential behaviour of larger variations is a
symptom of multiplicative processes, producing air
acceleration direction changes fairly constant.

Thus, a double exponential distribution will be used for the
calculus of probability of extreme events. This distribution
implies a multiplicative mechanism in the turbulence

according to Eggers [250], leading to stable rates of change
between accelerations and decelerations of the air.

According to Eggers [250], if wind speed difference
AUhmg is computed subtracting the simultaneous
measurements at two separate points, its statistical
distribution slowly converges to Gaussian for distances
greater than the turbulence length scale. Conversely, if wind
speed difference is computed subtracting the measurements at
two separate instants, its statistical distribution slowly
converges to Gaussian for time gaps greater than the
turbulence time scale.

The second chapter of this thesis pointed out that the
lengths and the times involved in turbulence in the
atmospheric boundary layer can exceed 10 km and 250 s,
respectively. The length and time scales involved in
meteorology dynamics are even greater. Thus, the distribution
of AU, ’ is more similar to the Laplacian than to the
Gaussian in most practical cases.

In the seventh chapter, the Laplacian process will be
obtained using a Markov chain approximation to model the
multiplicative stochastic dynamics. However, in this chapter
the Laplacian process will be approximated through a
memory-less transformation of the Gaussian process based on
section 3.3 of [214].

The shape of the gusts will be estimated from the point-to-
point bijective transformation. Since the transformation is
strictly monotone, the estimation of the gust probabilities is
straightforward from the properties of the normal processes.

The advantages of working with normal processes and,
after all, transforming them into processes with the wind
characteristics are:

e You can take advantage of the substantial theoretical
properties of the normal processes to deduce properties of
the actual process.

e The bijective and strictly monotone transformation from
normal to real and vice versa is simple and numerically
efficient. The transformation is derived from the
probability distribution of AU, in any site.

e Larsen, Bierbooms et Al. have studied the average wind
gust shapes in various locations in the excellent work
[214]. They validated the overall approach of the normal
process. However, the normal process are symmetric and
the gust usually are slightly asymmetric (the front ramp is
stepper than the down ramp). A memory-less
transformation of a normal process cannot generate itself
an asymmetric process and a filter can be used to mimic
the actual behaviour.

ong

e The stochastic properties of the equivalent wind can be
obtained with this approach. Instead of using the
PSDy,,(flof the actual wind, the PSD,(f) of the
equivalent wind is employed to derive the characteristic of
the equivalent wind gusts.

e The PSDy,(f) of the equivalent wind is obtained
multiplying the PSD,,,,(f) of the longitudinal component
of the conventional wind by the squared modulo of the
equivalent spatial filter of the rotor, | H,(f)[* (see Chapter 3
for more details).

e Analogously, this approach can be extended for wind
farms. The characteristics of the equivalent wind of a farm
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can be computed from PSDy,,,..(f). It is the power
spectral density of the equivalent wind, PSDy,(f),
multiplied by the squared modulo of the spatial diversity
smoothing filter, | H,(f)[*, defined at the end of the third
chapter.

e Moreover, this approach can be extended to derive the
characteristic gusts of the equivalent wind of a
geographical area. The power spectral density of the area,
PSDyyurea(f), can be obtained analogously to the wind
farm case (see the end of Chapter 3 for more details).

6.4. Memory-less transformation of the
Gaussian process

Several techniques have been suggested for simulation of
non-Gaussian processes —see e.g. the review [251] or the
book [252]. The bijective monotonic transformation has been
selected for this work because it is a simple technique for
achieving the required distribution of speed variations.

Memoryless processes have the same properties if time is
scanned forward or reverse. Therefore, if the rising time of
gust is smaller than the decreasing time or if the process
shows characteristic shapes or intermittency, a more
advanced model should be used. Fortunately, even though the
signal from separate turbines shows characteristic shapes,
their sum tends to loose those features and they tends to a
Gaussian process if the signals are not synchronised (Central
Limit Theorem for the sum of independent processes).

A) Static monotone transform

The method used in this work is a memoryless
transformation from an auxiliary Gaussian processes z(t) of
mean u and standard deviation o (blue solid line in Fig. 91) to
a double exponential y(¢) of the same mean and standard
deviation (purple long dashed line in Fig. 91). Imposing that
the CDF of the normal is transformed into the CDF of a
Laplace distribution (351), the following relation has been
obtained:

CDEF, ;) [y(t)] = CDE, [x(t)]

y(t) = fla(t)] =
= p—Signfa(t)— p]-=Ln

V2

where Erfis the error function.

vy(t) = fl=(®)] (351

|2(t) —

V20

1 Brf (352)

Analogously, the auxiliary Gaussian process z(t) can be
obtained from the measured wind speed y(¢) applying the
reverse transformation of (352):

o(t) = f[y(t)] =

=p+ V20 Signly(t) — u] InverseErf (1 - eiﬁ‘y(twvﬁ (353)

Larsen proposed in [221] a signed quadratic
transformation. The relationship for this transformation is:
2
[(t) — ]

y(t) = flat)] = p + Sign[z(t) — ] (354)

a(t) = £ [y(t)) = p+ Sign[y@®) — (N3 o |y®)— | (355)

ﬁ_
2
E.% 4l /.
-
8 E v
= .o
S 4
£ E "
3 E 7
Ay
< &
T
S e
g o 7
= &
£ 2o
-
= 3 4
= o Y
2.8 |,
LF

—a4 b
g £
=

_fiF

—4 -2 0 2 4

Normal process x(f) with unity variance
Fig. 89: Graph of the bijective transformation of the auxiliary Gaussian
process () into the real process y(¢), with Laplacian distribution, compared
to the identity transformation.

- 6_ 7
.o r
i
S 4l ]
g I
=
B
g I
2
]
: i
g 0
= - s
8
o | 7
N, -2t 4
+ : s
1l
O
w4 |
L4
o i
[Ik]
[
(=]
ﬂl-:; L
5L 4
4 -2 0 2 4

Mottnal process z(£) with unity variance
Fig. 90: Graph of the bijective transformation of the auxiliary Gaussian
process x(¢) into the real process y(t), with signed Chi-Squared distribution,
compared to the identity transformation



88 Wind Power Variability in the Grid — Chapter 6

The probability of deviations smaller than 2 ¢ in absolute
value are similar for the auxiliary Gaussian process z(f) and
for the real process y(t) in Fig. 90: both processes stay within
this limit around 96% of the time. But the differences are
remarkable for extreme deviations (Jz(¢)] » 2 o). The real
process y(?) experience bigger probability of extreme
deviations.

This method can be applied to obtain any continuous
distribution. If wind records measured at greater period than
the average duration of wind gusts are available, the
experimental distribution of wind variations can be obtained
and a transformation can be fitted. The experimental
distribution can be approximated to a suitable parametric
distribution such as g-exponential, Pearson type IV, stable
distribution or Gummbel type I for extreme values.

For example, Fig. 91 shows other transformations of the
normal distribution: the square of a normal random variable
(brownish dot-dashed line) and the 1,2 power of a normal
random variable (green dotted line). Generally, a power law
transformation or a type IV Pearson distribution can be used
to closely mimic measured distributions.
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Fig. 91: PDF for different distributions (Normal: solid line; Laplacian: purple
long dashed; X* distribution where X is a zero mean normal: brownish dot-
dashed line; X*° distribution: green dotted line). All the distributions have
been adjusted to unity variance and zero mean.

The original and the transformed process have the same
mean and variance (i.e. this is a second-order statistical
approach of the real process). Hence, the remarkable
properties of normal processes are used to make the problem
tractable and finally, the non-linear transformation is applied
to achieve a process with the target distribution.

This transformation can be used to infer properties such of
occurrence probability of analyzing extreme events from the
properties of a Gaussian process.

On the one hand, a normal distribution fit of wind speed
represents accurately small deviations, it underestimates rare
events. On the other hand, a Laplacian distribution fit of wind
speed represents accurately rare events but it underestimates
common events.

In general, second order statistics will be used and
normality will be assumed unless otherwise stated. For
convenience, the effective wind speed in this chapter will be
treated as a Gaussian process unless for the study of extreme
events and gusts, where the memory-less transformation to a
double exponential distribution will be applied. This is a
conservative approach which makes the wind variations

tractable and it tends to overestimate slightly rare events. Fig.
92 represents the normalized distribution of the powers of
equivalent turbulence using a double exponential model for
the effective wind speed.
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Fig. 92: Normalized PDF of AU ;4 in blue solid line, A(Uzq) in purple
dashed line and A(U gq) in brownish dot-dashed line. The distribution of
AU, eq s assumed to be Laplacian (double exponential) and the three PDFs
have been scaled to have unity variance.

B) Alternative dynamic models

Other limitation of the memory-less model is that the
transformed process cannot reproduce accurately the very
slow dynamics of stable weather [253]. These patterns affect
wide areas and their influence in power production is highly
correlated. Therefore, the transformed process is valid only
up to medium horizons. For longer horizons, other
approaches as the stochastic differential equations (SDE) are
more suitable.

SDE can be approximated by Markov chains [254], and the
properties of the process are usually obtained applying matrix
algebra. The Markov process is indeed multiplicative and
hence, it is suitable for modelling wind fluctuations, that
exhibit this behaviour.

In the following chapter, a simplified approach to account
slow weather dynamics based on Markov chains will be
presented. The Markov chains are strongly connected to
exponential distributions and they are a tractable
discretization of diffusive stochastic differential equations
with jumps [255].

C) Conventions and assumptions in the rest of this
chapter

The experimental probability distribution of AU, is
primarily Lapacian [221, 223, 224] -a broken line in
logarithmic  probability  scale—.Thus, the bijective
transformation (352) and its inverse transformation (353) will
be used, unless stated otherwise.

The gusts of the real process y(f) are usually characterized
in the time domain. Then, the equivalent parameters of the
auxiliary Gaussian process z(?) are obtained from (353) in the
time domain. Then, the properties are determined from the
power spectral density of 2(t), PSD,(f), that is assumed to be
similar to the PSD,(f) of y(t) (second order statistical
approximation).

This approximation is conservative, since it does not
underestimate extreme events and the main characteristics of
wind variations can be derived.
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6.4.2. Maximum speed expected in a
register of length T

The maximum wind speed in an interval can be estimated
from the theoretical properties of the stochastic processes.
The stochastic theory related to local maximums has been
extensively developed. The pioneering work of S.O. Rice in
[256] initiated a new approach to characterize the extremes of
a stochastic process. D.E. Cartwright enhanced the properties
of the maximums of normal processes in [257].

The work of G.C. Larsen, W. Bierbooms y K.S. Larsen in
[258] is focoused in the statistical properties of wind gusts,
comparing the analytical results and the measurements in
several sites of the database www.winddata.com [259].

A) Case I: the equivalent wind difference A U,, has a
Gaussian distribution

In this subsection, the equivalent wind U, (f) will be
assumed stationary (the properties of U, (t) does not vary in
time and therefore, the weather evolution will be neglected).
It will be also assumed that U,(f) can be considered a
broadband normal process since the spectrum of the wind
have a wide range of frequency components.

Under such assumptions, the expected maximum of
AU,(t) in arecord of duration Tj is:

Ty Caveqydt

2 Tleq

AU

max,Normal

2Ln (356)

= UUﬁ,q

where the standard deviation of the equivalent wind speed,
0y, and the standard deviation of the equivalent air
acceleration, o, /4., can be computed from the equation (6)
of [63].

In practice, oy, and oy, in (356) must be estimated
from records of duration 7, and where there is not a
significant weather change (the standard deviations increase
with the interval duration because the variance due to the
meteorological dynamics increases for longer durations).

It should be noted also that the equivalent speed (referring
to a single turbine rotor or a set of turbines) is filtered respect
the wind that would be measured with an anemometer of
instantaneous response. Therefore, the more smoothed is the
equivalent wind, the smaller is the maximum expected
deviation.

Moreover, the instantaneous speed can contain a very brief
maximum due to microturbulence. However, this ephemeral
maximum correspond to a very small area of the rotor and
this maximum does not have greater importance in our study
nor could post due to the limitations of the real anemometers
(they have a non-negligible inertia and they measure the
speed of a certain air volume).

In Fig. 32, the cut-off frequency is f, ;= 0,0245 Hz for
mean wind speeds (U,,;,,» = 10 m/s y and integral turbulent
length scale ¢, = 1000 m and rotor radius R = 50 m. In
Fig. 39, the cut-off frequency is f, ;s = U, /(611) = 0,033
Hz for =0 and the same (U, and R. This indicates that
faster wind fluctuations than 1, ~ 1/f,,,~ 40 s are filtered due
to the spatial structure of the turbulence and the size of the
rotor.

Experimental measures have shown that the wind
turbulence is averaged along the rotor disk area and the actual
filter order is r ~2. The fluctuations of the equivalent wind at
10f,,.p» are attenuated 20 times respect the instantaneous
wind speed measured with an ideal anemometer.

Most meteorological anemometers and data loggers
systems have a maximum frequency response f, <l Hz.
Thus, the quicker gust that can be considered is half cycle at
the maximum frequency, T, ® (2f,..)" > 0,5 s. In fact, the
average gust duration of a turbine with R =50 m and (U,,,,,) =
10 m/s is many times t,, (see Fig. 93). A synthesized
equivalent gust for R =50 m and (U,,,,) = 10 m/s is shown in
Fig. 93 (thick line) with the average shape (dot-dashed line)
along its standard deviation (dashed lines). In average, the
gust is inside the dotted range the 68,2 % of time.

Symthetized sample of equivalent wind peak gust
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Fig. 93: Equivalent peak gust of AU,, =1 m/s, generated from PSDy,,(/).

Thus, the standard deviation of the equivalent wind speed
o, and the equivalent air acceleration o0y, must be
estimated considering only the variations in the range from
Fonin=1To10 [0 0,5/T -

Fonax
ot~/ PSDy, (f)df (357)

fmax
Odveaya=, " @x P PSD, (1) df (358)

If f

mar

is infinite and the estimated PSDy,(f) does not
decrease quicker than f? at high frequencies, the integral
(358) may not converge, as pointed in [223]. However, the air
acceleration is bounded and physically ., is finite due to
the air viscosity and compressibility. Since t,,, is much
smaller than the actual gust duration, the value f,,,, only has a

residual effect in (356) to (358).

The expected maximum deviation of the longitudinal wind
during a minute, measured with an ideal anemometer, is
between 2 and 3 times its standard deviation:
AUy mas, . Normal O viong. 7= 60s =~ 2,1 'y 2,7. This value has
been obtained for the usual wind spectra defined in the first
chapter of this thesis.

naxr

The equivalent wind speed is smoother and the ratio
AU, mmaz.Normal 1T veq 7= 605 18 typically between 1,4 y 1,9 for a
multi megawatt turbine.
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The formula (356) is fair for the longitudinal wind
difference in a point, AU,,,,. However, the expression (356)
underestimates slightly the equivalent wind difference AU,
for periods smaller than one minute because the actual
PSDy,,(f) does not correspond to a true broadband process in
the frequency range between f,,= 1/60 Hz and f,, (the
frequency content is very biased towards the low frequency
range).

The probability of staying within a range corresponds to
the normal distribution in a Gaussian process (see Fig. 94).

The area shaded in pink corresponds to less than a standard
deviation offsets respect the average. A normal process has a
swing less than a standard the 68,2 % of the time (probability
of the pink region: 34,1 % + 34,1 % = 68,2 %). The process
stays within two standard deviations the 95,4 % of time (pink
and beige regions: 13,6 % + 34,1 % + 34,1 % + 13,6 % =95,4
%). The process stays within three standard deviations the
99,7 % of time (pink, beige and green regions).
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Finally, it should be noted that normal processes are
symmetrical. Hence, the minimum value expected in an
interval of duration Ty is AU,,;,=-AU,, ...
B) Case II: the equivalent wind difference A U’,, has a
Laplacian distribution

Since the transformation (352) is monotone rising, the
expected value of the Laplacian process can be obtained from
(352) and (356), substituting z= 0 and o= 07, :

o A
AUHHX = — Ueq Inl1l— ETf max,Normal
wx Laplacia V2 V2 Tlreq
(359)

1

U

eq,Laplacian

= (U,,) + AU, (360)

eq,Laplacian

The maximum equivalent speed deviation expected in a
Laplacian process is similar to the Gaussian case since
AU s Normal ! Tlieq <3 (see~ Fig. 90). Ip fagt, the expected
value computed with (359) is an approximation because the
transformation (352) is not linear and the actual distribution

of wind must be estimated from real data.

Fig. 95 shows the density of the Laplacian distribution.
Compared to a normal with the same variance distribution,

the probability is bigger very near the average and at the tails,
AU/ Oleg ™ 2-

max
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Fig. 95: Normalized PDF of the Laplacian distribution.
It should be noted that the transformation (352)
symmetric. Hence, the minimum value expected in an interval
of duration Ty is AU,,;,=-AU,,,, for the transformed process.

maxr

C) Case III: £AU,,” is a normal process

Provided the signed squared root of the wind speed
deviation +A U(,q‘/z(t) is  stationary (the stochastic
characteristics of £A Unql/z(t) does not vary in the considered
interval) and A Unql/z(t) can be considered a broadband
normal process (the wind fluctuations do not present a narrow
frequency band of fluctuations), then the maximum value of
+AU, /z(t) expected during an interval of duration Tj is:

Vs
* AUIIchX ,Normal T iAU(/q )/ dt

(361)
2 Tenu

RN

eq
where o, ..., is the standard deviation of the signed squared
root of the wind deviation, £A Ueq/z(t) and o, is the

YEAUL)/dt
standard deviation of the derivative of =AU,

(0. "

These standard deviations can be computed analogously to
Teq Y Oaveq/ar after generating the process +A Unql/z(t) from real
data and estimating its PSD:

2 I +
UiAU/ PSDiAU/ (Hdf (362)
[ mas +
iAU/ )/dt f @nf) PSDd(iAU/)/df(f>df (363)

mm

or dividing the sampled process +A qu/z(t) in chunks of
duration 7T, and using the conventional estimation of the
variance of samples in the framework of an ensemble of
realizations of a stochastic process.

Finally, the transformation necessary to obtain equivalent
wind speed U! ,(t) from £A U, (1) is:

n

UL =

eq

BN
NEX

where U:q(t) has been normalized by NEW T, to conserve
the variance between the processes +AU/ ()" and U, HUR
Therefore, the second order statistlcal appr0x1mat10ns
O e ® Oueqg and O g’y ar ™~ Odveg/ar €AN be used since the
transférmation (364) mamfams the mean and variance of the
equivalent wind.

U,,) + Sign[+AU 2 (#)] (364)

+AU”

eq
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Fig. 96 shows the density of the square-root-normal
distribution. Compared to a normal or a Laplacian with the
same variance distribution, the probability is bigger very near
the average and at extreme values, AU,/ Oreg > 3

0.4

02r

01k

PDF of nommalized wind deviation

0.0

-4 =2 i]
Wind deviation divided by its stantard deviation, AlTfo
n
Fig. 96: Normalized PDF of U e q(t) (square-root-normal distribution).

6.5. Unconditional generation of random
samples

6.5.1. Notation of sampled stochastic
processes

In the rest of the chapter, the continuous normal process
2(t) would be sampled at time ¢ = 0, Az, 2A¢, ... , (N - 1) At.
In other words, the continuous process (%) is sampled evenly
N times in the interval ¢ € [0, (N - 1) At] with a time step At
and a total duration (N - 1) At between the first and the last
sample.

For convenience, the following conventions will be used:

The signal duration is Ty= N At,

The conventional frequency resolution is Af=1/Tj,

The angular frequency resolution is Aw = 27Af

N is even and N>4.

The notation of the continuous process is a(?).

The notation of the discrete process is a{k] or z, at
instants k=0, 1,..., N-1.

e Vectorial notation will be used to refer a realization of
the stochastic process.

The main properties of the Gaussian or normal processes
can be found on most basic bibliografy on stochastic
processes (e.g., chapter 8 of [260], the tutorial [261], the book
[262] or chapter 13 of [263]).

The Karhunen-Loéve orthogonal decomposition of a
normal process is its Fourier transform. The variance of a
normal process in a frequency band does not depend on the
signal duration Tj. In fact, the Fourier transform of a discrete
normal process is a vector of complex points and distributed
normally. The points of the Fourier transform have zero mean
and variance proportional to 7). Thus, a factor V7, will be
implicitly applied to the Fourier transform, denoted by ¥, for
obtaining a spectral measure whose properties independent of
the duration Tjof the sample.

The Fourier transform of a continuous stochastic signal
2(t) of duration T}, divided by VT, is called spectral density
of the stochastic signal and its notation is X (f):

(365)

)_(»UAT(f) will be referred as stochastic spectral phasor
density or just (stochastic) phasor for short. When the
duration T' of the sample is not required, the notation of the
stochastic spectral density X o (f) or X plk]  will be
simplified to X(f) or to X[k]. The units of X +(f) are the
ones of () per square root of Hertz (prov1ded time ¢ is
measured in seconds).

The stochastic spectral density )Z' +(f) has been defined in
(365) so that its variance is the two sided power spectral
density of the signal, <LXUT(f)|22: PSD,(f). The power
spectral density of the signal fully characterizes a normal
process and it is independent of the signal duration.

The Discrete Fourier Transform of the sampled process
2[ k] will be denoted by DFT,[k]. Analogous to the discrete

case (365), the DFT[k] is scaled to match the phasor
X, r(f[=k/T}):
N-1 7J—7rki
DFT k] = afk] (366)
=0
H T N-1 271' ; T
;ﬂ alk]e QDFT{ [k]} =
N 5 N (367)
T
:ﬂmw
N
Var[|X, ;K] = (| X, z[KP ) = PSD, (f =k/T))=
(368)

%PSD;(f:k/TO)
V1<k<N/2

Thus, the discrete Fourier transform of the real vector af k]
of N samples is a vector of N/2+1 complex random variables
because DF'T,[k] has Hermitian symmetry. The elements 2 to
N2+1 of the vector DFT|J[k] are independent random
variables with complex normal distributions. The mean of
DFT,|Jk] is zero and its variance is proportional to the two-
sided power spectral density of the signal, Var[DFTI [k]] =
(IDFT k)P )= N*T; ' PSD, (f=k/T,).

In meteorology, one-sided power density spectrums
PSD/(f) are preferred to two-sided spectrums, PSD (f).
The variance of the Fourier transform, expressed in terms of
PSD/(f) is:

Var(| DFT,[K]|] = [%] Var(|X, [k]|] =

e (369)
= EPSDWf k/T,)
Var|Re(DFT,[k])| = Var|Re(DFT,[k])| =
(370)

= lVar“DFT [K]]] = N—2P5D+(f:k/T )
9 T 4TO z 0

V1<k<N/2

Since the sampled signal 2{ k] is real vector, then its Fourier
transform has Hermitian symmetry:
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XU’T(_f) = X;,T (f) Vf

The negative frequencies in the discrete Fourier transform
correspond to the last N/2—1 elements of DF'T,[k]. Thus, the
last half elements are the conjugates of the first ones:

DFT. N N -k

Ucl][k] = FXU.T[JC: T

= Conj(DFT, [N~k)) ¥ N2<k<N

(371)

(372)

The original sequence can be obtained back through the
inverse discrete transform:

1 - el
IDFT; [k]=—>" X ,[kleV (373)
o, N =0 ’
N 1%, Pk
alk] = —FZXUT%]G =
JI, V| (374)
N N

6.5.2. Foundations of the unconstrained
generation of random samples

The synthesis of equivalent wind usually consists on the
random generation of a signal with a desired mean level and
the stochastic spectral density of a site [42, 50, 65,153,264].
The simplest method to generate a signal from its spectrum is,
probably, the Shinozuka method [265, 266], which generates
a random signal with a constant power spectrum.

However, the wind shows a variable power spectrum and
the approach used in this chapter will be consistent with the
approach of Wim Bierbooms, Gunner Larsen, Poul Sorensen
et Al. [46, 153, 177, 75, 81, 88, 89, 103, 214, 215, 217, 220,
223, 224, 249, 264]. A simple introduction to the method is
available in [177]. The main features of this method are
summarized in this subsection.

The equivalent wind can be synthesized from a random
spectrum that satisfies (368). Applying the Karhunen-Loéve
orthogonal decomposition of a normal process, the sample is
generated in the frequency domain, producing X[k]
randomly V 1 < k < N/2. Then, the sample is obtained in the
time domain through the inverse discrete Fourier transform of
X[k].

The phasors of positive frequencies, X [k] V 1<k< N2,
are complex random variables independent and normally
distributed with zero mean and variance PSD, (f=k/T}).
Since the real and imaginary part of each point X[k] are
independent, they can be independently generated as real
normal variables. The phasors corresponding to the negative
frequencies are obtained through the Hermitian symmetry
(372). Although the DC term X[0] can be sampled from a
Weibull distribution, but X [0] is typically a datum because
the average wind speed is usually considered a parameter.

This process has been summarized in the block diagram of
Fig. 97. Since the spectral variance of the equivalent
wind, PSDy,, (f=k/T;), depends on the wind regime and
turbine, a program has been developed for estimating it. The
main parameters of the wind and the turbine rotational effects
are adjusted in the tab pane shown in Fig. 98.

The spectral generation is not practical for samples with
many points (for example, for synthetic series of many hours
with high resolution), because it implies computing and
storing very long vectors. In that case, the series can be
divided into portions, each portion can be generated
independently in the frequency domain and they can be
gathered in the time domain. Some overlap of the portions
and a weighting window is required to produce a smooth joint
of the signal portions, analogously to the spectrogram. A
weighting with unity squared sum in the overlapped joints
produces a series with uniformly distributed variance. Finally,
the average wind is added to the signal. This technique only
requires storing the adjacent portions and the portion duration
should be longer than the slowest significant oscillations in
the wind.

A more conventional approach for long samples is to
design a filter bank that can be applied to white noise [42, 50]
to produce a signal with the target spectral variance
PSD_(f=k/T}).

A) Estimation of the wind spectra

The wind spectra at one site and at some atmospheric
conditions can be estimated from high resolution wind
measurements. The standard IEC 61400-1 provides some
guidelines for selecting an adequate wind spectrum for
structural purposes. In fact, the wind parameters shown in
Fig. 98 evolve in time and indeed they can show great
dispersion according to atmospheric conditions (e.g. stable,
laminar or turbulent boundary layer).

The wind smoothing due to the spatial diversity in the
turbine rotor can be adjusted varying the rotor radius R and
the turbulence length scale A; in Fig. 98. The rotor filter is
equivalent to a low pass filter with a cut-off frequency
computed from the expressions obtained in chapter 3:

o Spatial filter from Serensen:

U’ . 2 p2
fo =—< wina ) 09 — 0.0144 41
l AR %]wmd

where ¢, .~ ~ A and the decay constant A is between 5
and 12.

o Spatial filter from Wilkie, Leithead and Anderson:
fcut = 091224 <Uwind>/R (376)

o Spatial filter from the turbulence averaged along the rotor
disk area:

(375)

f;ut S <Uwz'nrl >/(6R)

Serensen, Wilkie, Leithead and Anderson modelled the
rotor filter as a first order low pass filter but some actual
measurements have suggested that the actual order is closer to
a second order in a wind turbine of the megawatt class. In
fact, the model of the turbulence averaged along the rotor disk
area that the rotor filter order is bigger than 1,5, depending on
the wind coherence.

(377)

The rotational sampling can be included in the equivalent
wind. This option is disabled by default in the program
because the effect of the angle of the blades in the torque is
represented more precisely with the method described in
Annex A. Furthermore, this effect represents an almost
cyclostationary feature that feeds mechanical vibrations, in
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contrast to the bursts and wind gusts. However, the model can
include spatial sampling in the equivalent wind to allow
comparisons with other work because some authors have used
this method to include the tower shadow and wind shear
phenomenon.

B) Unconstrained sample generation module

A module for the generation of unconditional samples of
equivalent wind have been integrated in the program
EQWIGUST [218]. The average equivalent wind, the
duration 7, and the discretization step At can be selected in
the tab pane shown in Fig. 99. The average wind speed can be
also modified in the module of the spectral features of the
equivalent wind, since the spectral variance density is usually
considered proportional to the wind speed.

All modules that generate synthetic samples have a control
to view a random sample from a set. This control selects
different seeds in the random generator used in the random
sample. Finally, this module also includes some options to
modify the appearance of the graphics.

6.6. Peak type gusts
6.6.1. Gust concept

A gust of wind can be defined as a wind speed deviation
out of their usual range of oscillation. The most common
measure of the normal fluctuation level in the wind is the
turbulence intensity, defined as the ratio of the standard
deviationoy,, ., to the average (U, .,)of the wind speed.
According to the IEC 61400-1 standard, the turbulence
intensity usually lies between 12 % and 16 %. This standard
also defines the most extreme gust during generating.
However, some studies differ in shape and probability of the
most extreme gust that can experience the turbine [214, 215,
2207].

In this chapter, the gust concept will be extended to the
equivalent wind. The turbulence intensity concept will be also
extended to the coefficient of variation of the equivalent
wind, oy, /(U,,) -

Generate a vector of N/2 random numbers with
Gaussian distribution, zero mean and unity
variance

Generate another vector of N/2 random numbers
with Gaussian distribution, zero mean and unity
variance

v

v

Multiply each element £ by its standard
deviation:

PSDY, (f=Fk/T;)

Multiply each element k by its standard

deviation:

PSD}, (f=k/T;)

v

v

Lower real part of the spectrum (1<k <N/2)

Lower imaginary part of spectrum (1<k <N/2)

v

Complex spectrum for positive frequencies (1<k <N/2)

v

DFT,

Vegl k] = Conj(DFT

Ueq

Obtain the spectrum of negative frequencies applying the
Hermitic symmetry:
[N —

Bl) Y NR2<k<N

v

Set the average wind speed: DF'T};

0] = N{U,,)

v

Compute the inverse Fourier transform, neglecting the
imaginary part due to round off errors.

v

Apply the transformation between the normal process ()
and the real process y(t)

Equivalent wind

U,

€q

[4

Fig. 97: Flowchart of the generation of unconditioned samples of equivalent wind.



94

Wind Power Variability in the Grid — Chapter 6

Tipo de espectro del viento: IEspectru:- Yon Katman

[

Viento altura buje Ues: !_ -‘l JI 0
Radio del ratar R JI 4
Lon duy JI 47
iy = 47 m segdn IEC £1400-1)
Intensity Turbulence 15 mjs, T1g g JI 0.14
o , ' |
—L  due to spatial sampling:  e— 0.5
PSE [p)ade] -
Elade frequency [fy|sde= Sroror=/E0): JI 1
Relative bandwidth of rotor oscillstions at fy, .. JI 0,05
Typical azcillati litude at
Relative RIS oscillation: —omee o 2L E Folade JI 0.0
y 2 windspeed
Rator flker [first order low pass filter) [
Four = 01224 Ueof R, = 00298537 Hz
Spatial sampling (|
[amplification factor at f)_ 0]
Spectral Density of equivalent wind (3D
1000 — T T T T T
1k
.
L
g 0.001
% 10-% b
k=]
a
L4
(="
0w
10—12 1 I I I 1 I
104 0.001 0.1 0.1 1 0
Fequanicy f [FE]
The area beneath the FPSD(f) plot in Log—Lin axis is the variance of the
erpuivalent wind and the height is the relative contribntion at each frequency £
T T T T T T
121

—
=
T

=]
o
T

=]
-
T

FEPED[{] = relative variamce [JJ:L,I's]2 at frequeny f

[N ! !

T00001 Hz.. 100 Hs =
) s B A
v shadowed area =126 m/fs

-4 0.001 0.0l

01 1 10

frequency f 5]

Fig. 98: Module of selection of the equivalent wind spectrum characteristics.

1
100




Ch. 6: Characterization of wind gusts in the time domain

Transform of the Gaussian process:  Mone [Gaussian distribution) |Lap|acian Distribution 3% Distribution [% iz Gaussian]

Qindy [rn 51 J' 10
Timne [5] '—JI &0
At [=]: 0.9375 |

Generated sample [generate new sample

to update settings modified on other tabs):

joined v
filing [+

Fit wertical scale to sample -

JID

Synthetized wind senes

s

12

{Wind) + 2 Ooied i irterral T

Y (Wind) — crwind in iermal 7
Windy — 2 oind i interma

e quETLCy ponareT CoTdeTd [J::LJ"s]2

FPSDM

time t[£]

Frecmuency content of the normal sample
(real and imaginary part of the power specti)

sk

04t —
[ .::smph:'-.n" surn of shadowed area =

03l =043 mys ]

=]
b
T

=]
—

on :
0.02 0.0s 0.10 0.20 0.50

frequency f [F]

Fig. 99: Module of visualization of unconditioned samples of equivalent wind.

95



96 Wind Power Variability in the Grid — Chapter 6

The equivalent wind is closely related to the power output
of a turbine, wind farm or region, depending on the
viewpoint. Since the power curve is typically an almost
monotone function with a non-increasing region and a non-
decreasing region, then a peak of the equivalent wind
involves another edge of the power output. In the increasing
region, a positive extreme in the equivalent wind produces a
positive peak of the power output. In the decreasing region,
the sign of the extremes are reversed. Therefore, the
equivalent gusts produce extremes in the power output.

The gusts are basically characterized by:
o Its amplitude or the deviation from the average wind [225].
o [ts shape [214, 215].
o [ts characteristic time (its typical duration) [223].

e Its probability or their frequency of occurrence [258]. A
similar parameter is the average time between gusts, which
may be affected by episodes of gusts bursts.

It should be noted that the value of the turbulence intensity
and the power spectral density of the equivalent wind are not
sufficient to estimate the likelihood of the less frequent gusts.

In addition to the turbulence intensity and to the power
spectral density of the equivalent wind, the distribution of the
wind deviation should be also known for assessing the
likelihood of the less frequent gusts. In a normal process,
wind variations greater than three times the standard
deviation, AU /o, >3, happen only 0.3 % of the time. If a
process follows a Laplacian distribution, AU . /o, > 3
happens only 1,6 % of the time (event is 5 times more likely
than in the normal case). If the signed squared transformation
(364) is applied to a normal process, then AU /o, > 3
happens only 2,2 % of the time (event is seven times more
likely than the normal case). Apart from the probability
distribution of the wind deviation AU By the probability of
occurring a gust during a period T, is influenced by the
number of times the wind speed deviation and its acceleration
crosses a certain threshold. The theoretical distribution of the
extremes in normal processes can be found in [256, 257]. But
since the wind behaviour differs from a normal process, the
estimated probability of events should be considered with
caution.

6.6.2. Assessment of peak type gust

The number of gusts in a time interval can be calculated by
measuring:

e The maximums exceeding the threshold U,,.

e The umber of times that AU , Crosses up the threshold
Uth'

The movement of air has a "chaotic" behaviour due to the
turbulence. The air is continuously accelerating and
decelerating all the time (e.g., the sound is the succession of
quick accelerations and decelerations of the air molecules).
Moreover, the types of used Spectra (Kaimal, Karman,
Davenport,...) do not take into account the dissipative
processes occurring at high frequencies. This causes the wind
signal to display a rough and noisy aspect, and many local
maxima are present in the gusts (see Fig. 99 and Fig. 100).

Since the gust characteristic time (t) can be estimated from
the autocorrelation function of the equivalent wind, ACF,, a

low pass filter can be applied to diminish the likelihood of
counting several events during a burst of local maxima or a
burst of threshold crossings, without significantly altering the
maximum speed in the gust and without hiding short gusts.
For very low threshold, two consecutive gusts can happen
during one period with only one level crossing (see Fig. 100).

Therefore, a cut-off frequency f. filter is required to
avoiding counting several level crossings or several local
maxima in a single gust. This is particularly required for real
wind, which has very high frequency content (typically, up to
the sound frequencies). The equivalent wind of a farm or a
region is quite smooth and filtering high frequencies is less
necessary.

Since the gust last an average time (1), the cut-off
frequency f, can be estimated as f, = k/(t), where k is an
adjustable parameter. If k£ » 1, the number of gusts will be
overestimated but the real extent of the gust would be less
affected. If £ <1, the number of gusts will be underestimated
because quick gusts will be filtered. Thus, the optimum value
of kis a small number greater than one.

Many local The real gust
maxima > AU,yay and the
smoothed gust
have different
amplitudes
Many \
threshold

upcrossings

Threshold

Duration z,

Original gust

Fig. 100: Difficulties involved in the measurement of gusts.

6.6.3. Mean shape of a peak gust

This subsection deal with the shape of an equivalent gust
meeting or exceeding the level AU in =0 respect the
average equivalent wind (U )in t e [-Ty/2,T,/2]. For
convenience, the time origin is in the expected gust peak.
Since the process and the transformations have been assumed
symmetrical, the minima have, theoretically, the analogous
properties of a maxima. Thus, only maxima will be

considered in this section for the sake of clarity.

The mean shape of the gust can be computed according to
Bierbooms [216, 267, 268]. In [216], the gust is defined
mathematically as a local extreme (dU(t=0)/dt=0 y
& U(t=0)/dt’ <0) with the value U(t=0)=(U)+ AU .
This is equivalent to the following simultaneous conditions In
the frequency domain:

V=0 =)+ AU, = =3 Re(lk]) = AU (378)

max T max
0

AUh_gy—0= gf%mf Im(0[k]) = 0

379
dt - (379)
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2 N/2
ét[j (t=0)< 0= (2rkAf)* Re(Uk]) >0  (380)

The mean gust shape and a procedure to generate random
gust can be derived from the theory of constrained stochastic
simulation.

The air is continuously accelerating and decelerating all the
time (e.g., the sound is the succession of quick accelerations
and decelerations of the air molecules).

In the one hand, the wind is a wide spectrum process and
the air is continuously accelerating and decelerating all the
time at microscale level. The wind signal seems is noisy and
rough and the wind presents many local maxima or minima in
the surroundings of any instant. Thus, the local maximum
condition in =0 —equations (378), (379) and (380)- is
pointless due to the fractal nature of the wind.

The equivalent wind is low pass filtered with a strength
dependent on the corresponding reference (a turbine, a wind
farm or a geographical area). In some cases, the equivalent
wind may contain enough high frequency components to
make useless the local maximum condition.

In fact, the condition U(t=0) = (U ) + AU, does neither
imply that the global maximum of the interval ¢ €
[-T/2,Ty/2] happens at ¢ =0 nor the global maximum is
(U)+ AU, . Thus, the gust conditioned on a local
maximum at ¢ =0 —equations (378), (379) and (380)- would
probably have a global maximum a bit higher than AU
and at an instant near ¢ =0. The higher is AU ___, the global
maximum is closer (in average) to ¢ =0 and its value is closer

(in average) to AU

max *

On the other hand, the conditional simulation of the global
maximum of the considered interval, ¢ € [-T,/2,T/2], is very
complex due to the difficulties of expressing such condition
in the frequency domain. The time instant where the global
maximum happens is meaningless, since the sample can be
centred at ¢ =0 using the periodic extension of the samples.

Taking into account the uncertainties and approximations
of the equivalent wind process, the constrained simulation of
extreme gust can be obtained imposing U(t=0)= (U
)+ AU, .. only. The algorithm used for constrained
simulation is similar to the unconstrained simulation (the
workflow is shown in Fig. 101). In fact, if only condition
U(t=0)= (U )+ AU, is imposed, then the imaginary part

of the spectrum is computed as in the unconstrained
simulation.

However, an intermediate solution easy to implement is
that the smoothed process (with an ideal cut-off frequency f))
had a local maximum at =0 while the original process fulfils
U(t=0) = (U ) + AU, - Thus, the equations (378) and (379)
are transformed into:

N/2

Ul=0=(U)+ AU = —S Re(T[k)=AU,__ (381)

ks
%(tzmzo = iZQﬂkAf Im(U[k])=0 (382)
dt \/FU =

where the maximum component considered in the smoothed
signal is ks = Round(f,T,). In addition, the inequation (380) —
reject local minima and saddle point— can be substituted by

checking that the smoothed process has a maximum at =0
before accepting the generated sample:

ks
Reject the sample if )  (2mkAf)’ Re(U[k]) <0 (383)
k=1
2
because w( =0>0.

dt*

If (383) fails, there is a saddle point or a local minimum in
the smoothed signal and the global maximum is not exactly in
=0 and its value is higher than AU __ . But even in that case,
the global maximum level and its instant can be near AU,
and =0, respectively, provided AU _ > 0. Thus, the sample
could even be accepted if (383) fails depending on the
analysis viewpoint. In the program EQWIGUST [218], the

rejection test (383) is not applied.

A thorough compilation of the mathematical properties of
normal processes near a local maximum can be find in
Lindgren [269]. The mean and the variances of the discrete
Fourier spectrum can be obtained from the conditions (381) y
(382) with the procedure shown in [216].

For convenience, the equations (381) and (382) will be
expressed in matrix from using the condition vector [y]y1, the
constant matrix [G],y and the vector of real random variables
[x]nx1 corresponding to the real and imaginary spectrum for
positive frequencies. The matrix [G],w represents the
influence of each random variable (elements of [x]yy) is the
target conditions [y]ox:

v, = Ghuy [x]ya (384)
U(t=0)
AU
w1 = - (385)
yha =|J1, P
2 t ~ smooth
eI
1 ﬁ’ 110 0,0 o] (386)
o T (')TAZJ.T-'JQS'A'&,'O' 0
xla=[Re(@n)) - Re(@N/2)))|
tr (387)

| Im(U[1])- - Im(U[ks]), Im (U [ks-+1] )...Im(ﬁ[zv/z])]

The angular frequency step Aw =27Af =2n/T, has
been used in (386) for notation compactness. The transpose of
vectors and matrices is notated with the superscript ¢r for
avoiding confusions with the sample duration, T}, or with the
time step At.

The vector [x]yy; defined in (387) contains first the real and
after the imaginary spectrum for positive frequencies,
Ulk] V1 <k < N/2.Themean value of the DC term in the
spectrum is U[0] = (U >/\/fJ and it is a parameter of the
constrained simulation. The Fourier coefficients DFT}[k],
defined in (366) according to the typical convention in signal
processing, has been scaled to obtain the stochastic phasor
density, ~ U[k]=N"'JT,DFT,[k]. This density is
independent of the sample duration 7T and the time step At.

In a Gaussian process, each discrete spectrum component
Ulk] is a random variable independent of the rest of
frequencies. Thus, the covariance between U[k] and U[l] is
zero Vi=k, 1<k<N/2, 1<I<N/2. Moreover, the
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distribution of U[k] is a complex normal with zero mean.
Thus, the real and imaginary parts of U[k] are independents
and they have a conventional (real) normal distribution.

Therefore, the covariance matrix of the variable array

[X]nx1 in a unconstrained simulation, notated as [M]yxy is a
diagonal and non-singular matrix:

(Mly.v = Diag| /iPSD; (%) /iPSD;( 2] ‘}
’ (388)
| APSD; (&), /iPSD;(%2)
[M]]\’x]\ =
PSD;(TL”) 0 0

(389)

-0 PSD*(N”)

The average of the random variable vector [x]yy
constrained to a gust of peak value AU is [m]yx and its
value can be derived from the Sherman-Morrison-Woodbury
formula, sometimes referred as the matrix inversion lemma
[270, 271]:

m ] =Mllcl Q] '[y] =
:AU‘“—T PSD*(l) PSD+(N£2)|0

N/2 v\T

2; PSD; (1)

Where the covariance matrix of the condition vector [y]yx; for
unconstrained simulation is notated as [Q],x, and its value is:

0}”‘ (390)

N/2 I
+(
| 28 o) i 0 (391)
:? Tttt T_Es ______ .
0 0 | > (kAw) PSD ()
|

The covariance matrix of the wvariable vector [X]yx
constrained to a gust of peak value AU is [M]xxv:

M| =] Imlie) Q] [c]m] (392)

The application of the previous formula yields a quasi-
diagonal matrix whose diagonal elements are the conditioned
variances of a gust of peak value AU _  and the elements
outside the diagonal are the covariances. The diagonal ele-
ments in [M_yy are the variances of the spectral
components:

[Mr L =Var (Re ﬁ[z])) :PSD+(/ )
PSD* 4 iy il
&

[MC]“ = Var(Im(ﬁ[z —N/Q]))
)

V1<i<N/2(393)

(G ~N/2Aw) PSD(%)
S (k) PSDy( 57

VN/2<i<ks+N/2

1—

1 +(i—-N
= ZPSDU( /2

)

(394)

M, = V‘”"(Im(ﬁ [i —N/Z])) = iPSD;(f*N% )

Vks+N/2<i<N (395)

The elements outside the diagonal of [M,]y.y are the co-
variances of the spectral components. The covariances among
the real and imaginary parts are null (that is, the real and
imaginary parts of the spectrum are statistical independents).
However, the real components are negatively correlated at
different frequencies (the negative components shows an
analogue behaviour). The covariance between the random
variables [x]; and [x]; is notated [M,], ; and its value is:

e Covariance of real coefficients.
PSD;( 1) PSD( /4
4> L PSD( 1)

[MC LJ_: Cov (Re(lj[i]) , Re(ﬁ[j])) -

V1<i<N/2, 1<j<N/2 i=] (396)
e Covariance of imaginary coefficients.
M| = Cov(tm(Tli —%41), Im(T[5 —4)) =
(ot)o(s0)sopn (-2 s (-2
- a3 (kaw) Pspy( 1)
VIN/2<i<ks, N/2<j<ks i=] (397)

o Null covariance between imaginary and real coefficients.

[M(] =0 V 1= j elsewhere (398)

“iyg

The covariances have small values of the magnitude of
U v/, that is, about N times smaller than the diagonal.

The correlatlon coefficient between x;, and x; is
P = / M, M .. . They are quite smaller in absolute
value and negatlve (about -1/N for the real components and
about -1/ks* in the first ks imaginary coefficients). The ratio
of the covariance to the variance product of the unconstrained

components is:

e Ratio for real coefficients:

[Ms ]” ~ [Ms ]” __ 4 _
M ] DMl S PSD; ()
_ 41
T, J?],T,N Z::/T[M]kk

VI<i<N/2, 1<j<N/2, i=j (399)

o Ratio for imaginary coefficients.

L P L P A [ A
[MC]” [MC ]m (vl vl > (kAw)QPSD[f(%)
(i) ) (%))
T, 0w, Skl
VN/2<i<ks, N/2<j<ks i=] (400)
where the variance of the equivalent wind is:
T = Do PSDI( 1)/ T, (401)

and the variance of the equivalent air acceleration is:
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2 ks
g ;=
TN = Dt

A square root of the matrix , I[M } must be computed for
generate the random vector [x] (for more details, see [273]
or [274]). The constrained covariance matrix [M_]y 18
symmetric and positive semidefinite, singular and its square
root exist, although they are not unique. Since the conditions
(381) and (382) have been imposed, the rank of the
constrained covariance matrix [M_]yy has disminished from
N -2. Therefore, [M_] v is singular and its square root

[M } can not be computed using the efficient Cholesky
decomposition because [M ]y iS non-invertible.

(kAW)’ PSD)( 1)/ T, (402)

However, the elements with index =1 and =1+N/2 can be
eliminated from [M,]y and [x.]y to obtain a invertible
system with a reduced set of random variables, [M’ ] y.ox(x2)
and [ Joeoxa Then, the reduced matrix [M’]yoxng) 1S
in le and strictly positive definite and its square root,

[M: } , can be computed through the usual Cholesky
decomposition.

Thus, the gust spectrum can be generated from the reduced
set [x’](vax1 through the following matrix expression:

[]fe’]
where lf /] is a vector of N-2 independent random variables
normally distributed of null average and unity variance.
Finally, the elements x;_; and X,-;+y», corresponding to the

real and imaginary part of the fundamental sample component
(k=1), can be obtained from the equations (381) and (382).

Ut=0=({U)+AU, .. =

max

(403)

. T Nj2 (404

:Re(U[lD—J_ e~ Rel0 )
au

#W(t_())_o = Im(U Zklm ]) (405)

main  computational burden is calculating

[M’ } (V2N in the formula (403). The generation of

samples with a high number of points N requires the
Cholesky decomposition of a big matrix. The computational
burden can be divided by four if the real and the imaginary

part are generated independently because [M’]yoyx(n2) 1S
block diagonal.

Conclusions

The turbulence can be considered a stochastic process with
a multiplicative behaviour and the probability of a direction
change is relatively stable. Thus, the extreme wind deviations
relative to the wind average have a statistical distribution
more similar to a Lapacian than to a Gaussian. In fact, the real
distribution of wind variations depend on the site and the time
lag and some authors use families of distributions or a
distribution with many parameters to adjust the measured
deviation to a model.

The probability and the shape of extreme wind events
heavily rely on its dynamics. The average wind shape has
been estimated assuming a behaviour similar to a normal
process, transformed with a memory-less conversion to obtain
a Laplacian distribution of wind deviations.

The constrained generation of gust is a valuable tool to
obtain random samples of wind with some features. However,
the accuracy of the shape and probability of the gust can be
improved. Some measurements show that the front ramp of
the gust are, on average, bigger than the tail ramp, but the
predicted gust shapes are symmetrical.

The physical concept of wind gust is extended to the
equivalent wind of a turbine, a farm or a geographic region.
The gusts of equivalent wind produce a change in the power
of a turbine, farm or region. The equivalent wind model can
be used to estimate structural lifetime, optimize controls or
manage the grid.

A simplified model for the generation of long samples of
wind is provided. The errors introduced in this simplified
model is comparable with the uncertainties of the
assumptions made in the wind or in the equivalent wind
behaviour.

The program EQWIGUST [218] generate gusts of
equivalent wind with some features and estimates their
probabilities.






Chapter 7:

Variability of renewable generation

wn the time domain

7.1. Introduction to Markov Decision
Processes

Markov Decision Processes provide optimal policies on a
stochastic basis for systems whose evolution depends
on its history. Markov Chains of first order only takes into
account previous state, but higher order Markov Chains and
Hidden Markov Models can be used for more complex his-
tory dependence. As an instance, the state of a battery or a
water reservoir depends on the charge/discharge history.
Network topology, transformers tap changers and voltage
boosters depend on previous voltage, previous load and pre-
vious generation, whose dynamics can be stochastically
characterized.

Markov Chains have been utilized in Power Systems usu-
ally as random generators in Monte Carlo Power Flows [275]
or in reliability studies to account the availability of devices
[276]. A new methodology to compute stochastic power
flows is presented based on Markov Chain approximation
[277] and fuzzy/probabilistic clustering [278]. It has the
following advantages:

— A huge reduction of the number of system states allows
to compute systematically all feasible states and all feasible
transitions between states. Increasing the number of states
reduces the error in the steady-state representation but it also
increases quadratically the uncertainty of the dynamics and
the computational load.

— Powerful algorithms can be used to accurately represent
the interrelationship among random variables such as the load
level at the different nodes. The patterns of solar and wind
generation due to meteorology [279] are conveniently
captured during the classification of measured data. Indeed,
the non-linear relationship among variables is embedded in
the classification, without requiring regression or linearization
analysis

— The uncertainty of load and generation forecasts and the
generation failure probability for each pattern can be
accounted.

— Many state variables are continuous but these variables
are discretized since the system is computed only in a small
set of cases with state variables equal to the centroids of
patterns. When the state variables do not coincide with a
pattern centroid, the fuzzy (probabilistic) clustering process
determines the membership level (the probability to belong to
each pattern) and the properties of the intermediate cases are
estimated using interpolation functions. In plain words, the
system characteristics are computed in a reduced set of cases

and they are interpolated elsewhere according to the case
similarity in the rest of cases.

— Since the number of states is small, all feasible states
and transitions can be computed running regular power flows.
Results are manipulated efficiently with matrix (or tensor)
algebra to obtain statistics and state transitions.

— Markov  processes have remarkable theoretical
properties and the dynamics of the system can be formulated
as stochastic differential equations. Since data is logged
periodically, the analogue continuous-time system is
discretized using the framework of Markov Chain
approximation [255].

— The optimal control of the non-linear system can be
done conveniently through a Markov Decision Process,
especially when managing discrete elements such as switches
and transformer tap changers (conventional linear time-
invariant control theory is not intended for these devices).

Most state variables in Power Systems are continuous. The
evolution of continuously and smoothly varying variables is
modelled in stochastic theory as a diffusion process and the
evolution of discrete variables is modelled as a jump process.

Markov Chains with continuous state space are intricate.
Usually, they are discretized to use the efficient matrix
algebra and the powerful properties of discrete time and
discrete space Markov Chains.

The discretization of continuous system with small
discretization steps can induce a lot of states, leading to
matrixes of high dimension. Therefore, a discretization
methodology is presented in this work where the number of
states is optimized. Some guides are given to balance
accuracy of the model, data requirements to estimate system
parameters and computation burden.

The optimal control of a Markov system can be expressed
as a policy, which gives the best decision or action to take for
a given state, regardless of the prior history. Once a Markov
Decision Process is combined with a policy, this fixes the
action of the control for each state and the resulting
combination behaves indeed like a Markov chain [280, 281].
Thus, the system is dimensioned for achieving the maximum
expected outcome of the controlled system.

7.2. Formulation

7.2.1. Introduction to Markov chains

Time Markov chains are a powerful tool to cope with states
and transitions between states in time domain. The probability
of maintain the system state (for example, power generated
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by uncontrolled renewable sources or consumer load) can be
easily computed. The probability of changing to full, null or
any level of production or consumption for a given horizon
can be also computed very easily. The probability can take
into account the forecast of renewable energy resource along
its accuracy. Moreover, Markov Decision Processes can be
used for optimal stochastic control (for the example, to
allocate the spinning reserve needed to compensate for
eventual casual bulk decreases of renewable generation or
load).

The main disadvantage of Markov chains is the coarse
discretization needed to make continuous systems tractable,
which mask small fluctuations of the systems (for example,
small variations and small cyclic oscillations of generated
power). Therefore, spectral and time series approaches are
complementary to Markov chains (spectral and time series
represents quite well small and periodic variations for short
horizons while Markov processes models better the non-linear
and the long horizon behaviour of renewable generation)

An introduction to Markov models with many examples
and easy to read can be found in the book of S. M. Ross
[345]. Other simple books are by B. Nelson [297] and by J. R.
Norris [282] (in the later, there is a valuable introduction to
measure theory, needed to understand advanced books on
stochastic processes). Multivariate and higher order Markov
chains can be reviewed in [283]. The book by V. G. Kulkarni
[284] includes some chapters for optimal design and optimal
control and it has numerical examples to work with a Matlab
toolbox and data form the author webpage. A more technical
book by V. G. Kulkarni [335] treats also continuous time and
continuous state system. Stochastic processes are a fertile
field of operational research with abundant literature.
However, most books are targeted to mathematicians,
requiring a solid background on statistical theory.

The dynamics of a system such as a wind farm or a group
of them are characterized through the transition probabilities
from state ¢ to state j, p;;. Transition probabilities are
arranged in the transition matrix P = [p;;], which are
estimated from actual data. The probability of staying in the
same state the next interval is p;;. The residence time in a
state (time during the system is at state ) is distributed
exponentially and its characteristic value can be derived from
the transition matrix.

If measures are not reliable or the state can not be
determined directly from the measures, hidden Markov
models can be used. An introductory tutorial can be found in
[324]. A summary of multiresolution analysis with Hidden
Markov Models can be reviewed in [311]. An advanced text
can be found in [285]. In Hidden Markov Processes, the real
state is not observable but it can be inferred from
observations trough Viterbi algorithm and the emission
matrix which relates measured parameters and unobservable
states. In this work, the complexity of hidden Markov models
are avoided since the variables of interest are measured or can
be computed from the measures.

7.2.2. Markov chain approximation for
continuous systems

A vast number of problems in renewable energy can be
formulated as continuous-time, mixed state (continuous and
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discrete) stochastic control problems. This section focuses on
the so-called Markov chain approximation, which is well-
documented [255, 286], simple to understand and implement.
Markov chain approximation can be used to efficiently solve
many stochastic control problems appearing in renewable
energy generation with non-controlled sources.

The basic idea of the Markov chain approximation
approach is to discretize the entire control problem. The
continuous-time, continuous-state state variables of the
original problem are approximated by a discrete-time,
discrete-state Markov chain in such a way that the value
function corresponding to the Markov chain is a good
approximation to the value function of the continuous-time
control problem. In order to find the transition probabilities of
the Markov chain, one can apply finite difference techniques
related to the well-known numerical methods for linear partial
differential equations.

The Markov chain approximation method is described in
[255]. The algorithms are robust; they are intuitively
reasonable and have physical meaning because the
approximating Markov chains represent systems similar to the
one being approximated. The convergence theory is purely
probabilistic, using methods of stochastic control, so that the
analytical difficulties are avoided [286].

A continuous stochastic variable y(¢) constrained to range
[ Ymin » Ymax | can be discretized into m states, similar to the
histogram calculation using m bins. To decrease the
discretization error, the number of states m can be increased.
In this paper, the states are interpolated with a point of view
similar to fuzzy Markov Chains [287, 288] to constrain the
number of states whilst reducing the classification error The
actual system state and the actual event are compared to the
discrete states, estimating their similarity degree to the
discrete counterparts. The similarity degrees of actual states
to the discrete approximations are interpreted as the
probability of classification into discrete states or discrete
events [289]. Markov chain approximation shares most
properties of conventional Markov chains (except some
features such as the estimation of transition probabilities and
the sample generation).

Markov chain approximation is based in conventional
matrix algebra, instead of using the min-max matrix algebra
associated with fuzzy probabilities [290]. Thus, Markov chain
approximation has been selected as the optimization tool
since it is numerically more efficient than Fuzzy Markov
Chains.

If the random variable y(t) is characterized through a fist
order Markov Chain of m states, the number of parameters to
estimate is m? (the elements of the transition probability
matrix). Estimating a high number of parameters with low
uncertainty requires long data series (along with higher
computer resources). The system can be discretized with
small steps at values where the dynamics are non-linear and
coarser at linear zones. In fact, this is a very successful
approach already used in finite elements and in mixture
distributions.

State interpolation allows reduces the required number of
states and consequently, the parameters to be estimated.

The behaviour of the continuous variable y(¢) is modelled
as the sum of some generalized functions (kernels), providing
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a tractable representation of a continuous stochastic variable.
After selecting the kernel, only numerical calculus with the
discrete parameters are needed, reducing hugely the
computational burden and increasing the accuracy of the
model.

The statistical measures based on averaging remains
unchanged in the discrete and in the interpolated model. Since
the system expected cost/benefit is the same if the system
states are mutually exclusive (only one state can actually exist
at a time) or can be interpreted as a fuzzy states (intermediate
states do exist because the continuous system states have been
discretized).

The payoff of state interpolation approach is that the
probability of non-adjacent states can represent two distinct
and mutually exclusive states or the resemblance degree of
the actual system to the discrete states. In the later case, the
system shows features of the non-adjacent states and it
behaves approximately as their interpolation.

The interpretation of the state probability relies on the
model derivation and it cannot be deduced from the Markov
parameters. But the derivation should be clearly stated in the
derivation since it can influence the estimation of the
transition matrix and the state change cost.

7.2.3. Time-Averaged vs Instantaneous
Values

Most SCADA, data loggers and energy metering devices
record average power and other variables in five to fifteen
minute intervals. The standard time interval is 10 minutes for
power curves and flicker [291, 292] and 15 minutes for
reactive power billing [293] (a suitable integrating period for
both task is 5 minutes and its integer fractions).

The moving average y(f) can be regarded as the
convolution of the instantancous power of the wind farm
z(t)with a square pulse of width At (see Fig. 104).
Afterwards, the moving average y(t) is sampled y[k]with the
same At period.

L sampling Time
2(t) At y(t) ylk] interpo— y(®)
0 moving logged | lation | reconstruction
At average values in time domain
1— efAt : CAts 1— efm * (for zero
F (3) = T € T order hold)

Fig. 103: Model of the data logger of the wind farm.

The continuous transfer function of the average power in
an interval At is shown in Fig. 104, up to the logging
frequency of the power analyzer, fi,, = 1/At. For a zero
order hold reconstruction kernel, the frequency response
|F(f)| due to moving average, sampling and reconstruction
is:

()

(f)

The average change rate between two consecutive time
intervals <dz(t)/dt> can be estimated from recorded data:

5in 2
1F()| = |40 — [M] 478)

wfAL
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dt at At At 479)

In Fig. 104, the frequency response |F(f)| indicate that the
wattmeter behaves as a second order low pass filter of cut-off
frequency f,, = 0.443/At, a bit lower than the Nyquist
frequency. The wattmeter also introduces an average time lag
of At /2 in the measures.
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Fig. 104: Plot of frequency response of the network analyzer with a zeroth
order reconstruction filter.

7.2.4. Reconstruction of continuous
signal from logged values

The stochastic variable y(¢) is measured continuously and
its average along time interval [t —At,t] is logged at instant
t = kAt as y[k]. The time step At is usually defined in
standards and some usual values in renewable energy are 10
minutes, 15 minutes and 1 hour. The value y[k] usually varies
according to its characteristic PSD (Power Spectral Density)
or ACF (Auto Correlation Function) along the time step At .

In this work, each state of the Discrete Markov Chain
corresponds to the average level of a parameter (such as wind,
solar or storage power output, load demand, etc.) during At
time. The continuous value of the parameter can be estimated
as the time interpolation of the adjacent discrete states. If the
interpolation is lineal, the elementary signal is a triangular
pulse of width At and height equal to the average value of
the parameter, as in Fig. 105.
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Fig. 105: Rectangular, triangular, Gaussian (minimum ripple and triangular

approximation), and cosine kernels corresponding to analytical signals to
interpolate discrete-time Markov Chain at (k — 1)At <t < (k + 1)A¢.

The analytical signals shown in Fig. 105 produce
interpolations of zeroth order —the rectangular pulse in blue—,
first order —the triangular pulse in red— and some smooth
interpolations. The cosine kernel (in light blue in Fig. 105) is
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constrained to domain [—At,+At], but has the drawback that
slope is always horizontal at points ¢ = kAt (see Fig. 108).

Gaussian kernels provide a smooth interpolation and since
they are not constrained to [—At,+A¢], the slope at points
t = kAt is not required to be horizontal. Gaussian kernel
has a Fourier Transform with very low high frequency
content and it has also very good statistical properties. The
standard deviation used for Gaussian pulses is
o =AMt /N27 (in light grey in  Fig. 105). This value has
been obtained minimizing the ripple of the continuous signal
when the discrete variable y[k] is constant (i.e. the standard
deviation is optimized for minimum ripple of the interpolated
signal). Also, the use of Gaussian kernel with standard
derivation o =At/~/6 (in pink in Fig. 105, the same
standard deviation of triangular pulse) has been considered
but its use has been superseded since they introduce ripple in
the estimation, as can be seen in Fig. 109. Recall that even
though Gaussian function formally spreads from -oo to +oo, it
has significant values only in central and adjacent states:
foouss, (1) = 0Vt & [(k —2)At,(k + 2)At]  (negligible

g
compared to the uncertainty in the measure of y[k]).
1 &‘ <1/2
{5 kernel (t) = ¢ (480)
— >
0 ‘ At‘ >1/2
t t
[l [z <
At At
fA kernel (t> = t (481)
0 —>1
52
e
_3(
fgaussian kernel (t) = ée ( t) (482)
a=nt /6 ™
1/4 *ﬁ(i)g
fgaussian kernel (t) =7 / € At (483)
o=NAt/N2vT
l{l—i—cos WLH ‘L‘ <1
2 At At
fcosine kernel(t) = (484)
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‘L
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The integral of the kernels is

interpolation.  If  f,,, 4(t) is

t € [-2At,+2At]

At for correct
constrained to

+o0o
Kernel Area = f fremel (t)dt = At (485)
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Fig. 106: Estimated continuous signal y(¢) from sequence y[k]= {1, 0.4,
0.2, 0.8, 1} using a rectangular kernel. Rectangular analytical signal is
equivalent to order cero interpolation. This model is not realistic since the
signals are not continuous.
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Fig. 107: Estimated continuous signal (¢) from sequence y[k]= {1, 0.4,
0.2, 0.8, 1} using triangular kernel. Triangular analytical signal is equivalent

to order one interpolation.
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Fig. 108: Estimated continuous signal y(¢) from sequence y[k]= {1, 0.4,
0.2, 0.8, 1} using cosine kernel. The continuous signal is smooth but the
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Fig. 109: Estimated continuous signal (¢) from sequence y[k]= {1, 0.4,
0.2, 0.8, 1} using Gaussian kernel and the same standard deviation as the
triangle (0 =At / \/6) The continuous signal shows an undesirable
oscillation at 1 < ¢ <2.
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Fig. 110: Estimated continuous signal y(¢) from sequence y[k]= {1, 0.4,
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analyzed and it does not show induced oscillations.
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For most applications, the linear interpolation is precise
enough (triangular analytical signal). If a smooth
interpolation is required or the interpolated signal must be
infinitely derivable, the Gaussian pulse with o =At /V2v7
is more suitable. The estimated signal in the continuous time
domain is:

§(t) = 32 T e (t — KAL) (486)

where y[k] is the kernel scale factor.

The average lag At /2 introduced by the logger measures
respect to the instantaneous value z(¢) can be compensated
modifying the former formula:

21) = 30 Tk e (t — (H1/2)A1)

The kernel scale factor y[k] are equal to y[k] for
signals that vanishes at ¢ = +£A¢ (rectangular, triangular and
cosine kernels). The multipliers of the Gaussian interpolation
can be easily computed from the tridiagonal system with the
Thomas algorithm [294] (forward and backward sequential
substitution).

(487)

ab s [y
babd jfﬂ yﬂ
babd 73 3
ba ;[4] = im (488)
bal|sl] |l

where a = f,.(0)and b = £, (At)

The continuous Fourier transform of an analytical signal is:

00 —jwt
Fqingle pulse (w) =F {fpulse (t)} = f_oofpulse (t) € Tt =

tmax
f

= 2 pulse (t) COS(’LU t) dt

even symmetry 0

(489)

The continuous transforms of the triangular, rectangular
and Gaussian shapes are:

B voma (f) =2 fo 2 cos(2nf 1) dt:ﬂisin[QﬂéAt] (490)
A
Fyyema (f) = 2f0 t(l—&)cos@wft)dt =
1 — cos(2mf At) (491)
2L
A
Fgaussian (f):2‘[;) 7T71/4€ {At] COS(27Tf t)dt: (492)

o=AtN N
=Ate

2

w2 (f At)

Fo on-causal Gaussian reconstruction filter with o =
At/ o as defined in (486), the frequency response |F(f)|
due to moving average, sampling and reconstruction is:

y(f)

0 =| 55
The overall cut frequency for a Gaussian reconstructor
18 fout Gauss = 0,309 /At, as can be seen in Fig. 111. The
response above the Nyquist frequency can be though as
introduced by the estimator and it is desirable for the
frequency response to be as low as possible for f > 0,5 /At.

_ [sin(7fAL)] oA

T (493)
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Recall that the PSD of Z(¢) will have notably less high
frequency content than the PSD of z(¢).
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Fig. 111: Plot of frequency response of the network analyzer with a
Gaussian reconstruction filter.

The frequency response above Nyquist frequency is
notably  higher with  zeroth-order and first-order
reconstruction filter than with the Gaussian filter. The cut-off
frequency is a 43% higher, f.,; . = 0,443 /At  with
rectangular pulse reconstruction compared to Gaussian pulse
Jout Gauss = 0,309 /At .  This indicates that Gaussian
reconstruction Filter is preferably to the zeroth or first order.
The first-order filter has better frequency response than
zeroth-order but it does have more high frequency content
than the Gaussian Filter.

During continuous operation of a wind farm, the
operational point is expected not to change appreciably in a
time span of minutes and the system behaviour can be
considered ergodic during such lapse. Thus, the PSD of 2z(¢)
for frequencies above 0.001 Hz can be characterized for each
operational condition from measures with a high sampling
rate [295]. The PSD for very low frequencies (f <0.001 Hz)
can be estimated for long data records but with a low
sampling rate. Recall that results must be analyzed prudently
at low frequencies since slow meteorological phenomena are
not stationary (i.e., the system behaviour is history-dependent
and there are analysis methods more accurate).

7.2.5. Considerations on the state
discretization

Events have the inherent temporal ordering. Simple
systems can be classified according to the value of a single
parameter such as the generation level or the primary resource
level. If the states correspond to a single numerical feature of
the system, such as wind speed, solar radiation, stored energy
or power output, the states have a natural order.

In real applications, the state classification depends on
many system variables. In a geographical region with various
wind farms, the state depends on the vector of wind farm
power outputs. The state of a single wind farm can be based
on many parameters: wind speed and direction at
meteorological mast, power output during last 15 minutes,
average power during last hour and last day...

Markov states in complex systems are not necessarily
naturally structured. If states represent patterns or
combinations of system parameters, the state order is not
straightforward (some parameters can increase whereas other
decrease, resulting in an arbitrary ordering). In such systems,
the optimum interpolation and ordering depends on model
purpose of the model and the interpolation weights must be
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computed according to some similarity measure regardless of
the state numbering.

The task of classification is to take a single observation,
extract some useful features describing the observation and,
based on these features, to classify the observation into one of
a set of discrete classes. A probabilistic classifier gives the
probability that the observation corresponds to each class;
estimating the probability distribution over all classes. In
multivariate systems, the fuzzy or probabilistic clustering
algorithm used in the estimation of model parameters can be
also used in the classification probability of the samples.

7.2.6. Need for discretization of
continuous random variables

There are advances in the analytical solution of continuous
state Markov Decision Processes [296], but they are quite
intricate and few stochastic models are suitable for being
solved analytically. Thus, this work use the more basic
approach of Markov chain approximation [255]: the
continuous variables are discretized, using kernels (pulse
functions with normalized area and amplitude) to
approximate the system to a conventional discrete time and
discrete state Markov chain (MC). Discrete MC has
remarkable theoretical and numerical properties and they are
the basis of Markov Decision Processes, an efficient method
for optimal stochastic control.

7.3. Piecewise linear interpolation of
system properties

7.3.1. Triangular probability distribution
of the sates from observations (i.e.)

In this subsection, only the discretization of real-valued
continuous random variables will be considered. Multivalued
systems will not be analyzed since fuzzy or probabilistic
clustering algorithms already compute the state probability.

The probability distribution of states and observations y[k]
are needed to perform many statistical operations (variance
estimation, generation of random samples, solving MDP’s,
etc).

Any continuous state would be regarded as the mixture of
the two adjacent discrete states. The similarity of the sample
to the adjacent states would be estimated proportionally to the
closeness (this procedure is analogue to the fuzzification of a
crisp variable). From the mathematical theory of
approximating functions, the state probability can be regarded
as interpolating coefficients used to represent piecewise
functions.

Most Markov Models consider that only a state is possible
at each instant. For example, the Viterbi algorithm computes
the most probable state from the observations in HMM.

Pr(state|y)

0% |
Fig. 112: Conditional probability for the Markov states given the observation
y, Pr(state; |y).
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The similarity of adjacent states state depends on the
discretization step and the physical dependence. The
conditional probability (analogous to an interpolation
function) can be fully constrained to adjacent states, Pr(state,
ly) =0 if y & [p,1, P;s1]. Thus, any points corresponding to
the mode ¢, are classified as fully pertaining to the
corresponding state i. These objectives are met (see Fig. 112)
with triangular distributions (494) with modes ¢, and limits
¢, and ¢, (the first and the last distributions are
degenerated triangular distributions with @, =-co and
Pms1 = 100, respectively).

Y — Pi—
L g <y<¢i
Pi — Pi-1
Pr(state; | y)= (¥t — Y ¥ <Y <P (494)
Pitv1 — Pi
0 elsewhere

Moreover, triangular distributions can be unsymmetrical
and the expected value y is simply computed as the dot
product of state probability vector X[k] by the state centroid
vector v .

Symmetrical distributions such as the Gaussian are not
straightforward applicable since discretization step is not
even. Since the state ordering is (somewhat) arbitrary in
complex systems and states can have very different costs and
other properties, it is conservative to use narrow kernels that
weight just the adjacent states. Thus, unsymmetrical narrow
distributions as the triangular kernel presented in this section
are preferred over wider kernels such as the Gaussians.

7.3.2. Distribution of observations from
state probabilities

According to the linear discretization used here, the

probability density distribution can be computed as a mixture

of triangular distributions. The cumulative distribution

function can be easily computed from the probability density
function.

A) Conditional and marginal probability of observations

The conditional distribution of observation y conditioned to
state 4 is:

Pr (statei| y)-pdfu (y)
Pr(state;)

pdfys, (y|state;) = (495)

or, equivalently: (496)
pdfy (y) Y — i
PI' (Sta’tei) Pi—Pi-1
pdfy(y) PinY
Pr(state;) ¢i1—pi

Yic1 <Y <@g

pdfys, (y|state; )=

v <Y< Pit1

0 elsewhere

The stationary state probability is (494):

Pr(state;) = ffm Pr(statei|y>pdf(y)dy =
y:&;—l

" 497)
-/ pdf, (y)dy+
Pi1 Pi—Pi-1

wiy1 Pi17Y
: pdfy (y)dy

Yi Pir1Pi
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If pdf,(y) is approximately piecewise constant, the integral
can be computed approximately by:

o YPia Cdfy( i)_CdﬁJ(wifl)

Pr(state;) =~ f ' dy +
$i1 PP Pi—Pi-1 (498)
+f+’77,+1 Piv17Y Cdfy(@i-«-l)*Cdfy( i)d
Y
i PP Pi+1—Pi

As a result, the state probability can be approximately
computed from the cumulative distribution function:

cdf,(pi1) — cdf, (@i
Pr(state; )~ 4 +1)2 i)

If pdf(y) is approximately piecewise constant, the
conditional distribution of the observation y conditioned to
the state ¢ (496) can be also simplified using the stationary
state probability (499)

(499)

2 Y=pi1
Pic1 <Y<Y
Pit1—Pi—1 Pi—Pi-1
d state; )= 2 Piv17Y
Pit1~Pi-1 Pit1—¥i
0 elsewhere
(500)

The marginal probability density function of y , pdf,(y),
can be computed as the mixture of distributions of y
conditioned to the states:

pdfy(y) =7

The typical use of this formula is the estimation of pdf,(y)

Pr(state;)pdf(y | state;) (501)

when the state probability is known at instant £,
Pr(state;) = x;[k]:
pdfy(y) = 27 xilklpdf(y | state;) (502)

For the i" region ( ¢, <y <,), (502) is equivalent to:

2X7'7 k ;T 2X7: k — Qi
pdf, (y)= LI Tl Kl y—w
Pi—Pi—2 Pi—Pi-1 Pi+17Pi-1 Pi~Pi-1

(503)

In other words, pdf,(y) is a piecewise interpolation among
points 2x,[k] /(@i 1—pi—1 ), 1 < i <m (see Fig. 113).

~ e -
c\g\x% |z
S RS 3|7
=4 ~| 3

>

Po b1 P2 ¥3 Py © Pm—2 Pm-1 Pm Pmt1
Fig. 113: pdf,(y) given the state probability , Pr(state; |y) from (503).

B) Cumulative marginal probability

The marginal cumulative distribution function of the
observation, cdf,(y), can be computed integrating pdf,(y)
respect y. Since pdf,(y) is piecewise, the integration is trivial
at the modes of the states y = ¢ (504)

L1y P Hpdf(pj1)
pdf 901 +Z 99]_90] 1/ 9

j=1

Cdfy( i) =

Thus, cdf,(y) at y= g, given the state probability x[k] is
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oi—pio1 2L
cdf,(p))=x; ————+> x; (505)
o) Pit1Pi-1 ; !

For the " interval (p.,< y <¢,), the term of partial

integration must be added:
cdfy (y) = cdfy (i) +

(y—%fl)

i iy
2

i—Pi-1
(506)

Thus, the cumulative density function of the observation,
cdf,(y), given the state probability x[k] can be computed:

i

‘[Pdfy(%l)

1) Find the " interval where the observation is: ¢, ;< y < ¢,
2) With the value ¢ found before, compute:

i—1
Y=vi1 Yi—Y
cdf, (y)=

+Exj

J=1

(507)

— X1

Z‘zDiJrl_(pz‘—l Pi—Pi—2

7.3.3. Estimation of state centroids 7

In general, the conditional probabilities Pr(state, |y) are not
symmetrical with respect to the mode ¢, unless the state
discretization is uniform. Moreover, the state range [¢, ; ¢,;1]
can be notably wide or it can contain special features (like the
full or null production) that can highlight the mode and
centroid difference. Therefore, the centroid of the state ~;
can differ notably from the mode ¢, Since most criteria to
decide optimum action or policy are based on expected
values, the state centroid must be computed adequately, as in
(508)

on Pr(state]y )pdf(y)

v, = (y | state;) = LY Pr(state,) dy (508)
For the first state: (509)
71— r(sta tel [ (y)d J
For the last state: (510)
1 Pm P
Vm—m[f%l ympdf dy+ ypdf )dy]

For the remaining states with triangular conditional

probability (1<i<m): (511)
_ (e YTV pdf(y) win Py pdf(y)
%_‘/;M Y i—pi_1 Pr(state;) y—l—f} y%‘ﬂﬂoi Pr(state;)
If pdf(y) is approximately piecewise constant, the
centroids can be approximately computed as: (512)
(P 2e)edf (o) + (e )edf, (0) = (01 200)edf, (24)
h= 3Cdfy( 1) — 3Cdﬁ/(‘ﬁz+1)

The output of fuzzy or probabilistic clustering usually
encompass the cluster centroids and includes a summary with
the standard deviation of each cluster.

7.3.4. Expected observation from state
probabilities

The expected value of the sample can be easily computed
from state probabilities according to the next formula: (513)
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<y> _ m
At the instant %, the expected observed value y[k]=

(y(kAt)) can be written as a dot product of state probability

vector X[k| = [x,[k]] and the centroid vector ¥ = [v;]:

ylk] = X[k]-¥
For example, if state probability vector X[k] is known at

instant £, the expected observed value n instants later y[k+m)|
can be computed with the transition probability matrix.

$lk+m] = X[k+m]y = X" [k]P™5

_, Pr(state;) )y | state;) = Zm i Pr(state;)

(514)

(515)

7.4. Systems with multiple observations
at time k

7.4.1. Estimation of P from
conventional clustering.

P is an estimate of the transition matrix P. If the output
of the classification algorithm for each sample k is just the
state number s[k], one can find the transition occurrence F;in
the sequence by counting the number of transitions from state
1to state j in one step.

Fy By,
matrix of Fy 12

F= observed transitions| . |G19)
Fon E

and F, = observed occurrences of state 1 = ZEM (517)

Then the one-step transition matrix P can be estimate as
follows:

ﬁll ﬁlm

N ﬁZl ﬁZm

P = estimate of P =| . . . . (518)
ﬁml ﬁmm

The elements of P =
6.4.2 in [297]:

o= observed transitions from state i to j
i = =

[p;;] can be computed according to

i

ocurrences of state 4 FZ_(519)

If state ¢ is not present in the samples (F; = 0), probability
transition is undefined. If state is unfeasible, it should be
eliminated. But the absence of occurrences can due to the
combination of low probability and scarce sample data. In
such cases, the more suitable assumption depends on the
meaning of the state and the study aim: jump probability
equal to stationary probability ( p; =~ 7;), jump to any state
equally likely (p;; ~ 1/m) or absorbing state (p; ~ 1 if
=7, otherwise 0).

Since states represent typical operational conditions, all
states eventually occur in the sample set (F;> 0).

For observed transitions (F;; > 0), the standard error of p;;
is approximately:

(520)
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The unobserved transitions (F;; = 0) can be due to real
transition unfeasibility or to the limited available data. If F;; =
0, the transition probability p; is bound to
[0,1—(1-73, )ﬁ ) with confidence level G, (F; is
binomially distributed). In part II of this paper, the estimation
of rare events will be revised.

7.4.2. Improving state estimation

A further refinement is to quantify the similarity of real
data to each cluster. For example, fuzzy classification
computes the similarity of each observation with each state
and the fuzzy membership degree can be interpreted as the
probabilities that the measures corresponds to the states of the
Markov model [298]. This approach improves the
performance of the Markov Model since samples are often
continuous random variables and there is not a definite
division or separation between clusters.

There are powerful clustering algorithms where any real
observation is classified into a group with an error that can be
controlled. Since Markov Chains poses a probabilistic
discretization into states and the cluster boundary is blur in
wind characterization [299], fuzzy c-means clustering is a
suitable clustering algorithm. In fuzzy clustering, each datum
has a degree of belonging to clusters, as in fuzzy logic, rather
than belonging completely to just one cluster [300]. Thus,
data on the boundary of a cluster may be in the cluster to a
lesser degree than points near the centroid. For each vector
observation y[K=[y,[H], y.[H, ..., yJH]" (for example, the
vector of s wind farm outputs at instant k) we have m
coefficients x,(y[%]) giving the degree of membership to the
™ cluster (1 < < m). Usually, the sum of those coefficients
is defined to be 1, ©%;x; (y[k]) =1, so that x,(y[k]) denotes
a probability of belonglng to i" cluster and x[K=[x,(y[K),
%(¥[K]), ..., x,(y[k])] is the probability vector. Since fuzzy
classification is unity normalized, some authors call it
probabilistic clustering.

If system is significantly influenced by external factors,
those features can be included in the classification process
although this increases the data requirements. In the example
of the group of wind farms, each state can be classified
mainly by its power output and secondary, by other
parameters such as average wind direction, meteorological
stability or wind prediction for a given horizon.

At a given time, the best classification of a big system into
a reduced set of states can be challenging. The best procedure
for estimating the system state depends of available data and
aim of the analysis.

Consider the following example: near cut-off wind speeds,
some turbines are stopped whereas others remain at full
power. The overall situation will correspond to full generation
in a portion and no generation in the rest. That intermediate
situation can be represented by the probability of pertaining to
full and no generation states (if the number of generating and
installed turbines are known, the probability of full generation
status can be interpreted as their ratio —frequentist
interpretation of probability—). Using the Bayesian
interpretation of statistics, the probability of full or no
generation is the degree of belief that the real situation
corresponds to each state. Using the interpretation of fuzzy
logic, the possibility of each state is the membership grade to
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a fuzzy set. From the mathematical theory of approximating
functions, the state probability can be regarded as
interpolating coefficients used to represent piecewise
functions such as expected values and voltage or power flow
profiles at some nodes.

The clusters implicitly model the relationship among
random variables whereas its probability is computed from
occurrence frequency of real data. If individual observations
vi[k] at instant k show patterns, the number of clusters m to
obtain a low classification error is proportional to s, the
number of individual observations y,[k. If individual
observations are statistically independent m is proportional to
s%. Note that if observations can be classified in independent
groups statistically independent, system can modelled more
efficiently if it is spited into groups (for example, consumer
load and wind power is very weakly related).

7.4.3. Estimation of P from fuzzy
clustering.

The instantaneous output can vary inside the time interval
and the output of the classification process, based on
averaged observations, is stochastic. If the classification of
two consecutive observations is the same, the system would
be regarded as “continuing” in the same state (although the
actual process is more complex).

On one level, the average power at an interval can be near
the classification boundary of two states and the
instantaneous state could be considered as a partially
corresponding to adjacent states. On another level, if the
states are very similar, a fuzzy classification is required to
avoid overestimating transitions due to sharp cluster
boundaries. In [301, 302], conventional discretization could
be the reason of the mismatch of some higher order models.

If the wind power is observed at a single location,
the classification of states according can be done according to
(494) and Fig. 112. But when wind power is measured at
several locations or the state includes not only present
observation but also average value during last 24 h, a fuzzy or
probabilistic clustering algorithm is required to -classify
observations with similar characteristics with a minimum
classification error. Additionally, The fuzzy clustering
algorithm computes a similarity measure of an observation to
each state or class (in fuzzy jargon, the level of state
membership and in statistical jargon, the state probability).
The probability of state ¢ given the observation, Pr(state, |
x,[H]), is x,(y[H]) = x,[H].

The output of the classification algorithm is normalized,
therefore:

m
doxilk] =1 (521)
i=1

where m is the number of states in the system. Since the
membership degree totals unity, fuzzy classification is
sometimes referred as probabilistic classification.

In either case, the state estimation x[k] = [x,(y[#]),
%(Y[K), ..., X,.(¥[k])] from observation y[#] is equivalent to
the Bayesian interpretation of probability of the occurrence of
state ¢ in observation y[A].

The probability of having observed a transition from state ¢
to j at instant k is a,[k], i.e. Pr(i— j). The probability of
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having observed a permanence in state ¢ at instant & is a,[4],
i.e. Pr(i— i). The estimation of transitions from state i to j is
not unique. In this work, P will be estimated to minimize
state transitions as follows:

1) First, estimate the probability of continuing in the same
state at instant k, Pr(i— ).

2) Then, the probability of jumping to a different state at
instant £ is estimated as the ratio of state probability variation
in contiguous instants to the probability of not continuing in
the previous state:

Pr[(j > j) N (i )]
oo Pri==i)

Assuming that the permanence in states ¢ and j are
independent for 7= j, (523) transforms into:

Pr(j == j)Pr(i>=1)
m . .
o Pr(i==1i)

a;k] = Pr(i—jli=j) ~ (523)

Interpreting the probabilities of not continuing in states i
and j, (524) transforms into the following expression:

0 if  x[k] < xilk + 1)
(xlk + 1] — ay[k]) (xi[k] — aalk])

1- Z:llan[k}

Vizj ANV1I<i<m AVIZ<ji<m

a;;[k] = (525)

else

3) Finally, estimate P = [p;;] from observations:
-1 m E.

Ej = Zaij[k]; F = ZFki§ 137:]' ==
=1 k=1 F

If the states are not directly observable, the Viterbi
algorithm should be modified to estimate the most probable
hidden states based on the fuzzy classification.

(526)

7.4.4. Generation of interpolated
samples

The inverse CDF technique can be used to generate
continuous random observations y[k] from some state
probability x[k] = [x,[k]]. This technique has been already
used in [301, 302] interpolating the cumulative probability
transition matrix. This technique is also valid for probabilistic
clustering if is (527) is computed vectorially.

Since state probability would contain several non-null
states, the cumulative distribution function cdf,(y) from (505)
and (507) must be used instead of the cumulative probability
transition matrix. The algorithm in pseudocode is:

1) Generate an uniform variable « in range [0,1].

2) Find the value i that makes cdf,(p.) < u < cdf(y)
from (505).

3) Solve y from the equation cdf,(y) = u using (507) and
realizing that 1< y <, For linearly interpolated states,

the solution is:
i—1

Xi i— X17 i
u+ iPi-1 + 1P _ZX]_
_ Pit1-Pi-1 Pi~Pi-2 =1 >
y= Xi Xi-1 (5 7)
Piv1-Pi-1  Pi~Pi-2
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4) Update the state probabilities from the observable value y
using (494):
x;[k + 1] = Pr(state; | y)

Vo 1<i<m  (528)

7.5. Autocorrelation function of Markov
Chains

The ACF and the PSD of the MC are very informative,
showing its main features. This is very important for selecting
the suitable order of the chains to obtain a chain with
approximately the same PSD or ACF characteristics as the
original series.

The autocorrelation function can be computed from the
transition matrix according to [303]:

m m

ACF[k] = Z Z v;v; Prlstate,=j, statey=i] (529)
j=1i=1

m m

ACF[k] :Z Z vi7; Pr(state,=j| state,=i] Pr[state,=i]=
j=1i=1

=Y v Z Pr[state,=j|statey=i]v; :Z 'yﬂrl-z Py,

i=1 =1 i=1 j=1
(530)

The former relation can be expressed in canonical basis of
an ergodic Markov Chain:

ACF[k]= w' Py = (W' V") Diag\*](Vz )1y =
= (Vi®)' Diag\* (Ve )" 5 = D7 abAt
(531)

(:l: = VRW = [al,ag,...,amf

b = (VR_I)T’? = [17171727"'717771}T

W = [Y171, Y2795y YT | is the vector of the product

whose elements are the state centroids ~; multiplied by

the stationary state probability ;.

Therefore, the ACF of regular Markov chains is
monotically decreasing, following a mixture of exponentials
[304, Ch. 8]. The decrease ratio is fixed by the eigenvalues .

The normalized autocorrelation (i.e., the autocorrelation
coefficient) can be computed as:

_ ACF[k] — (y)? _ Zzzaibi)‘ik
ACFy[O] - <Y>2 27:2 aib;

pylk] (532)

7.5.1. Power Spectral Density of
discrete Markov chains

The power spectral density (PSD) is the Fourier transform
of ACF. In [305, Chapter 2], a formulation is presented for
calculating the power spectral density of a generalized M-ary
Markov data source, which is characterized by one of signals
(referred to as elementary signals) transmitted in each At
interval with given a priori probabilities (called stationary
probabilities) and given transition probabilities, i.e., the
probability that a particular elementary signal is transmitted
after the occurrence of another elementary signal. This
formulation was originally described in [306] and it is further
explained in [307] for irreducible Markov Chains. [308]
derives the formula for irreducible periodic Markov Chains.
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7.5.2. Further constderations on the
PSD of continuous MC

The former subsections refer to the computation of the
ACF and PSD of discrete MC. Those formulas are also good
approximations for the case of continuously generated
samples y[k]. Since y[k] is not discretized, its PSD has more
low-frequency and less high-frequency content than the
discrete MC.

Due to actual computational power, it can be simpler and
more precise to estimate the spectrum from Monte Carlo
Markov Chain with the algorithm of continuous sample
generation (527).

The elementary signals can contain the PSD of the signal
2(t) inside time intervals At, providing an effective way to
construct the full PSD from quickly sampled records —high
frequency spectrum— and from the PSD of low-sampled long-
time historic data —low frequency spectrum-—.

7.6. Addition of long-lasting memory
feature

Experimentally, state transition is dependent on previous
observed value y[k], but the wind ACF shows a noticeable
peak at 24 h lag and its multiples. In [301, 302, 309], the
followed approach has been using higher order Markov
chains, but to reproduce the 24 h lag peak in ACF, a non-
ergodic chain should be used (for example, with a periodic
model that exploit diurnal wind or solar dependence).

If the hour is included in the state, there will be a transition
matrix for each hour and the number of parameters to be
estimated will multiply by 24, which is excessive for the
limited information that the hour adds. A more efficient intra-
day classification will be based on the observed diurnal pat-
tern in each location. In wind power systems, an hourly clas-
sification based on the average increase or decrease of wind
power can be enough. The transition from one state to the
other can be gradual and deterministic (on the hour), to ac-
count continuous change of daily weather patterns. If diurnal
dependence is modeled, the eigenvalues A\[k] depend on the
lag k and the ACF[k] can show peaks at multiples of 24 h.

A multiresolution approach with several time-scales is
suitable to model the long-lasting memory and the strong and
weak interactions [310, 311]. Therefore, the average value of
y[k] during last 24 h is an important parameter to define
system status. Other parameters that can be included in sys-
tem status are the average rate of change during last hours.
The discretization of the last 24 h average and its average
change should be determined according to the supplementary
information added to the model. The simplest way to choose a
good classification is to use a fuzzy clustering algorithm
where the classification error or the number of clusters can be
selected.

Recall that only representative parameters must be consid-
ered since the number of states and estimates increases
exponentially.
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7.6.1. Hourly, daily, weekly and seasonal
dependence

The hour, the day of the week (weekdays, Saturdays and
Bank Holydays) and the season of the year can be modeled as
different time states of the system. Wind and solar generation
depend on the hour of the day and the season. Therefore, the
transition matrix of solar and wind generation is different
depending on the hour and season state (wind dependence on
hour is usually small, but hourly dependence of solar
radiation must be considered in any case).

Notice that time evolution is deterministic. Moreover, time
n steps forward from & = m can be computed easier with
time equation ¥ = m + n and a calendar than with the
deterministic transition matrix. An approximate stochastic
model is introduced to model fuzzy time classification (even
though time evolution is deterministic, system behaviour
depends stochastically on the time and a stochastic model of
time is sensible). A stochastic time model can speed up a
discounted Markov Decision Process with infinite horizon
with enough accuracy and improve the transition matrix
estimation.

A) Hourly patterns

The transition diagram for hour state with
discretization step At = 1h can be seen in Fig. 114.

\
0:00 J { 1:00 ] { 2:00 ] -+ (21:00) {22:00] [23:00

v\

Fig. 114: Deterministic transition diagram of hour state. The behaviour is
purely periodic since transitions are deterministic (probability = 100%).

time

The inclusion of hour state allows to use different
transition rates for load and non-controllable generation each
time step At. The transition rates for each hour can be
obtained from historical data. If the model time step At is
smaller that load and generation data or the data set is small,
transition rates can be estimated hourly and then interpolated
and scaled down to time step At¢. To reduce memory
requirements, the number of day time steps can be decreased
and interpolation can be disused.

B) Weekly patterns

Load can be forecasted with high accuracy in a big power
system whereas the uncertainty is higher in small systems.
Basically, load consumption depends mainly on the hour, day
of the week and temperature. In a first approach, load level
can be classified as high (typically, weekdays), medium
(typically, Saturdays) and low (typically, Sundays and Bank
Holydays). Each time the hour state jumps to 0:00, the
classification of the day can change according to Fig. 115
(transition probability computed for a standard year). Take
into account that a more accurate model will distinguish
between full load, mid load and low load for each season
instead of weekday classification.
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Fig. 115: Stochastic transition diagram of type of day (at the end of each
day). Time transitions are stochastic (probability < 100%) except for the
Saturday to Sunday/Bank Holyday transition.

4/5

Fig. 115 shows a probabilistic transition diagram. This
implies that the weekday probability will evolve to the static
probability in a few days (the fraction of weekdays, Saturdays
and Sundays / Bank Holydays in a whole year). If the cyclic
behaviour during one or several weeks is studied, the model
of Fig. 116 is more suitable. Notice that the model of Fig. 116
only represents pure periodic weekly patterns and the
Holydays should be modeled with this approach as yearly
patterns.

€ N & N
Monday|f Tuesda [Wednesd][Tuesday][ Friday [Saturday[Sunday

'\

Fig. 116: Deterministic transition diagram of the week day.

C) Yearly patterns

If the horizon is longer than one season, the model should
encompass the different characteristics of load, generation
and reservoir dynamics along the year. Each day of the year,
from January 1* to December 31* must be modelled as a state
to use actually periodic Markov chain of Fig. 117. This model
can account bank holydays patterns in load, but the estimation
of the transition probabilities for each day of the year requires
long data records and detrend the weekly patterns.

N
[ Jan 1% ][Jan Z“d] [ Jan 3'd] . [Dec29‘h] [Dec30‘h] [Dec31Sl

v\

Fig. 117: Cyclic transition diagram of the year state.

A season last 91 days approximately, and the weather
average characteristics vary gradually inside that period. If
the scope of optimization is shorter than a whole season, each
day can be classified in a state up to a certain degree (for
example, March 21* can be classified as 50% winter and 50%
spring). Thus, the seasonal approximated model is the
stochastic transition diagram shown in Fig. 118 (note that the
number of states has reduced from 365 days to 4 seasons).

1/91 1/91 1/91

C["Spring ] CLSummer] éAlt/lgtlum ] d Winter

Fig. 118: Stochastic transition diagram of the approximate seasonal model.
Season transitions are stochastic (probability = 1/91 a day).
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7.7. Interpolation among basic periodic
states

7.7.1. Introduction

Periodic chains needs to include a state for each time step,
generating huge transition matrixes. On the other hand,
periodic chains are deterministic and they can be handled
much more effectively and naturally taking time as an input
of the model and then computing with basic formulas the
state of the periodic chain.

Since we are used to seasonal and daily classification of
time, the stochastic model can be understood as a reduced
transition matrix for each season and for each daily period,
conforming the global transition matrix. Moreover, the
transition matrix can be also expressed in tensor form (a
reduced transition matrix for each season and for each daily
period). The interpretation and analysis of the results is
simpler due to the reduced dimensions of each basic transition
matrix.

Even though the whole model is yearly periodic, many
states are similar and they can be aggregated [312], making
the model tractable. In this work, the evolution of seasons,
hours... is handled by periodic interpolation. The periodic
interpolation depends on time, but since time is now an input
of the model, it can be estimated deterministically. Therefore,
the transition matrix depends on a small subset of states (the
basic periodic states and the output states), decreasing hugely
the computation burden.

A full-year periodic complete model with time
discretization step At =1 h will include 8760 states for each
of the 8760 h in a year. It is not reasonable to estimate a
transition probability for each hour, since:

— It would require meteorological records from many
years and available data rarely covers more than a
few years, if any.

— Cyclic weather patterns show a general tendency.
The seasonal weather patterns can occur with a lag
of some weeks, depending on weather dynamics in
each year. Therefore, a seasonal model with a bigger
temporal resolution is non effective.

— There is a trade-off between temporal resolution and
uncertainty in transition probability estimation,
especially for short data records.

—  The discounted optimum control for long horizons is
less sensitive to the periodic patterns in the remote
future. Thus, the stochastic transition models are
more computationally efficient when calculating
optimality with average or discounted average cost
(or value) functions.

7.7.2. Periodic interpolation approach as
a multivariate Markov chain.

The use of loose periodic patterns reduces notably the
number of states and the computational burden. The
advantages of estimating a transition matrix only for each
combination of season, type of day and intraday period are:

— Since seasonal and hourly weather patterns are
gradual tendencies, a progressive and probabilistic
classification is desirable.

For example, the day of vernal equinox will be
classified as winter and spring with equal
probability. In other words, March 21* (the end of
winter and the beginning of the spring) have climatic
characteristics of winter and spring with 50%
probability.

The expected climatic parameters at an instant k are
a mixture of similar seasonal, weekly and hourly
patterns.

Periodic weights and conditioned transition matrixes
can be expressed as periodic Markov chains [313,
Ch. 9]. If time step At= 1 h, the interpolation can
be described as a deterministic periodic sparse
transition matrix of dimension 8760x8760. This fact
can be used to derive theoretical properties of the
Markov chain.

The season, the day and the hour classification can
be considered an observed state of the model (i.e.,
they are inputs of the model).

o A model with 4 seasons, 3 types of day and 6
intraday periods have 4x3x6 = 72 basic
transition matrixes (one for each combination
of season, day and intraday) instead of 8760
basic transition matrixes (one for each hour of
the year).

o Not all parameters do depend on season, day
and hour (for example, wind and sun are not
correlated with the day of the week).
Additional economy can be obtained if
intraday or seasonal resolution can be lowered
(for example, wind behaviour can be classified
according to half year and half day periods and
two days period —four basic transition
matrixes—).

o The features of basic transition matrixes are
glimpsed in density plots where each pixel has
a color according to the matrix element
logarithm.

The functions season(n,,k), weekDay(n,,k) and
hourlyPeriod(ns,k) will be used for simplicity to
obtain the probability of each time classification,
where n,, n, and n, are the classification periods and
k is the hour from the start of the year (January 1**).

o Season numbering: according to the order
shown in Fig. 118, n,=1 for spring, n,=2 for
summer, n, =3 for autumn, n,=4 for winter.

o Day of the week numbering: according to the
order shown in Fig. 115, n,=1 for weekday,
n,=2 for Saturday, n,=3 for Sunday or Bank
Holiday.

o Numbering of period of the day: according to
the order shown in Fig. 114, the numbering
starts from n,=1 after midnight (00:00). The
number of intraday classes depends on the
hourly resolution required for the application:

The division of a day into two classes can be enough
for wind applications since diurnal dependence of
wind is small [314, 315, 316, 317, 318]. The
optimum time centroids are the periods with
maximum and minimum wind average change rate
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(time of the day with maximum average increase and
decrease of wind, respectively).

— Solar applications need a more detailed model. Time
classification can be based on clear-sky solar
insolation on collector, starting from zero (night) to
maximum insolation at noon. Moreover, the clear-
sky power output can be computed from time if the
characteristics [319] of the collector are defined (i.c.,
not a parameter to optimize in MDP). Thus, time can
be classified according to the clear-sky power
output, from zero to the maximum output.

— Hourly load profile can be classified according to the
load level and the average rate of change. Since
diurnal load dependence is high and quite
predictable [320, 321], a clustering algorithm can be
used to optimize classification given the desired
number of periods. Usually, the gradual division of
day into eight periods is precise enough [322].

o If each parameter affects the system
independently of rest of parameters, the joint
transition matrix can be factored as:

pi,j|n1,7bz.n3 ~ a’i,j|n1 'bi,j |n2 'Cz’.j|n3 (533)
Thus, only Al, , B, and C|, matrixes must be
estimated minimizing the approximation error and
fixing an scale (for example, a;;/, =1 and b4}, =1
Vn,, Vn,). Provided factors and joint probabilities are
not null, (533) can be transformed into a linear
minimization problem: (534)

ln(pz',j |n1,n2,n3 ) - ln(az’,j |n1) - ln(bzl,j |n2) —In (Ci,j ‘713) ~0

—  Therefore, a factored model with n, = 4 seasons,
ny = 3 types of day and n,; =6 intraday periods have
mtnstn, = 13 basic factor matrixes: Al, _;,
Al, o,y Al —4,Bl,,—1,...and C|,, .

A model for multivariate Markov chains with reduced
number of parameters can be found in [283]. This approach
can be valuable if data is scarce or the number of states is big.
However, the number of classes of the models presented here
is low enough for using a conventional approach to
multivariate Markov chains.

7.7.3. Comparison of linear, cosine and
Gaussian periodic interpolation

This subsection compares the characteristics of periodic
interpolation. Since it is an interpolation in time domain, its
main features has been already discussed.

7.7.4. Periodic linear interpolation

For most applications, the linear interpolation is precise
enough (triangular conditional probability). This conditional
probability is analogue to the fuzzy classification of the day
with triangular seasonal membership functions (see Fig. 119).

t') = (1_

season i|k, A( i

t/

K3

| )| <1
0 ifft/|>1 (535)

ZPI‘(Seasonal Pattern=1 |hour=k, interpollationﬂmeal)
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— 2Mod(t—p,—T/2,T) - T
where t; =

(536)
Mod(p; =, 1, T)

where Mod stands for modulo function (remainder of the first
argument divided by the second).
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Fig. 119: Seasonal pattern Conditional probability given the day estimated
using linear interpolation, Pr(Seasonal Pattern |day).

Linear interpolation is piecewise linear, as can be seen in
Fig. 107. Since weather patterns vary smoothly and
characteristic times are big, a smoother interpolation such as
Fig. 110 is more suitable to model this smooth behaviour.

A) Periodic Gaussian interpolation

If a smooth conditional probability density function is
required, the Gaussian PDF is quite suitable. The standard
deviation to make the sum of conditional probabilities closest
to unity is o; = Mod(p;1—pi_1,T)/~8V7 . If the same
transformation of (536) is applied, the PDF is (537) and the
individual conditional probabilities and its sum can be viewed
in Fig. 120.
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Fig. 120: Seasonal pattern Conditional probability given the day estimated
using the original normal interpolation, Pr(Seasonal Pattern |day).

The normal probability is not restrained to adjacent states.
This conditional probability makes that an infrequent event
that have happen in one season can happen in other periods
with smaller probability. In most applications, this
generalization is desired since long data records are not
usually available (the estimation of extreme events has high
uncertainty) and such infrequent events can have special
consequences in the system.
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The sum of normal probabilities has a maximum error of
1,5%. If (537) is scaled to sum unity, the conditional
probability is:

—1/4 —v7t;?
™ e

f,

U
season |k, normal‘(ti )

(538)

3/2

" EllipticTheta[3, -t/ e ™

]

Recall that Elliptic Theta function can be replaced by
the sum of all the numerators of (538) V i. Alternatively,
approximation (539) can be used if 0,15% scale error is

admissible (both approximations are visually
indistinguishable and they correspond to Fig. 121).
; (t) 0.7166 (539)
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Fig. 121: Seasonal pattern Conditional probability given the day estimated
using Gaussian interpolation, Pr(Seasonal Pattern |day).

B) Periodic Cosine interpolation

The two-state deterministic periodic system shown in Fig.
122 has the following transition matrix and rate diagram:

m
State State P 01 540
1 2 11 0 (540)
1

Fig. 122: Rate diagram and transition matrix of a periodic system with two
states.

The evolution of state probability can be computed from
Markov property:

1-(-1)F
1+(-1)F

1. & 1+(-1)F

=-X[0 (541)
2 [ 1-(-1)F
For non-integer time instant k, the probability X[k] is
complex [323]. If only real part of X[k]is considered as
meaningful, (541) transforms into:

1. 14+Cos(mk) 1-Cos(wk)

Re Xk} = 2%00 | | os(ek)  14Cos(rr)| 4P

T2

Therefore, the evolution of intermediate states is
trigonometric for systems with two states, as can be seen in
Fig. 123. Sine and cosine functions have inherent periodic
behaviour and they are the basis of frequency analysis. In
many fields, periodic behaviour is represented by phasors.
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Moreover, the sum of this type of conditional probability is
unity (no additional factor must be included).
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Fig. 123:
computed using cosine formula (542).

Conditional probability of a two state periodic Markov chain

For systems with more than two periodic states, the state
probability at non-integer time instant k is not bounded to
[0,1] and shows complex trigonometric relations. Therefore,
the former interpretation of complex probability is not longer
valid. Notwithstanding this fact, the conditional probability
can be defined analogously as a cosine pulse:

%{l—i—cos[ﬂ'ti’ ]} t

0 |t =1

f,

!
season |k, cosine(tz' ) -

(543)

The non-null probability is constrained only to adjacent
states. This can be an advantage when modelling systems
with behaviour very dissimilar for different states. Gaussian
interpolation (538) is very similar except the amplitude of the
cosine is halved (see Fig. 124). Therefore, the behaviour is
more similar at either state with normal assumption (the
probability of behaving as the other state is, at least, %4).
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Fig. 124: Conditional probability of a two state periodic Markov chain
computed using Gaussian formula (538).

The application of cosine interpolation to chains with more
than two states is similar to triangular conditional probability
(compare Fig. 125, Fig. 121 and Fig. 119). One disadvantage
of this model is that the interpolated behaviour shows
inflexion points at the state centroids, as can be seen in Fig.
108.

In sum, normal interpolation is preferred for weather
systems where the behaviour at adjacent states is similar and
its generalization makes less critical data scarceness.
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Fig. 125: Seasonal pattern Conditional probability given the day estimated
using cosine interpolation, Pr(Seasonal Pattern |day).

7.7.5. Benefits from discrete
approximation of continuous time and
state Markov models

e Continuous time and state Markov models are very
difficult to solve and require algebraic manipulation, more
restrictive than numerical calculus.

e Algebraic manipulations are avoided with the discrete
approximation. The powerful theoretical background for
Discrete Time Markov Chains can be used.

e Even though state and time interpolation can be formulated
as HMM, the interpolation approach is more simple and
leads to a more simple and intuitive model. The states are
observable because all measures are supposed to be reliable
and the states are defined by the measures. Moreover, the
overhead of Forward, Viterbi, Baum-Welch algorithms
[324] for HMM is avoided using regular MC.

e Regular MC have more theoretical properties than HMM
and the parameters are more informative. For example, the
PSD of a Markov Chain can be computed theoretically
from parameters without using MCMC.

e MDP are formulated easier in MC than in HMM.

7.8. Application Example I:
Characterization of wind power
variability with Markov Chains

A novel technique to account wind variability is presented
based on Markov Chains and classification of observations.
This approach is different from the usual generation of wind
series in Monte Carlo analysis through Markov Chains.

This model describes the power system status through
combination of cases or “snapshots of the network” obtained
from the clustering of observations and the probability (or
observed occurrences) of transitions from one case to other
with Markov Chains. This powerful approach is able to model
not only the non-linear conventional behavior of the farms but
also infrequent events that have a high impact in system
reliability and stability (such as sudden disconnection of
generators due to grid perturbations, swift change in wind
during storms, etc).

This powerful combination just requires to run only so
many power flows as states has the system. Each grid
snapshot is computed using a regular power flow with a full
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model of the grid (instead of linear models). Intermediate
cases are interpolated using fuzzy clustering, reducing
remarkably the required number of cases considered for a
given accuracy.

The probability of events which can harness power system
security can be derived easily and rigorously using the
properties of Markov Chains. Moreover, Markov Decision
Processes can be applied to optimize the regulation of
spinning reserve, the reactive control and the optimal sizing
of isolated systems.

To explain adequately the foundations and to show the
potential applications of this approach, this work has been
divided in three parts. In this part, the theoretical foundations
and an overview of the method are presented. The second part
shows the estimation of Markov Parameters for a system with
three wind farms. The third part illustrates the stochastic
power flow of the three wind farms and introduces the
possible optimization through Markov Decision Processes.

7.8.1. Introduction

Wind speed fluctuations are usually analyzed through
linear mathematical tools such as frequency spectrum and
time series. The Van der Hoven’s wind spectra [325] show a
gap between 3 minutes/cycle and 5 hours/cycle that separates
fast fluctuations from slow fluctuations. Nevertheless, this
division is not so clear at some locations [326, 327, 328].

On the one hand, slow fluctuations are mainly due to
meteorological dynamics and they are widely correlated
spatially and temporally. Slow fluctuations in power output of
near farms are quite correlated and wind forecast models try
to predict them to optimize power dispatch. On the other
hand, fast wind speed fluctuations are mainly due to
turbulence and microsite dynamics [329].
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Fig. 126: Van der Hoven’s spectral model (from [78]).
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7.8.2. Step changes in Power Output

Wind turbines can cause a periodic behavior if they
experience repetitive connection and disconnections due to
difficult operating conditions (wind speed near cut-in or cut-
out, high temperatures, high turbulence, etc.). In Fig. 127, the
active power output of a single turbine has extreme variations
due to a combination of high ambient temperature and high
wind, yielding to high temperature alarms at gearbox oil. In
that situation, the power output of the farm is not so abrupt
because even though this behavior was common to many
turbines, the disconnection and connections of the turbines
were not synchronized.

The repetitive connection and disconnection of up to two
turbines is a reduced portion of the total active wind farm
power output expressed in p.u. (see Fig. 128).

The sudden wind change can also cause variations in power
output of the farm in minutes, as can be seen at Fig. 129. At
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17:25, the power output of a farm was 0.21 p.u. and ten
minutes later was 0.96 p.u. due to a storm.
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Fig. 127: Power output of a single turbine experiencing 24 repetitive stops
due to over temperature in 20/07/1998 (24 h).

In general, power variations as extreme as Fig. 129 are
smoothed in the total generation of a bigger area. However,
even in a wide area such as Spain with 16 740 MW of wind
power installed at the end of 2008 [330], a variation rate of
1000 MW/hour approximately can be seen in Fig. 130 [331].
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Fig. 128: Active power output of a wind farm with 26 turbines experiencing
repetitive connection and disconnection of up to two turbines due to internal
errors in 7/02/1999 (mean speed at meteorological mast was around 14 m/s).
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Fig. 129: Active power output of a wind farm experiencing high variability
in 9/02/1999 due to a sudden change in the weather at 17:30.

The worse case is when the circuit breaker disconnects a
wind farm. The Spanish Ministerial Order of 5-9-1985 [332]
ordered that the protection relays of wind substations were
adjusted very strictly (for example, instantaneous trip for
voltages under 0,85 p.u. or over 1,1 p.u.). This caused a
number of unjustified disconnection of wind farms at network
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contingencies. In Fig. 131, recovering normal production
from wind farm energization lasted three minutes (with
Vestas Opti-Slip 600 kW turbines). Nowadays, the relays are
adjusted more selectively and the turbines are rewarded for
fault riding capabilities (even though [332] hasn’t formally
repealed, up to now).
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Fig. 130: Active power output (MW) of Spanish wind farms experiencing
high increase in 18/01/2005 between 12:00 and 15:00.

To sum up, some events in the wind farm produce step
changes in the output and they are very difficult to model
using frequency or time series analysis.
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Fig. 131: Active power output of a wind farm experiencing a disconnection
in 3/02/1999 due to a trip of the homopolar protection relay between
21:05:24 and 21:10:55. Three minutes later, the output reached normal
values.

7.8.3. Statistical Approach to Variability

Linear stochastic tools such as time series or frequency
analysis are very popular for characterizing the farm output
despite casual individual turbine disconnections. However,
Markov chains will be used in this work since:

—  The behavior at low or high wind is very different from
middle wind. Such behavior is highly non-linear.

— Some stochastic models do not model adequately that
power output is constrained from zero to full generation
(0 to 1 p.u.). The long run probability of the power output
is bimodal, showing more steady operation at full
generation or at no generation [333]. The output can vary
suddenly from 0 to 100% in wind park switching events.

—  Grid disturbances can trip a great amount of wind power,

which can be hardly characterized with stochastic linear
models based on time series or frequency analysis. Big
fluctuations such as disconnection of a whole park or a
group of farms are not suited for spectrum neither time
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series analysis because abrupt changes involve high
components in all frequencies. In contrast, the probability
of a sudden change can be modelled easily with Markov
Chains.

— The linearized model of an electrical system is not
adequate for severe perturbations.

This work will focus in a non-linear stochastic
characterization of power output through a finite number of
states.

Markov chains have been chosen for this work due to its
simple mathematical treatment and its superior theoretical
properties for stochastic dynamics. This model is also well
suited for stochastic power flows and for understanding
system dynamics.

A stochastic process can be modelled by a Markov
model if the evolution of the system is only dependent of the
present. In other words, a Markov model implies considering
the process memoryless. The utilization of regular Markov
Chains imply that the permanence of the system in a state is
distributed statistically exponentially (or geometrically in the
case time is discretized). To override the memoryless
characteristic, the tendency of the system during the last
hours or the wind forecast for a given horizon can be included
as another parameter of the states (at the cost of a bigger
number of states).

7.8.4. Characterization of Power
Variability of Wind Generation with
Markov Chains

Markov chains have been used in modelling physical,
biological, social, and engineering system such as population
dynamics, queuing networks and manufacturing systems. One
of the main advantages of using Markovian models is that
they are general enough to capture the dominant factors of
system uncertainty and, in the meantime, it is mathematically
tractable.

Most dynamic systems in the real world such as
meteorology are inevitably large and complex, mainly due to
their interactions with numerous subsystems. Since exact or
closed-form solutions to such large systems are difficult to
obtain and they would require extensive measures, one often
has to be contented with approximate solutions. Take the
optimal control of a dynamic system such as spinning reserve
in a power system due to wind power. Because the precise
mathematical models are difficult to establish, near-optimal
controls often become a viable, and sometimes the only
alternative. Such near optimality requires much less
computational effort and often results in more robust policy to
attenuate unwanted disturbances [334].

Wind power show different prevailing dynamics when it is
analyzed for a few milliseconds or for a daily horizon. It can
be thought that electromechanical dynamics used different
time scale from the weather evolution.

The division between fast and slow dynamics makes easier
large-scale optimization of wind energy. If all the important
factors are included in a Markov Model, it would lead to a
large state space with many parameters to estimate and an
exhaustive and extensive measuring system. To reduce the
complexity, a hierarchical approach is suggested, which leads
to a multi-resolution formulation. The hierarchical approach
relies on decomposing the states of the Markov chains (all the
possible combination of power output of wind farms) into
several recurrent classes (typical patterns of generation
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observed in power output of wind farms). The essence is that
within each recurrent class the interactions are strong and
among different recurrent classes the interactions are weak.

Traditionally, Markov chains have been applied in
Electrical Engineering for the study of queues [335] and
power system reliability given rate of failure and reposition
times of its components. In Markov Chain Monte Carlo
(MCMC) simulations, Markov Chains are employed as
random number generators with particular characteristics
[336], not in the way they are utilized in this paper.

7.8.5. State selection

In this proposed methodology, each Markov state can be
seen as a case that characterizes a typical operational mode of
the wind farm (or a group of wind farms). Full generation, no
generation and partial generation are candidates for Markov
states. If partial operation near cut-in wind speed is notably
different from partial operation near rated wind speed, they
should be considered as distinct Markov states. Fig. 132
shows this discretization and the arrows indicate a transition
from a state to another one.

Fig. 132 is a priori arrangement, but the election of states
can be optimized using a clustering algorithm which
minimizes the classifying error and selects the optimum
number of states [337, 338]. This is crucial when classifying
data from several wind farms. Therefore, the clustering is
used as a mathematical tool to transform a continuous
multivariate space R®(the active power output of s wind
farms) into a discrete and finite (numbered in N) state space
to use Discrete Time Markov Chains with convenient matrix
algebra instead of functional analysis.
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Fig. 132: Discretization of power output of one wind farm into a number of
states (four in this figure). Only transitions from states 1 and 2 are shown for
clarity.

The use of different states allows to use a full model of the
grid (instead of the classical small-signal model) and the state
weighting describe intermediate cases reducing the required
number of states, m. The combination of matrix algebra and



118

state probability imply the (linear) interpolation between the
centroids of the states for describing intermediate cases.

7.8.6. Considerations on P.

Since the probability of state transitions is estimated from
real data, this approach can handle abrupt behavior of the
farms along with events that rarely happens but that they have
a high impact in system reliability and stability (sudden
disconnection of generators due to grid perturbations, swift
change in wind during storms, etc).

The obtained Markov Chain is irreducible because starting
from any state ¢, it is possible to enter state j in finite number
of transitions. This property will be assumed in the following
sections. Moreover, if all transitions p; have non-null
probability, the Markov chain is said also regular.

7.9. Experimental Validation of Case
Study I

The classification of states can be based on power output,
“unperturbed wind speed” and wind speed prediction,
depending on available data and aim of the wind farm model.
The performance matrix in Standard IEC 61400-12-3 can be
used as emission matrix to relate wind and power in a wind
farm using a Hidden Markov Model. The wind farm model
can be used also as time interpolation between horizons of
wind prediction or to account switching events such as
sudden disconnection of the farm. The basic workflow to
compute a stochastic power flow based in Markov Model is
presented. A simplified, steady state, quadratic model of the
wind farm is shown for justifying the approximation of
networks to PQ nodes and the interpolation between states.
This quadratic model can be used also to estimate the reactive
power for steady state.

7.9.1. Markov Model Based on Wind
Parameters

The consideration of wind speed and direction along with
wind power output can give further insight in wind farm
dynamics than using only power output. However, it is usual
to have only limited data (only wind parameters or only
power generation).

Power Flows require the active and reactive power of all
generation and consumption nodes. This subsection discusses
the modifications needed to use a Markov Model based on
wind and power parameters or only wind characteristics.

If the aim of the Markov model is to work with wind
forecast, the state number can be defined based on mean wind
speed and direction at the wind farm. The power output can
be derived from the conditional probability of power output
given wind speed and direction.

Standard IEC 61400-12-3 [339] shows a detailed method to
compute the wind farm power output from “unperturbed wind
speed” of the wind farm. The wind farm power curve consists
of performance matrix M indicating the expected power
output from wind speed and wind direction values. In Markov
jargon, the state space can be built from wind speed and
direction. The emission probability matrix can be the
performance matrix M if the bins of IEC 61400-12-3 are
elected as Markov states.

Moreover, Hidden Markov Models (HMM) can cope with
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more complex dynamics when system state is not directly
observable (for example, if important information like turbine
malfunctions and maintenance work are not available).

A model should be simple enough to avoid over-fitting or
over-fluctuations. Even more, the use of very complex
models with many parameters need big amounts of data to be
adjusted and its interpretation becomes tougher.

/7 Wind farm output
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Wind speed and
(emission N / _l:_'_,
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Fig. 133: Schematic relationship between measures (observations) and

estimated states when they can not be derived straightforward from measures
(adapted from [340]).

7.9.2. Improving Markov model with
weather forecast

Weather forecast is a widespread tool to characterize wind
farm power trend from 6 hours ahead. Meteorological
physical models are much more precise for assessing power
evolution for long horizons, whereas Markov Chains are more
adequate for assessing power variability for short and
medium horizons and for optimize network policy. Therefore,
a model that combines weather forecast and a Markov Model
is more suitable than just trying to use a more complex
statistical distribution (a semi-Markov model has fewer
theoretical properties, it increases model complexity and it
does not account the complex weather dynamics).

The influence of meteorological dynamics can be
incorporated using the weather forecast as another parameter.
If weather forecast is not available, a Hidden Markov Chain
(HMC) can be used for accounting the meteorological
stability (an unobservable parameter). Other approach is the
inclusion of the weather forecast and the farm availability in
the classification process.

To sum up, if the time span of the estimation is bigger than
6 hours, weather forecast must be used to increase the
accuracy of the wind power variability model.

7.9.3. Discerning switching events from
continuous operation

Switching events are difficult to detect if there are no
meteorological data available. Switching events can be
guessed during high wind with a statistical hypothesis test
based on maximum change of wind. If power has changed
above the confidence level for the previous power output, the
operation is not continuous up to a significance level.

Moreover, if the variability of power output during normal
operation is characterized through a Hidden Markov Model,
the Viterbi algorithm can be adapted to estimate the most
likely sequence of states from measures.
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The effect of switching events range from voltage
variations to frequency drifts in smalls systems or tie line
overloads in big systems [341]. For example, the sudden
disconnection of big amounts of wind power in Spain can
overload tie lines with France [342]. The sudden
disconnection of such big amounts can be due only to severe
network disturbances that are spread along the grid. These
events are unpredictable.

The disconnection due to extreme weather is more gradual
because of geographical diversity of turbines. Some wind
farms will experience greater wind speeds. Inside a wind
farm, the more exposed turbines would shut down first.
Moreover, extreme wind can be forecasted with some
accuracy and the spinning reserve can be appropriately
increased [343, 344]. Sometimes, the maximum and
minimum power in the interval is also measured. This extra
information is very valuable to discern switching events from
very fast changes in wind.

7.9.4. Stochastic time interpolation

Sometimes, wind or power forecast is given only at some
time horizons and the power output should be computed at
intermediate instants between actual data and forecasted
value. Time interpolation can be performed using maximum a
posteriori probability criterion according to a Markov Model.

The sequence of power output or wind speed and direction
analyzed “as time goes by” is called the forward Markov
process and it has a probability transition matrix usually
denoted by P and its elements p;, the transition probabilities
from state i to state j. However, the sequence ordered in
reverse time direction is another Markov process [335] with
backward transition probability matrix P and its elements,
P;; the reverse transition probabilities from subsequent state i
to the preceding state J:

Dy =T pji [T (544)
where ;is the stationary distribution of the models and can
be computed as the eigenvector for the unity eigenvalue of
matrix P (or P) or alternatively, as any row of the limiting
distribution for long time horizons, ]\}LH(I)C PV,

7.9.5. Input data

x[0] = [#]0], z,[0], ..., x,[0]] = row vector of initial
probabilities of all m states.
xforcrasted[]\q [II[M’ IZ[]V]’ ce ‘Tm[‘]\q] = forecaSted

probabilities of all states for time horizon N.
%[ N]=Expected value of x[N] = E(x[N]) =

= Probability(X[N] = X jyrecasteaN])X[0]- PV +
+ Probablhty(X[N] = Xforecasted[N])'xforecasted [N] =
= (1 - ﬁ) X[O] PN + ﬁ xforecasted [N]

B, = confidence level of forecasted value X fyecqsted[V]

(545)

7.9.6. Estimation of the state sequence

The expected system evolution is the weighted sum of a
forward and a backward Markov Process. In absence of
relevant information, the weighting of the forward and
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backward process at point k£ can be proportional to the
distance to the initial and end of the time interval.
Accordingly, the following formulae expressing the
probability of each state (P is supposed invertible in wind
power applications): (546)

x[k]=Expected value of x[k], 0 < k < N = E(x[k]) =
= Probability (X[k] = x[0]-P*)-z[0] P¥ +
+ Probability(X[k] = x[N]-P¥*)x[N]-P¥*
N — k) x[0] P¥ + &k x[N] PV *
S=E(x(k]) = ( ) [0] . [NV] _

k , k ,,
= (]— - ﬁ(’,l ﬁ) X[O] Pk + 56[ Nxforecasted [N} PN b=

- (1 - k%) x[0] P¥ + k%xﬁmmdm PY (P 1) (547)

The latter formula can be expressed more compact as:

ﬁ[k]: X[O] + k%(xﬂjrecasted [N] PN - X[O]) Pk (548)

If the interpolation between the measured and the
forecasted values is done geometrically instead of
arithmetically, a similar formula can be derived.

The probability of any sequence of generation states can be
computed as in chapter 7 of [345] (for example, probability of
the sequence: full generation to no generation and then to full
generation in successive time intervals).

7.10. Stochastic power flows

Probabilistic power flow is a term that refers to power flow
analysis methods that directly treat the uncertainty of electric
load, generation and grid parameters.

Classical approaches usually rely on simplifications such
as linearization and independence of random variables. In
many algorithms, the loads at each bus are assumed inde-
pendent and normally distributed [346], which is quite
unrealistic for renewable energy and consumer loads. How-
ever, dependence of system parameters should be identified
by principal component analysis and correlated random vari-
ables can be transformed into independent variables. Some
authors [347, 348] proposed a linear approach with a
rotational transformation to convert variables correlated into
uncorrelated.

In Monte Carlo time simulation, a large number of power
flows should be run to achieve a good precision. The system
optimization (spinning reserve, reactive power, optimal
planning,...) usually requires an lengthy iterative process.

7.10.1. Markov chains in stochastic
power flow

One important contribution of this article is the use of cases
for describing distributed generators with non discrete
operational states. In wind or solar energy, it is not practical
to take into account each single wind turbine in the simulation
of a big power system. The use of cases along with its
frequency of occurrence is a compact way to condense the
information of turbines’ operational point due to an
uncontrollable primary energy, geographically related.
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Markov chains are very adequate for handling transitions
between states (for example, the change from available to
unavailable operational state and vice versa). The main
drawback of using only a reduced number of cases is that they
must be chosen so that all significant operational states are
included in the set. Some cases must be included because they
happen very frequently (states with high probability) whereas
others can be rare but they can harness system stability.
Therefore, no-generation and full generation should be
included as states.

Each combination of system states can be solved with a
regular power flow and its probability and time variability can
be obtained from the DTMC (Discrete Time Markov Chain).
If the final grid state is dependent on the previous state, a
continuation power flow should be run for each realizable
state transition (squaring the number of required power
flows).

Yes Is operational
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Select typical
operational points
v from a physical
Group measured data
into clusters *

Estimate long-run
distribution and
characteristic times
of each state

A 4 *

Compute P Compute P

v

Run a standard
power flow for each
state with the

v
Run a standard
power flow for each

parameters of the typical operational

cluster centroids state
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Statistically process the output
of the power flow

v

Assign the cost of all possible
actions for each transition and
run a Decision Markov

n.

v
[Optimum control of]

the network

Fig. 134: Work flow for the proposed model.

The joint probability distribution of random variables is
implicit in transition matrix P, which is estimated from real
data or from physical models. This is a desirable feature,
since many statistical grid methodologies [349] suppose that
random variables are not correlated (independent variables)
whereas renewable generation is quite correlated in small
geographic areas and loads are also quite correlated.
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If each load and generator are discretized, for instance, into
four states, the number of combinations are 4", where » is the
number of stochastic variables considered. If the number of
stochastic variables n is big, grouping highly related
observations is necessary.

The combined use of discretization and cluster analysis
allow to reduce the number of power flow runs compared to
standard Monte Carlo Simulation [350]. The discretization
and classification errors decrease considering more states.

Some statistical computer packages select the number of
cases comparing the decrease ratio of the classification error
when the number of states m are increased (i.e., including a
new group in the data clustering process) [351]. Therefore,
the number of states can be selected depending on the desired
classification precision, the non-linear behavior of the electric
grid (plausible topological changes in the grid, voltage
collapse) and the data available to adjust the model
parameters.

If there is enough data, the system state can encompass
load and generation. Load is very weakly correlated with
wind and wind generation and load can be regarded as
independent random variables. The load is dependent of
daylight and therefore, solar power is partially correlated to
load. In the example of the following part, load and
generation would be modelled as non-related Markov Chains
and classified independently. The possible combinations of
load and wind generation states are N, N,;, and tensor
algebra can be used to compute efficiently the properties of
the total system (see chapter 9 of [352]). Note that if load and
generation are expressed in their respective canonical basis,
the combined matrix is a diagonal with the eigenvalues of
load and generation. Since P is the matrix P estimated from
data, the probability of P having two or more eigenvalues
exactly the same tends to zero for increasing sets of data.
Therefore, P is diagonalizable in practice. Thus, the space
requirements are proportional to the number of states and the
matrix operations are trivial.

Since states of power generation are treated as Markov
Chains, the variability of the load will be modelled with
Markov States also. Therefore, the generation and
consumption patterns are classified in a limited number of
states, which are equivalent to transform a multidimensional
continuous system into a discrete one. This makes the system
tractable and it allows to obtain not only the probability
density functions, but also the time variability. Therefore, it is
possible to estimate the number of changes in tap changers, in
capacitor banks and in the topology of the network.

To sum up, this model requires running just as many power
flows as states has the system and it allows to derive easily
and rigorously the probability of events. Each case can be
solved with a standard power flow, considering non linear
elements such as topological changes in the grid that depend
on the system loads and generators.

The moments of random variables such as line power flow,
generation and voltages can be computed directly from the
probabilities of the cases. The continuous distribution of the
network can be easily obtained from the cumulative density,
adjusting an interpolating function to the case points (the
probability density function is the derivative of the
interpolating function).
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Moreover, the allocation of spinning reserve due to wind
power can be done using a Markov Decision Process. These
processes can compute the optimum spinning reserve policy
from the probability of wind generation variation, the cost of
running the reserves and the eventual cost of insufficient
reserve.

7.10.2. Stmplified model of a wind farm
to account active and reactive losses

The wind farm model employed in this section is based in
[353, 354], where a fourth-pole equivalent representation is
obtained from the electrical elements, the distributed layout of
the turbines, the stochastic nature of power output and small-
signal analysis of the grid.

In this section, an approximate representation with a shunt
admittance and series impedance will be used to simplify the
analytic expressions .
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Fig. 135: Original and concentrated model of a MV circuit in a wind farm.
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Fig. 136: Model of the farm using a fourth pole realization.

In the analyzed wind farms, the wind turbines are operated
at a constant leading angle near @, ~ 0 at low voltage (LV)
side to increase reactive bonus. Therefore, the reactive power
Q show a quadratic relationship with active power P due to
series inductances and shunt stray capacitance of cables.

QWT ~ PWTTan(¢]O)

Opcc #—B UPCC2 +20, + X

shunt series

IR,’ +20,,°  (549)
l]PCC2
EPWT2

2
pPCcC

(550)

~ =B, Upce’ + 2B, Tan(p,) + X ..., (1+ Tan’ (p,))

shunt

z“PWTZ + z"QWTZ
2

P, pcc ZF, wr R
UPCC

series

- thunIUPCCz ~
2 XF, WT2
- Rseries (1 + Tan (¢’o )) 2

PCC

~ =G, Upc” + 2B,

Where

2 Pwr = sum of active power of all turbines (positive when
generating)

2 Qwr = sum of active power of all turbines (positive if
generators behave inductively)

Ppcc = Active power injected at PCC

Ppcc = Reactive power injected at PCC
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Ryeries and Xgeries are the real and imaginary part of Zges, 1.€.
the resistance and reactance of the series equivalent.

Gihune and Bghun are the real and imaginary part of Y gy, 1.€.
the shunt conductance and susceptance.

For instance, Fig. 137 shows the quadratic PQ relationship
for a wind farm during one year (15 minutes measures). Its
series inductance is about 16 % p.u. due to cable impedances
and turbine (U,=5,8 %) and farm transformers (U.=7,5 %).
The graph is scattered since Upcc was variable and the value
of o was adjusted at the end of each month to obtain the
maximum reactive bonus according to Spanish tariff. The
other two wind farms show similar relationships.

0,16
0,14
012 y = 0,1609x% + 0,0092x - 0,0094 |
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Fig. 137: PQ relationship of a wind farm at 220 kV node during one year

Even though the voltage inside the farm varies, it is ex-
pected to be near to assigned value at normal operation
(Ututbine ~ 1 p-u.). This simplification is only a small source of
uncertainty of the model since Zg;s are expected small p.u.
(around 0.12 p.u.) and Y gy is expected to be big (at least 20
p.u.). Standard UNE 206005 [355] assess the reactive power
ability of wind farms at Uypie = 0,95, 1 and 1,05 p.u.

The parameters Rgeries, Xseriess Gshunt @d Bgpyne 0f (549) and
(550) can be derived from measures or from simulations at
calm (Pwr = 0, Qwr=0) and full power with unity power
(Pwr = 1 p.u., Qwr = 0) with 1 p.u. voltage at PCC:

G.s'hunt = _PPCC Byr =0, Opr=0
B, =-0
shunt PCC Byr =0, Oyr =0
(551)
Rser[es = 1 - PPCC Byr=1, Oyr=0 = M shunt
series QPCC |Pm‘ =1, Qyr =0 + shunt

Taking into account the lines that connect the wind farms
and the present unity power factor regulation at low voltage
generator output, the reactive power of the three wind farms
at PCC is:

2 2’PWT2
Qpee = —0,008U,.,."+0.0057 X, + 0.1537 —— (552)
UPCC

where £ Pwr is the average per unit power of the wind
turbines of the three farms. Note that (552) is estimated from
nominal values of wind farm project whereas Fig. 137 (and
similar graphs for the other two wind farms) are measured.
The discrepancies are due to differences on real parameters
compared to the values assumed, voltage at nodes of the wind
farm bellow 1 p.u., operation of wind turbines with power
factor below unity and model approximations.

Stand-by losses are smaller than the resolution of a
standard power meter, making it difficult to guest from
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measures. Therefore, active losses are computed from
network and transformers parameters.

R, 2P,

% =Pany 10,9819 —- 20,9819 —"
losses PCC Pec

In this case, the equivalent parameters of the wind farm

interior network are:

P

PCC

(553)

Gshum ~ O
Bshum ~ 0’ 008 pu
Rseries ~1- 079819 -0= 0,1781pu

X eries = 0,1537+0.008 = 0,1545 p.u.
@, ~ ArcTan(0,0057) = 0,0057 rad

7.10.3. Essence of the new approach to
probabilistic power flow

In essence, stochastic load-flow (SLF) studies assumes that
the long-term nodal generation and load vector varies about
an expected operating point. The SLF algorithm is easily built
from existing state-estimator algorithms [356], but the
drawback of the SLF is that it handles only Gaussian nodal
probability density function (PDF) data for practical system
sizes.

Another approach, commonly referred to as the
probabilistic load-flow (PLF) algorithm, uses linear or
quadratic approximations of the network behaviour. For
realistic system sizes, independence of nodal power injections
must be assumed in order to be able to apply convolution
techniques [349].

The new approach proposed in this paper does not rely on
convolution, independence of random variables or linear
behavior of the power system. The new method does rely on
the fact that power injections are (highly) related and some
patterns can be noticed.

The parameters that affect demand curve are well
established (week day or bank holyday, season, time of the
day, weather temperature, type of consumers, ...). Wind
generation and other types of dispersed generation show
strong links due to geographical and meteorological links.
Therefore, the load and the disperse generation can be
classified into a (reduced) set of behaviour patterns.

Each combination of load and generation patterns
represents the typical operation of the power system during
some periods. Therefore, a standard (deterministic) power
flow can be employed to solve each typical operation.
Afterwards, a statistical analysis can be carried out to
measure system performance and to optimize the control or
the design of the system.

The essence of this new method is a Monte Carlo analysis
where the cases are not randomly generated. First, data is
classified to select the most representative cases to be
simulated, giving further insight in the relationship of the
players of the power system (i.e. data mining). Then, a
conventional power flow is run with the values of the center
of the class (if the previous state of the network is influential,
a continuation power flow can be run for each pattern
transition). Finally, the results of the simulation are
statistically analyzed (usually, to optimize the design or the
operation of the network).
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Since there are very powerful classification algorithms that
can handle efficiently very large amounts of data, the number
of time-consuming power flow runs are highly decreased,
resulting in an important reduction of computing burden
compared to conventional Monte Carlo. Usually, the number
of patterns is small enough for all cases to be simulated.

Other advantage of the proposed method is that electrical
engineers are used to the simulation of cases (worst scenario,
typical seasonal scenario,...). Therefore, this analysis is more
familiar to them.

If the generation is not correlated at all, the procedure is
still valid but the computing savings decrease. The number of
cases to represent the operation of N generators with a given
accuracy when they are not related is proportional to N* and
the method degenerate in conventional Monte Carlo. Recall
that if the random variables were independent and the system
behaviour were sufficiently linear (no parameter violations,
bottlenecks or topological changes in the network are
expected) techniques such as convolution and two point
estimates would be preferable [348].

The modelization of the system variability through Markov
chains allows to obtain not only the static system performance
but also its slow-dynamic behaviour (slow enough for the
algebraic power flow equations to remain valid).

Markov chains, in the way they are applied in this paper,
can be thought as a system of stochastic differential equations
which mimics the measured evolution of loads and
generators. The network response to loads and generation
evolution is computed based on the power flow equations.

In fact, accounting the previous system state makes
possible to include the system operator action, provided it can
be specified mathematically (for example, with a set of fuzzy
rules based on expert knowledge).

7.10.4. Description of the group of wind
farms

A system with three wind farms will be employed to test
the model described in previous subsections. The model is
adjusted from one year data and some measures of the
goodness of the fit are estimated. In particular, the
exponential distribution of the permanence time in states is
contrasted with real data. The uncertainty of the transition
probabilities and the estimation of uncommon events are also
studied. Some theoretical properties obtained from the model
are also checked with experimental data.

Six wind farms totalling 251,3 MW are connected to a
PCC at transmission level (220 kV). However, only data from
2/3 of the wind generation was available for this study.
Therefore, short-circuit impedances at PCC have been scaled
proportionally to account that the other farms at PCC will
probably have an output similar to the measured ones (per
unit short circuit impedance at PCC is computed based on
installed wind power instead of measured wind power). The
equivalent layout is shown in Fig. 138.

The effect of wind power variability is investigated on the
voltage and the number of tap changes at the main
transformer. The only available data is the active and reactive
power output of the wind farm at connection buses. In case
reactive power is not available or it is a parameter to be
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optimized, it can be derived from a wind farm model.

o S| ack Bus

Bus3

farm 3

Fig. 138: PSAT model for the tree wind farms, modelled as PQ nodes
connected to the PCC

7.10.5. Markov model obtained from
conventional clustering

Fig. 139 shows the array of all the bivariate scatterplots
between active power of the tree farms, along with a
univariate histogram for each active power. The classification
of each point is codified with different colors in the
scaterplots. Fig. 139 show the values of the centroids of each
group (i.e., their mass center). Due to the fact that the wind
farm power output is highly correlated, only eight states have
been used in the clustering algorithm obtaining 0.011 p.u.
average classification error. This example shows that
if there is a high degree of correlation between variables,
clustering can decrease notably the number of states to be
considered (compare 8 to 4°=64 estates). In [357], an example
of power classification of 14 wind farms in an area of about
100 km of diameter is shown.

The input of the clustering process can be only the active
power or also the reactive power of the wind farms.
Generally, the inclusion of the wind farm reactive power Q
does not decrease the performance of the clustering process
since P and Q are usually highly related. For a fixed power
factor regulation, the reactive power Q can be computed from
the active power P with acceptable precision.

If Q is controlled according to network parameters or a
scheduled planning, a suitable approach is to model such
relationships directly in the power flow run. Occasionally, Q
can depend greatly on unmeasured parameters or unknown
control policies and it must be statistically characterized. In
those situations both P and Q are the inputs of the clustering
process at the cost of increasing the number of groups to
maintain the classification error.

1

F farm 1 {p.u)

F farm 2 {p.u.)

F farm 3 {p.u.)

u] 0.5 10 0.5 10 0.5 1

P farm 1 (p.u.) P farm 2 (p.u.) P farm 3 (p.u.)
Fig. 139: Scatterplots between active farm power P and their histogram

(classes are shown in blue, green, magenta, red, black and dark blue).
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Table VIII is the result of a conventional clustering
algorithm whose inputs are the active P and reactive Q
powers measured at the billing meter of three wind farms. If
only active powers are used for the clustering process, the
output is very similar because P and Q are highly related in
this case.

TABLE VIII: CENTROIDS OF P AND Q VALUES P.U. OF THREE WIND FARMS

# Py Q P, Q P; Q; Freq.
1 0.0112| -0.0036| 0.0119| -0.0100| 0.0124| 0.0009 37.9%
2 0.1092| -0.0061| 0.1083| -0.0205| 0.1156| 0.0040| 15.14%
3 0.2385 0.0024 | 0.2199| -0.0154| 0.2402| 0.0114| 10.12%
4 0.4026| 0.0206| 0.3621| -0.0045| 0.3995| 0.0280 8.00%
5 0.5409 0.0435| 0.5641 0.0203 | 0.5850| 0.0587 5.97%
6 0.8152 0.1012| 0.3269| -0.0035| 0.6356| 0.0702 1.77%
7 0.7624 | 0.0922| 0.7238 0.0465| 0.7711| 0.1011 6.74%
8 0.9199 0.1354 | 0.8941 0.0781| 0.9268| 0.1437| 14.37%
FQ pattems with 8 states 1
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Fig. 140: Color graph of centroids of P and Q powers of table I.

Fig. 140 is a color graph representation of the centroids of
the eight patterns obtained from the clustering process.

Fig. 141 is the histogram of the eight patterns obtained
from the clustering process from data of a year measured
every 15 minutes. The no-load and low load states are the
more frequent (37.9% and 15.14%) followed by full load
(14.37%). This is typical of low wind resource wind farms.
The clustering algorithm has selected the pattern #6, which
corresponds to high generation at the first one, low generation
at the second wind farm and middle generation at the third
one. The selection of this pattern decrease the total
classification error, even though it represents only 1,77 % of
time operation.
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Fig. 141: Histogram of the states in data from a whole year operation.

The study of the transition rates for 15 minutes
interval data reveals that the more stable states are the first
and the last (full and no generation), whereas a transition to
immediately upper or lower states are noticeable. However,
transitions to non-adjacent states are very low except in states
6 and 7 (these states correspond to different wind directions,
which are very steady in the zone).

The probability transition matrix P is estimated from real
data in Table IX. Fig. 142 shows that transitions with
immediately upper and lower states are relatively frequent
(light gray), but jumps to far states are scarcely probable
(shades of white). Note that the rows correspond to the initial
state and the columns correspond to the state of the next
interval. Thus, the probability of going from state 5 to state 7
in one step is stored in row number 5 and column number 7.

State 6 reflects the operation of farm #2 at unusual low
power (only 1,77 % of occurrences from Fig. 141). The
probability transition matrix shows that jumps between states
5 and 7 states are more probable than jumping to the adjacent
state 6 (unusual low power at wind farm 2 and high power at
farm 1).

The unobserved transitions from state ¢ to j of Table IX,
F;=0, can be due to real unfeasibility or to the limited
available data (for example, infrequent transitions of sporadic
states). An improved estimation can be employed if
unobserved transitions are feasible even though they have not
been observed because they are very rare events and data
record, short.
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Fig. 142: Color map representation of transition matrix P .
TABLE IX: INITIAL PROBABILITY TRANSITION MATRIX f’
to
1 2 3 4 5 6 7 8
From®
state
1 ]0.9510{0.0472{0.0015|0.0001{0.0002| 0O 0 0
2 10.1201{0.7646 [ 0.1074 | 0.0064 | 0.0006 | 0.0006 [ 0.0004| O
3 10.0025{0.1693{0.7004 [ 0.1156 | 0.0068 | 0.0034 { 0.0014 | 0.0006
4 10.0011{0.0057{0.1565|0.6899|0.1216 | 0.0181 | 0.0057 | 0.0014
5 [0.00050.0005|0.0110|0.1760|0.6419|0.0324 | 0.1359|0.0019
6 0 0.0016|0.0144|0.0674|0.1124|0.6116|0.1541 | 0.0385
7 0 |0.0017]0.0008|0.0051|0.1284|0.0363 | 0.6755|0.1521
8 0 0 0 |0.0004|0.0010|0.00440.07210.9221

If F; :10, the transition probability p;; is bound to [0,1-
(1—28, )/E) with confidence level (3, (F); is binomially
distributed) [297]. Thus, the null elements of p;; could be
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substituted by a value in the interval [0,1 — (1 — 3, )%ﬂ ) and
the rest of the elements rearranged to make ¥j.;p; = 1.
However, the use of a random point in the interval introduces
bias in the estimation (usually, pessimistic overestimation of
extreme variability).

The unbiased estimation of p;; is zero for unobserved
transitions, but its uncertainty is inversely proportional to the
number of occurrences of state F; because their transition
probability f; is bound to [0,1—(1—B,)/A) =~
[0,—F'Ln(1 — 3,)) with confidence level 3,,.

Characteristic times of the system (eigenvalues of f’) and
limiting distribution of states are continuous functions of
matrix elements and the effect of almost zero elements are not
important. But a rare transition can have very high cost
associated in the optimization algorithm (for example, a
sudden loss of all wind generation which can cause a blackout
in an island). Therefore, a rare transition might dominate
optimization.

There is a tradeoff between the number of classification
states and the uncertainty of transition matrix. The use of a
bigger number of states decreases classification error but
increases uncertainty of infrequent transitions.

If there is a bottleneck or an important topological change
when an atypical generation pattern occurs, then a big number
of states is advisable because increasing the uncertainty in P
is acceptable. If there are no bottlenecks or violations out of
the ordinary and the main purpose of the study is the effects
of exceptional events (for example, assessment of
contingencies, optimization of the spinning reserve
allocation,...), then a reduced set of states can be enough.

The unobserved transitions are in italics in Table 1X and
Table X. Their bounds range from py5 €[0, 2:10%) to pg; €
[0, 48-10™) for 95% confidence level. For a better estimation
of such uncommon events, similar transitions can be joined
(for example, estimate together the transition form low power
—states 1 or 2— to high power —states 6, 7 or 8-). Therefore,
transition probability from states {1, 2} to {6, 7, 8} would be
assumed to be the same. The transitions which are similar can
be inferred from the cluster dendrogram. Note that the
numbers in italics are estimates of unobserved transitions
based in available knowledge and some other elements have
been adjusted for each row to sum 1.

TABLE X: PROBABILITY TRANSITION MATRIX P
(ADJUSTED JOINING SIMILAR INFREQUENT TRANSITIONS)

to

From
state

1 [0.9510
0.1201
0.0025
0.0011
0.0005
0.0001
0.0003
0.0001

0.0472
0.7643
0.1693
0.0057
0.0005
0.0015
0.0015
0.0001

0.0013
0.1074
0.7004
0.1565
0.0110
0.0144
0.0008
0.0001

0.0001
0.0064
0.1156
0.6899
0.1760
0.0674
0.0051
0.0002

0.0001
0.0006
0.0068
0.1216
0.6418
0.1124
0.1284
0.0010

0.0001
0.0006
0.0034
0.0181
0.0324
0.6116
0.0363
0.0044

0.0001
0.0003
0.0014
0.0057
0.1359
0.1541
0.6755
0.0720

0.0001
0.0001
0.0006
0.0014
0.0019
0.0385
0.1521
0.9221
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7.10.6. System dynamics and equivalent
stochastic differential equations

The use of Discrete Time Markov Chains, (DTMC) implies
that the permanence time in a state is distributed
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geometrically or as an exponential random variable if the time
is considered continuous (Continuous Time Markov Chains,
CTMO).

For DTMC, the probability of being in state i during &
measuring intervals before changing to other state is a
geometric random variable with parameter p = 1 - p;; , where
pi; is the i diagonal element of the probability transition
matrix P of Table X. The number of intervals & in a time
interval ¢t is k = {-f, where f* is the frequency of the recorded
data.

The probability of permanence in state i more than %
measuring intervals (k = ¢f) is the complementary
cumulative density function of a geometric random variable:

Pr(X[jl=i,j=0,..k|X[0]=i)=p, [ = p,  =e"" (554)

. . . -1
7, = characteristic or decay time of statei = ——
S In(p,,;)
10° ‘ ‘
"™ state 1
state 2
— -+ —ctate 3

Relative ocourrence
=
T

1 1 1
1] 0.8 1 1.6 2 2.5 3 35 4

Duration of cases relative to their chamcteristic times

Fig. 143: Probability of permanence more than a given time in each state
(complementary cumulative distribution function of permanency time)
(x axis scaled to the characteristic time 7, = 1/In(p;)).

The average permanency time g, in state i can be
computed using (555)
4, ; = Expected Value(l‘ime staying in state i) =

= %Expected Value(k intervals staying in state i ) =

1 1
=—E(k|X[k]# i X[j1=i,j =01 k—1) = ——
f (1 — Dii )f
Wind power measures are the average value during a time
interval. But if instantaneous wind power is considered, wind
power and time are continuous variables. Therefore, the mean
value computed with continuous time is (555)
4, ; = Expected Value(time staying in state i) = (556)
© 1
—E(T|X[T]#i; X[f]=i,t<T)= jo t—exp(—t/7)dt =1,
z-i

The characteristic time 7, can be seen as the average time
spent in a state ¢ before leaving it or, alternatively, as the time
where the probability of remaining in state 7 at time t= 7, is
1/e=36,79%.

Probability (staying exactly k intervals in state i) =
=Pr (X[k]#i; X[j]l=1i,j=0,...k—1|X[0]=i) =

= pl,ik_] '(l - pi,i) = pi,ik '(1 / P~ 1)
The expression (557) can be rewritten approximately in
terms of characteristic time of the state 7,

(557)
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Probability (staying exactly k intervals in statei) =

=p.t .(1 ! p.,; —1) = exp(—%}{exp[ﬁj—l} _(558)
= exp{—%+ln{exp[ﬁj—l}

Therefore, the graph of the relative occurrences of staying
k intervals in state ¢ is a straight line in a semi-logarithmic
plot with slope —1/In(p,;) and intercept with vertical axis
1/ p;;—1 . In order to check the goodness of the fit, Fig. 144
shows the probability mass distribution of permanency time
in each state with the horizontal axis is scaled by —1/In(p, ;)
and with the relatives occurrence scaled by 1/ p,; —1. In Fig.
144, the exp(-t) function (a straight dashed line) has been
included to compare experimental data with theoretical
distribution. Since states 1 and 8 have long characteristic
times and experimental data is limited to one year, the
occurrence of long periods with the same states is scarce and
it shows a high variability (for example, the permanence
during exactly 80 quarters of hour in state 1 can happen from
0 to 3 times in a year).

10

T
state 1
state 2
—+——state 3
== —state 4

state &
= =-ctate ¥
state 8
==t exponential

Relative occurrence
=
T

1 1 1 S
1] 0.5 1 1.5 2 2.5 3 3.5 4

Duration of cases relative to their characteristic times

Fig. 144: Probability mass distribution of permanency time in each state
(x axis scaled to 1/In(p;) and y axis scaled to 1/p;-1).

P contains much more information than just the
distribution of time permanence in states. The rest of this

(5553ection will look into the dynamics of the system. Note that

states are not sharply defined and time is not discrete because
wind farm power output is a continuous varying property.

In the discrete case, a DMTC corresponds to the
forward m order difference equation (559) with the initial
probability distribution x(0) = [z,(0), z,(0), ..., x,,(0)] as
initial condition. P is the one-step transition probability
matrix [345].

x(k+D)=x(k)P (559)

Therefore, the probability distribution & instants later

can be computed as:
x(k) = x(0) P* (560)
The stochastic matrix P has a dominant eigenvalue A= 1
and it is irreducible, recurrent and acyclic in wind farm
characterization. Since P is the matrix P estimated from
data, the probability of P having two or more eigenvalues
exactly the same tends to zero for increasing sets of data
(eigenvalues are continuous functions of matrix elements).
Therefore, P is diagonalizable in practice.
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The solution (560) can be easily expressed in the
coordinates specified by the left eigenvectors Y of
P = Y 'diag(\,)Y , where diag@i) is the diagonal matrix
containing the eigenvalues ) of P. The first eigenvalue is
):1 =1 and the rest are smaller.

If the state probabilities are expressed in the canonical
coordinates specified by basis Y : v(k)=x(k)Y, then the
dynamics of the system are much simpler:

v(k) = v(O)[diag(i,.)]k = [4,(0),,(0), .., v, (0)] diag(A}") (561)

In other words, the dynamics in these coordinates can be
expressed in independent scalar equations corresponding to
first order systems of characteristic time 7, :

v,(k) = v,(0) 4* =v,(0) 4" =v,(0)exp(~t /7,) (562)
. -1
7, = <
fInA,
The first row of Y is the limiting probability, 7; or just
7 (eigenvector corresponding to unity eigenvalue). When the
initial probability distribution is 7, the distribution doesn’t
change in time (7, =1/0=0c0). The rest of distributions m;
decay with characteristic time 7, (at ¢ =3-7,, the probability
distribution 7; has faded away to 5% of the initial value).
The forward equations of a CMTC correspond to the
Chapman-Kolmogorov Nth order differential equation (564).
Q is the generator matrix of the CMTC. Q can be estimated as
Q = fIn(P) ~ f(P-I), In is the matrix natural logarithm, T
is the identity matrix and f is the frequency of recorded data.

d
Lx(0=x(0)Q (564)

Its solution is x(¢) = x(0)e? =x(0)P’/", where e is the
exponential of matrix Q t. If P is diagonalizable, Q is also
diagonalizable and it has eigenvalues f In /il. =1/7, and the
same eigenvectors than P. Therefore, the equations of
continuous time dynamics in the canonical coordinates of Q
(565) are equivalent to (562), the discrete case [335].

v,(t) =v,(0)exp(—t fIn )= v,(0)exp(—t/7,) (565)

Therefore, DMTC and CMTC are equivalent. The
computational burden is smaller for DMTC and discrete data
is better suited for P estimation. CMTC gives deeper insight
on system dynamics, mimics better its continuous behavior
and it can be used to derive easier some properties of the
system. Moreover, CMTC approach is more familiar for
control engineers.

Note that other numerical approaches (different from
eigenvalue calculus) can be computational more efficient in
some applications [358].

(563)

7.10.77. Permanence time in a state

The use of Markov Chains implies that the permanence
time in a state is distributed geometrically if time is
discretized or, equivalently, as an exponential random
variable if the time is a continuous variable.

Fig. 145 confirms the assumption that a Markov Chain can
approximately model the behavior of the system since the
distribution of permanency time in one state approximately
corresponds to a geometric random variable (for DMTC) or
exponential random variable (for CMTC). This can be
checked in Fig. 145, where the probabilities of remaining in
the same state versus time shows an exponential relationship
(i.e. distribution is approximately a straight line in a semi-log
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plot whose slope corresponds to the inverse of the standard
characteristic time).

10 T T T T T
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Duration of cases relative to their chamcteristic times
Fig. 145: Probability mass distribution of permanency time in each state
(normalized scalfing time by state characteristic time).

The main discrepancies are at the distribution tail in rare
long-lasting periods at full or no generation (states 1 or 8) due
to very stable meteorological situations. For example, period
of almost 7 days in state 1 (calm) have occurred in one year
data. These outliers caused states 1 (calm) and 8 (full
generation) have overestimated characteristic time.

The geometrical distribution is a special case of negative
binomial distribution with parameter r = 1. A negative
binomial distribution has been adjusted and parameter r
ranges from 0,5 to 3,5, depending on the state number (the
95% confidence interval did not include = 1). The negative
binomial distribution is an alternative to the geometric
distribution when the occurrence frequency (or transition
probability) varies in time.

The deviation of permanence time from geometrical
distribution is due to:

o The state transition rates depend physically on
meteorological conditions and on wind farm availability.
For example, meteorological stable conditions at calm or
high winds can eventually last long periods.

o The “hard” classification of a measurement into a solo
state increases observed transitions in the state, especially
if the measurement is near two cluster borders. This can
explain that permanence times of states 2 to 7 decrease
steeper than exponential model (r ranges from 2 to 3).

o The estimation of system characteristic times with
formulas (557) to (554) is an oversimplification. In fact,
the Markov Chains are “centrifugal” in the sense that
when the system is at partial generation, the system tends
to evolve to the first (calm) or last (full power) states.
This can explain why the first and last states show a
slower decrease of permanence times compared to
exponential (geometrical) distribution.

o The permanence time in a state is a concept easy to
visualize but it does not correspond to the physical
behavior: the power output of the farms is continuously
evolving. Fig. 145 shows the time that power output is
bound to cluster area, but system dynamics is more
complex.

o The concept of permanence time is not straightforward in
fuzzy clustering. The membership level of an observation
to a state can increase or decrease from an instant to the
next. Therefore, the system can be though to stay in the
state with probability equal to the minimum of the pre
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and post membership levels. Thus, a consistent stochastic
measure of time permanence must be defined (for
example, the time interval where the membership is
above a threshold level can be considered the
permanence time with probability equal to the mean
value of the membership to that state).

o An adequate test to check if Markov Chain is a suitable
model must employ full dynamics, not only the
permanence in a state that is physically evolving.

TABLE XI: AVERAGE PERMANENCE IN STATES (IN HOURS)

Maximum |Lower 95% | Upper 95% Equation .
likelihood |confidence | confidence (5515) E%;lgg;) n
% estimation | interval interval m
n
1 5.1066 4.7362 5.5224 5.1066 5.3839
2 1.0621 1.0056 1.1235 1.0621 1.1834
3 0.8345 0.7866 0.8870 0.8345 0.9544
4 0.8065 0.7555 0.8628 0.8062 0.9276
5 0.6981 0.6507 0.7508 0.6981 0.8122
6 0.6436 0.5696 0.7331 0.6436 0.7357
7 0.7705 0.7188 0.8280 0.7705 0.8838
8 3.2029 2.9084 3.5448 3.2112 3.4453

An alternative to check model accuracy valid for “hard”
clustering is to compare the theoretical and observed
distribution starting from each state for various time spans
(the error measure can be the mean squared difference of
theoretical and observed histograms). When fuzzy clustering
is used, each time the system is in a combination of states up
to a certain degree and there is not possible to compute
histograms in the usual way.

A measure of fit goodness that works even with fuzzy
clustering is to compare the transition matrix for a time span
of k measuring intervals computed from the one-step
transition matrix P power k times and estimating a new
matrix l/); based on transitions from initial states to states k
intervals _ forward. = The measure error can be
JIB — (@) |/s

However, the system stays occasionally long time in full or
no generation due to stable meteorological conditions which
are maintained for long time. Moreover, if the wind farm is
unavailable for long time, it can distort the distribution of no
generation. This is the reason that the actual permanence
times are somewhat different from the times computed from

transition matrix.
g T T T T T T T T

mean permanency time (h)
w
T
1

state #
Fig. 146: Average permanency time in each state (in hours) from (555).
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Fig. 146 shows the residence times, where it can be seen
that zero and full generation are the most stables states. In
fact, the permanency time in such estate is computed as it
were a Poisson process (permanency time exponentially
statistically distributed). This is characteristic of the Markov
chain approach used to characterize wind variability.

Application example 1I:
Isolated system with storage

The optimal stochastic control of load consumption of an
isolated system with solar and wind generation and storage
should include cost of not being able to supply demand and
the ageing due to depth of discharge of batteries. The main
energy sources (solar radiation and wind speed) are not
controllable and some loads can be deferred or even not
supplied in case of energy shortage. The control must weight
the probability of not supplying critical loads; the efficiency
of supplying energy from the storage and the aging of the
storage system.

7.10.8. Battery State of Charge

The evolution of the battery state of charge (SOC') can be
modeled with the Ah model [359]. In this model, the battery
is recharged and discharged at gross powers P, and
Pyisen, . The efficiency of the process is 7geqge and
Naiseh TeSpectively, which depend on the current. The auto-
discharge is proportional to SOC at rate 6, . Thus, the

differential equation of the battery dynamics is (566).
%SOC = Nat — Opat-SOC (566)

where the SOC variation rate due to charge or discharge is,
in Ah units:

Liser
Nt = 1 (I S0C) + S (567)
at charge ncharge charge»
Ndisch ( Idmrh ) SOC )
TABLE XII: PARAMETERS OF THE BATTERY IN THE AH MODEL
Variable Significance Range
SOC Stgte Of Charge of the Battery (in Ah 100~2000 Ah
units)
Y Instantaneous rate of variation of SOC'
bat due to charge or discharge
Auto-discharge rate per time unit (about ! .
4:10°~10" hq
Opat 3-10 % per month) our
0~
Gross input power into converter at AC SOC. ..U
Pcharge terminals when charging the battery. Sign | 2/ ~max* bal
convention: positive. bimin charge
J2) / Power at battery terminals while charging.
charge Sign convention: positive.
0~
Gross output power from converter at AC SOC U
P terminals when discharging the battery. | 2 ~max~bat
Sign convention: negative. bimin discharge
P! Power output from battery terminals while
disch discharging. Sign convention: negative.
Efficiency of the system composed by the
Neonverter ; 0.9~0.95
inverter and charge regulator.
Neharqge Efficiency of the battery during charge 0.7~0.9
Ndisch Efficiency of the battery during discharge 0.7~0.9
. 1.7~23V
Ubatery Voltage at battery terminals per cell
Laree Currept pumped into ‘the bat-t.ery while 0~1000 A
9€ charging. Sign convention: positive.
Current drawn from the battery at
; . . . . 0~-1000 A
Idmh”'rge discharge. Sign convention: negative.
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The electrical power at battery terminals can be computed
from absorbed power of converter/charger and its efficiency:
Pchm‘ge' = Lcharge nconmerter(Poharge) (568)

Pdisr:h/ = Pdisr:h / Neonverter (Pdisch) (569)

Thus, the currents at battery terminals when charging or
discharging are, respectively:

- [)charge/
Icharge - ; (570)
Ubattm”y (S OCv Pch,argc )
!/
]disch, = PdiSCh (57 1 )

Uba,tf,m‘y (S OC: Pdisah/ )

Since the battery charging and discharging is relatively
slow, the Ah model is accurate enough in hybrid power
systems [360]. However, if the batteries are quickly charged
and discharged, other models such as the Kinetic Battery
Model (KiBaM) are more accurate. A very simple example of

battery control with Markov Decision Process (MDP) can be
found in [361].

7.10.9. Probabilistic discretized model of
SoC

A stochastic model of the state of charge is suitable for the
optimal control of the battery with MDP since the primary
energy source is random, the battery model can have
uncertainties and can suffer from aging.

In the approach of this paper, the battery status is classified
in N states. Each state ¢ =1 to N is characterized by a
SOC' in ascending order, soc; | < soc; < soc;, . The first
state is the minimum battery charge without severe lifespan
loss (s0¢; = S0Cinimum allowed ) a0d the last state corresponds
to full charge (socy =1 p.u.).

The probability that SOC is in bin soc; is denoted by

22"= Pr(SOC = soc;), where Pr(-) stands for probability.
The row vector of probabilities of all battery states is denoted

by xP = [z}o 25 . 2%%]. The derivative of the
13 d bat __[d ,.bat d ,.bat d ,.bat
probability row vector is & x’* = [£ay* L3, .. Sap'].

The forward equation of a continuous time Markov chain
corresponds to the Chapman-Kolmogorov Nth order
stochastic differential equation. In matrix notation, the
dynamics of the stochastic system can be expressed in form
of the generator matrix of the underlying Markov chain.
%xbat — Xbat bat (572)

Q" =[g;"'] is the generator matrix of the CMTC and it
can be inferred from system dynamics (566). To transform
the deterministic formulation (566) into probabilistic
formulation (573), the value of deterministic variables are
substituted by the averages of the corresponding random
variables, denoted by brackets<->.

%{SOC) = XNl — G (SOC) (573)

The sum of probabilities of all states sum unity,
nN ahet = 1 and the expected value of SOC is
(80C) = 2¥ 1soc;z™ . The fact that all state probabilities

sum unity also implies:

Shal=1 = BL 4= 0

(574)
Therefore, (573) expressed in function of the probabilities
of all the states z'* is (575). For convenience, the

independent constant ), is multiplied by XV 2% to match

Wind Power Variability in the Grid — Chapter 7

expression (573) in matrix form (572) and to allow )\, be
dependent on soc; .

SOV soc =31 (<A,

i df
Since the parameters \,,; and 8, can depend on SOC,
the following notation will be used to remark parameter
dependences on state number.
N d, bati N bat
Zy: 150G gt = 2121(7)‘77

bat __ bat __
where )‘i - )‘bat (SOCY; ) I(:haryea Idischarge) and 6i - 6bat (SOCi )

The battery charges gradually and thus, SOC can only
change in a infinitesimal time span from state i to the
adjacent state ¢ — 1 (battery discharge from state i) or 7 + 1
(battery charge from state 7). Thus, the process is equivalent
to a birth and death stochastic process [335]. The rate diagram
of an intermediate state is shown in Fig. 147.

hat I_)(Lt . m /m—
qm m Zii+1 Tit1,i+2

State 7 — 1 State ¢ State 7 4 1
SOC=so0c¢;_4 SOC=so0c¢; 4

soc¢; — yp-s0¢; )2l (575)

— &/"-s0c; )x™ (576)

S0OC =soc;

qbat b t bat batQ 1
_ a a i+2,0—

Fig. 147: Rate diagram of an intermediate state

The value of g%,

(575) for the special
=0 Vik=i.

dy
80C; 13T i,l—i— socht

and ¢! z+1 can be easily obtained from
case where 2/=1 and

1 bat __ bat bat
Ut soci gl th=—N"=6]"s0¢; (577)

Since the state probabilities must sum unity, its derivative

; ; bat bat bat
is null, ie. 4P 4 Lg)* 4 dp2 =0, (577) transforms
into:

d bsz
(SOCZ 1 5001)#7 l+(SOCl+17$OC )SOCH-ldt i+17

— 7/\5)(1157551(”.806

Since the battery can be at state ¢ only chemically
charging or discharging but not both, qf’ftl or ¢/%,; must be

zero. Thus, matrix elements of Q™ ar

(578)

_)\but _ 6()(1,#' )
gl = Maz| 0, —~——2L 4|y 1 <i< N (579)
S0C;_1 — S0¢C;
)\Zbat 5bat. )
and  g}f ;= Maz|0, LV 1<i< N (580)
80Ci 1 — SO¢;

Notice that Q" is a tridiagonal matrix, with diagonal
elements qbat = —q,b‘,n1 - Qf‘fil in order to each row sum
zero. Moreover, the subdiagonal elements are null if the
system is charging at any state (conversely, the superdiagonal
elements are null if the battery is discharging at any state) and
the eigenvalues are the diagonal elements qb“f .

If the charging current is between the autodischarge current
of a flat and a fully charged battery, the battery will charge at
some states ¢ <k and discharge at states >k . In that case,
the elgenvalues are qb‘” for ¢ = {k,k+1}, cero and q,ﬁa/f+
Qk+1,k+1-

In any case, the eigenvectors can be easily and efficiently
computed with Thomas algorithm —forward and backward
substitution—. Therefore, the storage and computation burden
for the tridiagonal matrixes are proportional to the number of
states N —instead of N?for a regular matrix—. Special
savings are achieved using the canonical basis.
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Thus, the non-linear system is approximated by a system of
order N-1 with the eigenvalues as characteristic times and
the normalized eigenvectors are the distributions that decay
with characteristic times, forming a canonical basis to express
the system dynamics.

A) First-order battery model ( N =2 states)

The simplest battery model is the lineal model where the
accumulator charges at rate ¢'%' and discharges at rate qb‘” .
In lead-acid batteries, the discharge is only allowed up to
50Cun » otherwise the accumulator lifetime is seriously
curtailed. Ni-Cad and Ni-MH batteries suffer from memory
effect, which can be modeled increasing soc,,;, with battery

partial cycles.

bat
q1,2

State 2:
Fully charged
SOC=50Cx=1p.u.

State 1: Minimum
allowed charge
SOC=so0cyin

bat
2.1

Fig. 148: Rate diagram of the model with two states (lineal model)
The infinitesimal rates of charge and discharge are:

q{"g Max [ 0,
_ )\bat (Socmin ) [Chm‘_qc ’ Idisch,argc ) + 6bat (Socmin ) 80 Cpyin (58 1)
1- 80Cpin
qé”’f— Mazx [ 0,
)‘bat (Socmax ’ ](',hm'ge ’ ]discharge ) + 6bat (socmax ) 80Cmax (582)
§0Cyax — SO0Cpin
Thus, the infinitesimal generator matrix is:
bat bat
—2 Q2
Qbat: bat bat (583)
421 —421

Solar, wind and load data are integrating in intervals of
length At. The model discretized for At time steps is
shown in Fig. 149:

State 1 State 2
Discharged Charged
SOC=s0¢pi, SOC =1 p.u.

P2

Fig. 149: Transition diagram of the model with two states (lineal model)

The transition matrix F,,, can be obtained from the
model in continuous time:

1— bat bat
P12 P12
Pbut: EIp(QbutAt): bat bat (584)
pa1r l=poi
bat
"% NP a1
Where Pl = —(1 _ ) (585)
s+
b qg(it At(g?Y+g54
and P = (1 e M) (556
a8+
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B) Higher order approximation of non-linear behaviour
(N >2 states)

The number of battery states can be increased to represent
more accurately non linear behaviour. Moreover, cost
optimization can indicate the maximum discharge depth of
lead-acid batteries depending on expected cost of non-
supplied load.

The memory effect of Ni-Cd batteries can be also modelled
introducing a new state variable accounting for the effective
loss of capacity due to shallow-cycles (and the capacity
recuperation after a full discharge and full charge cycle).

7.10.10. Model of Water Reservoir
Storage

The model of a reservoir with pump/turbine is analogue to
the Ah battery model (566). The parameter significance for
pumped storage is in Table XIII. For Markov models of
pumped storage with several reservoirs, consult chapter 17 of
[362].

TABLE XIII: PARAMETER EQUIVALENCE OF THE PUMPED STORAGE AND
AH BATTERY MODEL.

Variable Significance
s50C Stored water mass in reservoir
Instantaneous rate of variation of SOC'. If there is an
A external water injection into the reservoir or dam (such a river
blLt . . . . ..
or rain contribution), it can be modeled as an additional term
in >\b(lf .
S Relative rate of water loss (evaporation, leakage, external
bat water consumption, etc).
Gross input power at pumping facility when recharging the
R’harge :
crharge reservoir.
P,,h,,mel Mechanical power at pump shaft.
P, Gross output power from turbine facility when discharging the
disch reservoir.
Py (,h’ Mechanical power at turbine shaft.

Electrical efficiency of the system composed by the electric
generator/motor which drives the turbine/pump, including
consumption of auxiliary and ancillary devices.

Neonverter

Efficiency of the system composed by the pump and the

Nlcharge conduits from the water intake to the reservoir outlet.
) Efficiency of the system composed by the turbine and the
Ndisch conduits from the reservoir intake to the water outlet.
U Difference of gravitational potential between the reservoir and
battery ter outlet surfaces, i Ah
water outlet surfaces, i.e. P ¢ ARyyioke— outlet
Lohorae Water mass flow (i.e. water current) at pump
L jischarge | Water mass flow (i.e. water current) at turbine

Conclusions

The variability of wind speed can be modelled during
short intervals with the classical theory of stationary normal
processes, which has been presented in the previous chapters.
However, the weather is a non-stationary process and this
cannot be neglected for horizons longer than some hours. The
evolution of wind power can be described in the time domain
by stochastic differential equations where the Numerical
Weather Prediction (NWP) models the physics of
meteorological dynamics. Wind speed is customarily
transformed into generated power with a power curve or or
with a model output statistics (MOS).

Since the wind variations show a fairly multiplicative
behaviour, the Markov Approximation Method is suitable for
modelling the non-linear stochastic behaviour of the wind.
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This technique is analogous to the finite difference
approximation in deterministic differential equations and it is
a powerful tool to optimally size and control the system,
especially if numerical weather predictions are available.

Indeed, if numerical weather predictions are unattainable,
the Markov chain can be used for generate a basic
probabilistic forecast based on the system behaviour
previously observed. In that case, the probability transition
matrix among the states models the non-statiorarity of wind,
present in long time spans.

The optimal control of a Markov system can be expressed
as a policy, which gives the best decision or action to take for
a given state, regardless of the prior history. Once a Markov
decision process is combined with a policy, this fixes the
action of the control for each state and the resulting
combination behaves indeed like a Markov chain. Thus, the
system is dimensioned for achieving the maximum expected
outcome of the controlled system.

The classic control theory of linear and time-invariant
systems is well established. However, many devices in the
grid are discrete and their control can not be linearlized
because unnecessary switching can produce avoidable grid
disturbances or excessive wear or stress in the devices.

Markov chains can model switching or jump events such as
casual generator trips, unlikely wind variations and the
connection or disconnection of reactors, capacitors and other
devices. The stochastic control is better suited to manage
these events than the classical control of linear and time
invariant systems. The optimum design and control can be
achieved assigning costs or benefits to staying in the same
system state or jumping to other states. In sum, the Markov
Decision processes can be used to optimize the design and
control of many devices which should encompass the non-
linear and time-dependent variability of the wind power.

Markov chains have been typically utilized as Monte Carlo
random generators in stochastic power flows due to the high
dimension of their state space. To reduce the state space, a
discretization methodology is presented where the number of
states is remarkably reduced through -careful system
modelling and clustering. The state reduction condensates the
significant operational condition of the system and techniques
as the principal component analysis and the proper orthogonal
decomposition can help to achieve an orthogonal, compact
and meaningful representation of the system. This makes the
Markov decision processes more tractable.

Since the system expected cost/benefit is the same if the
system states are mutually exclusive (only one state can
actually exist at a time) or can be interpreted as a fuzzy states
(intermediate states do exist because the continuous system
states have been discretized).

The classification of states can be based on power output,
equivalent wind speed or wind speed prediction, depending
on the available data and the aim of the wind farm model. The
performance matrix in Standard IEC 61400-12-3 can be used
as the emission matrix to relate wind and power in a wind
farm using a Hidden Markov Model. The wind farm model
can be used also as time interpolation or to guess if there is an
outlier in the state (a switching event).

One application example is in probabilistic power flows. A
methodology to optimize the power flow based on Markov
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processes is presented. Load, generation and network
topology is classified into a small set of cases represented by
the centroids of the fuzzy clusters. Afterwards, regular
deterministic power flows are run for each centroid and the
system stochastic dynamics are derived from the transition
matrix of the embedded Markov Process. Finally, the
generation, the network topology and the discrete elements
such as switches and transformer tap changers can be
controlled conveniently by a Markov Decision Process. This
approach is more advantageous for loads highly or barely
interrelated and for non-controllable generators such as wind
and solar. Other possible application is the design and control
of reactors and capacitors in a wind farm to maximize the
profit due to reactive power control. In that case, a simplified,
quadratic model of the wind farm in the steady state can be
used to estimate the maximum absorption and injection of
reactive power at different points of the farm.

Other application is the optimal design and control of the
load consumption of an isolate system with renewable
generation and storage. The optimal design minimize the cost
of the system infrastructure plus the expected cost of
maintenance, energy losses, load deferring and not supplying
regular and critical loads. The control of the optimal design
manages the loads for optimize the expected profit.



Chapter 8:

Conclusions and Future Work

8.1. Conclusions

he present thesis has analyzed the main features of the

variability of wind power. This thesis has been focused in
providing a framework for the systematic analysis of the wind
power variability in time and in space. The approach is
mainly empirical, based on the data signal processing and the
concept of equivalent wind.

Custom programs have been specifically implemented for
processing the logged data —see for example the graphs in the
Annexes. Thus, the data mining of the measured data is in the
core of the thesis.

Some models of the wind structure on the space and
frequency domain are extensions of some models available in
the literature. The variations have been analyzed
stochastically in the frequency domain and in the time
domain.

The frequency representation of the wind fluctuations
facilitate the estimation of the power smoothing due to the
turbulence structure and cyclic features. Moreover, the
orthogonal representation of a Gaussian stochastic process is
its Fourier transform. However, the time domain approach is
more related to the structural integrity, system control,
weather evolution and forecast error and exceptional events.
When possible, time and frequency approaches have been
combined through the use of spectrograms.

The program WINDFREDOM has been developed to
check the approximation degree of some empirical models of
the variation of the wind along the time and along the space.

The program EQWIGUST has been developed to study
extreme variations of the equivalent wind. Since the wind
fluctuations show a multiplicative behaviour, two simple
transformations are provided to compensate the non-Gaussian
behaviour of the wind.

The variability of the generated power depends mostly on
turbulence and weather evolution. The weather forecast and
the turbine tripping are very specific areas out of the scope of
the thesis. However, the probability distribution of the
forecast and the probability of a turbine trip have been
accounted in the proposed Markov model of wind power
variability.

Fast power fluctuations are also due to the vibration
dynamics of the wind turbines and to eventual switching of
wind turbines. These features have been characterized from
measurements, but the results are very specific to the turbine
model and the atmospheric conditions. Therefore, the analysis
can be systematized but the conclusions from the
measurements are difficult to generalize.

The fundamental characterization of the wind variability is
presented in the second chapter. The wind fluctuations
measured with an anemometer are customarily characterized

by the variance spectral density of the wind. The spatial
structure of the wind fluctuations are typically described by
the wind coherence, which is the correlation coefficient in the
frequency-space domain.

The spatial structure of the turbulence affects to the
aerodynamic torque experimented by the turbine. The torque
oscillations due to turbulence can be estimated from its
structure. Several models are derived and compared to the
literature.

In fact, the large area swept by the blades implies that
localized turbulent oscillations are significantly averaged
along the area. *

In general, the spatial dimension of the wind fluctuations
seems to be inversely proportional to their frequency.
Therefore, a link can be established between the oscillations
measured with an anemometer and the aerodynamic torque
oscillations. Furthermore, the equivalent wind is defined as
the one that produce the same effects that the non-uniform
real wind field.

The equivalent wind speed contains a stochastic
component due to the effects of turbulence, a rotational
component due to the wind shear and the tower shadow and
the average value of the wind in the swept area, considered
stationary in short intervals. The variations of torque are
estimated from blade element theory in annex C.

The comparison between the turbine measurements and the
simulations is complicated by the uncertainty in the wind
field. Usually the wind speed is measured at just one location
which makes difficult the direct comparison between the
measured and simulated turbine. However, the power density
spectra of the measured and simulated processes can be
compared directly because they are stationary properties of
the process.

The equivalent wind can be considered a low-pass filtered
version of the wind measured with an anemometer. The
actual aerodynamic torque can not be reconstructed from a
single point measure due to the stochastic nature of the wind
and the complex vibrations of the tower, that affects the
aerodynamic torque. However, the main statistical features of
the torque —or the equivalent wind— can be predicted.

The concept of equivalent wind can be extended to a wind
farm or even to a cluster of wind turbines. The equivalent
filter of the farm respect one significant turbine can be
defined from the root of the of their PSD quotient. This filter
estimates the smoothing due to the spatial diversity of the
turbulence across a wind farm. The equivalent cluster filter is
defined analogously to the wind farm filter.

An interesting concept is the wind smoothing across an
area. If many wind farms are distributed evenly enough in an
area, the smoothing level can be estimated from the region
dimensions and the turbulence parameters.
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While slow fluctuations in the power generated by turbines
are fundamentally related to the wind, fast power fluctuations
are largely due to the turbine vibrations and the electric
generator with its control and power interface.

Since the turbine vibrations and the electrical equipment
varies notably from one model to other, the forth chapter of
this thesis proposes a methodology to characterize the
oscillations experimentally observed. A literature review on
Power Spectral Densities (PSD) and periodograms (averaged
spectrum) of wind power is presented.

There are many specific characteristics that impact notably
in the power fluctuations between the first tower frequency
(usually some tenths of Hertzs) and the grid frequency. The
realistic prediction of these power fluctuations needs a very
comprehensive model of the turbine, which is usually
confidential and private. Even the agreement of the measures
with a full model is not trivial.

The foundations of the methodology are explained in the
forth chapter and some examples are provided in annex B.
One contribution of this chapter is the experimental
characterization of the power fluctuations of three
commercial turbines. The variations of power during the
continuous operation of turbines are measured and
experimentally characterized in timescales from the grid
period to minutes. Some experimental measurements in the
joint time-frequency domain are presented to test the
mathematical model of the fluctuations.

The admittance of the wind farm is defined as the ratio of
the oscillations from a wind farm compared to the
fluctuations from a single turbine, representative of the
operation of the turbines in the farm. Some stochastic models
are derived in the frequency domain to link the overall
behaviour of a large number of wind turbines from the
operation of a single turbine.

The nature of turbulence and vibrations are different. The
equivalent wind fluctuations due to the turbulence are
broadband stochastic processes with no characteristic
frequencies. However, vibrations and electrical oscillations
are almost cyclostationary stochastic processes, usually with
several noticeable narrowband components.

The measured power variations are the outcome of
turbulence, mechanical vibrations and electrical oscillations,
which are stochastic processes with different properties.

However, a wind farm typically has more than four
turbines and the addition of the power variations from more
than four turbines converges approximately to a Gaussian
process despite of the process nature.

The partial cancellation of the variations among the
turbines has been illustrated, assuming the unsynchronized
rotation of the turbines. For simplicity, the turbines are
assumed to experience a power dip when the blade is close to
the tower. These power dips are represented as a deterministic
periodic pulse, which are more severe (they converge slower
to a normal process) than the actual drivetrain torque
vibrations.

Since the turbine speed varies slightly from one turbine to
other, the blades positions are not synchronized. Eventually,
several blades can eventually cross their tower almost
simultaneously. The blade crossing in front of its turbine
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tower is modelled as a Poisson process. The probability of
simultaneous power dips is derived from this process.

Indeed, the vibrations and electrical oscillations have
almost cyclostationary nature, not deterministic and periodic
features. This stochastic behaviour increases the convergence
of the aggregated power to a Gaussian process in a wide
frequency range. In a typical wind farm, the variance density
aggregates quadratically in the range from a hundredth of
Hertz to the grid frequency. Therefore, the relative amplitude
of the farm power oscillations at those frequencies is
inversely proportional to the number of turbines.

In the very low frequency range, the oscillations are
dominated by comparatively coherent turbulence, which has a
somewhat multiplicative behaviour.

The power variations of low frequency in the farm have
bigger amplitudes because these oscillations have a smaller
spatial variation. Moreover, they have a Laplacian distribu-
tion whereas the variations of higher frequency have a more
Gaussian distribution. This Laplacian behaviour will be
approximately accounted using a bijective transformation.

An approximate flickermeter model in the frequency
domain is also presented in the fifth chapter to demonstrate
the low relevance of the flicker emission at the farm level
when the turbines are not synchronised. In the measured
farms, the flicker level was very low due to the partial
cancellation of the oscillations and the strength of the network
at the point of common coupling.

The wind spectral density determines the stochastic
behaviour of the wind, provided it can be consider a
stationary Gaussian process. In the sixth chapter, this spectral
density will be used to analyze the characteristics of wind
variations in the time domain and to synthesize samples of
equivalent wind with some features.

The mechanisms that generate turbulent wind changes are
analyzed are closely related to the shape of the bursts and the
distribution of the speed variations. Experimental wind
differences from the mean fit approximately a Laplacian
distribution, indicating there is some unknown multiplicative
effect involved in the extreme deviations. A bijective
transformation is defined to obtain the target distribution.

The stochastic generation of gusts is a valuable tool to
obtain random samples of wind with some features. The
background of the method is the constrained stochastic
simulation of processes, which is based on conditional
distributions. More sophisticated transformations can be used
to improve the fit of the shape and the occurrence probability
to experimental data. For example, some reports observed
that the actual front ramp of the gust are, on average, bigger
than the tail ramp, but the predicted gust shapes are
symmetrical forwards and backwards.

The peak and ramp gusts are synthesized in the frequency
domain using the Karhunen-Loéve expansion and the theory
of conditional simulation of normal processes. An
approximate method is presented to avoid numerical
difficulties that arise generating very long samples.

The concept of the equivalent wind gust can be extended to
a geographic area and it can serve to compute the maximum
variability of the power expected in a region.
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The program EQWIGUST generate gusts of equivalent
wind with some features that can be selected by the user and
it estimates their probabilities.

The variability of wind speed can be modelled during short
intervals with the classical theory of stationary normal
processes, which has been presented in the previous chapters.
However, the weather is a non-stationary process and this
cannot be neglected for horizons longer than some hours.

Since the wind variations show a fairly multiplicative
behaviour, the Markov Approximation Method is suitable for
modelling the non-linear stochastic behaviour of the wind.
This technique is a powerful tool to optimally control the
system, especially if numerical weather predictions are
available. Indeed, if numerical weather predictions are
unattainable, the Markov Chain can be used for generate
basic probabilistic forecasts based on the system behaviour
previously observed.

Many devices in the grid are discrete and their control can
not be linearlized because their unnecessary switching can
produce grid disturbances or excessive device wear. The
optimum design and the optimum control can be achieved
assigning costs to staying in the same system state or jumping
to other states.

A discretization methodology is presented where the
number of states is remarkably reduced through -careful
system modelling and clustering.

One application example is in probabilistic power flows.
Other application is the optimal design and control of the load
consumption of an isolate system with renewable generation
and storage.

8.2. Original Contributions

Some contributions come from the experience gained
designing, building, installing and analyzing a multipurpose
data logger that is now commercially available. The huge
work done in the development of this data logger can be seen
in some articles cited in the publications section of this
chapter. The development of a multipurpose power analyzer
with a PC in the 1998’s for the wind industry was a challenge
there. Nowadays, the datalogger is rather different from the
original one. However, the experience gained with the first
prototypes, developed during the first years of this thesis, has
been fundamental for the AIRE datalogger to become
commercially available.

The third chapter estimates the equivalent wind smoothing
across an area from its dimensions and the turbulence
parameters. The equivalent wind has been used also in the
simulation of aggregated models of wind farms. However, the
estimation of the equivalent wind of a wind farm or a
geographical area from the wind coherence is a contribution
of this thesis.

A new methodology for characterizing the oscillations
measured in the power of a wind turbine or a wind farm has
been proposed in the forth chapter.

The fifth chapter shows the convergence to a Gaussian
process of the aggregated oscillations due to vibration, low
coherent turbulence and electrical fluctuations. This model
also shows the low relevance of the flicker emission at the
farm level.
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The sixth chapter estimates the equivalent wind gust, that
can serve to compute the maximum variability of the power
expected in a region.

The seventh chapter presents the application of the Markov
Approximation method to optimize the system design and
control in two cases.

The annex A presents a simplified statistical model to
represent a wind farm in a power flow study, taking into
account the variability in the generated power from windmills
and its normal operation.

The annex B shows some examples of the analysis of
experimental data obtained with the multipurpose data logger.
Some effects observed in the data such the measured
oscillations are quite difficult to obtain from simulations.

The annex C introduces an aerodynamic model to estimate
the influence of deterministic wind component (wind shear
and tower shadow) from the torque coefficient and the main
properties geometry of the turbine.

The distribution of wind speeds and turbulences along a
wind farm is required to achieve a fair representation of a
wind farm. The model included in the annex D allows testing
different wakes models.

Another contribution of this thesis is the program that
downloads, represents and analyzes the data from the network
of meteorological weather stations, typically used by
meteorological organizations for weather prediction.

An user manual of the program WINDFREDOM with
three case studies has been included to show the potential use
of this program.

Another contribution of this thesis is the program that
generates gust or random samples with certain features of
equivalent wind.

Concisely, this thesis has attempted to provide a
methodology for the study of wind power variations, based on
the spatial-temporal distribution of wind and in the analysis of
experimental measurements. A Markov Approximation
framework has been proposed for the design and optimal
control of non-linear systems affected by the wind power
availability.

8.3. Perspectives and future research

Several fields for further investigation have been identified
during this thesis. Ideas for future work are listed bellow:

e Further test of the proposed models. The models
have been validated from available data or from lit-
erature reviews. Comparison between measurements
and simulations is complex by the uncertainty in the
wind field. However, the power density spectra of
the measured and simulated variables can be com-
pared because they are stationary properties of the
process which can be estimated easier from
measures and from simulations. The accuracy of the
models proposed in this thesis depends on many
factors and an extensive test of the models can
retrofit and improve them.

e The blade element model of the rotor has been
implemented in a turbine model in PSCAD.
However, experimental measures indicate that
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rotational features as the wind shear and tower
shadow fuel many vibration modes of the turbine.
Therefore, the relationship between rotational effects
and shaft vibrations should be further studied.

e The estimation of a equivalent filter between the
nacelle anemometer and the equivalent wind is very
convenient. The rotor introduces many small scale
(i.e., high frequency) oscillations in the nacelle
annemometer. However, the frequency content of
the equivalent wind at induced turbulence is quite
small compared to the mechanical torque vibrations
and some measures indicated a better-than-expected
agreement between the equivalent wind estimated
from the shaft torque and from the nacelle
anemometer. However, a second order filter has
been estimated from the measures while all the
reviewed literature uses a first order filter. Further
measuring campaigns are required to check the
parameters of the equivalent filter.

e The  improvement of EQWIGUST and
WINDFREDOM programs for increasing their
versatility.

e A further understanding of the equivalent wind
variability can be achieved if many regions are
systematically characterized and critically compared.
The hourly wind variability can be characterized in
many regions with the program WINDFREDOM.

e  The integration of the Markov model into a probabil-
istic optimal flow. The workflow has been derived in
the seventh chapter, but it has not been implemented
yet.

e The implementation an interactive interface to the
wind farm statistical electrical model. This interface
could estimate the farm oscillations from the simula-
tion of a single turbine, analogously to the method
deployed for experimental measures. Other
application is the centralized control of reactive
power.

e A simple stochastic control of the capacitors and
reactors in a wind farm has been developed in [363],
using the present reactive bonus tariff in Spain and
data from three wind farms. This control can be
further developed to provide a centralized control of
the reactive power at the turbines and at the farm
substation, based on dynamic programming. An
interactive interface can be implemented for
optimally sizing the capacitors and reactors in a
wind farm.

e For convenience, the full vibration behaviour is not
included in many electrical simulations. However,
the turbine models can be refined introducing the
vibrations measured or obtained in structural
simulations. The mechanic vibrations can be
introduced in the generator shaft and the non-ideal
behaviour of power electronics can be
experimentally characterized and introduced as noise
at the output of ideal converters.

The great variety of the contributions and the accomplish-
ment of other duties, as the full time lecturing responsibilities
from the year 2000 are, in part, the explanation of the long
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time required to finish this thesis, about 12 years with varying
dedication.
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Annex A:
Simplified Electrical Model
Of The Wind Farm

A.1. Introduction

he current legislation for generators included in the

special regulation (mainly mini-hydraulic, wind and co-
generation plants up to 50 MW) in Spain was developed in
1985 (Industry and Energy Ministry order 5/9/85). This order
states that the electric plants included in this regulation must
operate with unity power factor.

This characteristic was adequate when the percentage of
this type of generation was small, but the great increase of co-
generation and wind generation was not foreseen.

Moreover, conventional power plans must operate in
accordance with procedure 7.4 (distribution network
complementary voltage control service, published in BOE
18/3/2000). However, this procedure is not adapted to the
characteristics of the wind farms or the grids to which they
are usually connected.

Currently, AENOR is performing a review process of this
regulation by means of the workgroup “Grid integration of
wind generation”, in particular in the group “Wind
generators” AEN/CTN 206/SC88. Its goal is achieving a new
regulation that allows these power plants to help grid
regulation, without causing an excessive increase in cost.

According to the current regulation, reactive power
compensation is performed in the plant’s point of connection
and it does not take into account reactive power consumption
and generation in lines and transformers. This worsens the
power factor in the border nodes between the distribution and
transport networks.

Besides, a power plant modifies the voltage distribution in
the grid. Distribution networks are usually limited, not for the
maximum thermal current, but for the limits in voltage
variation (specially at the end of the line). Because of that,
distribution companies prefer distributed generation to be
connected to higher voltage levels, where its impact in
voltage distribution is very small. However, connecting to a
higher voltage level increases the cost of the plant.

Traditionally, the maximum installable generation
capability is calculated by using a deterministic load flow,
usually based in the worse scenario of minimum load and
maximum generation [364]. These studies do not take into
account the probability of the different scenarios. However,
the standards that establish voltage characteristics are
expressed in statistic terms [365].

In addition, wind energy injection modifies the losses in
the grid (losses reduction if the zone is mainly consuming and
an increase if the area has a generation excess, as it happens
in some wind farm concentrations).

The method proposed in this paper can help to evaluate the
affection to the net, as well as to compute voltages inside the
wind farm.

According to the Spanish regulation in RD 436/2004 [366],
current regulation rewards the control of power factor to
generators in the especial regulation (most renewable energy
and  cogeneration).  Remunerated  reactive  power
compensation is based on a power factor band depending on
the low-load, peak or medium-load classification of the
interval.

Distribution networks are usually limited, not for the
maximum thermal current, but for the limits in voltage
variation (especially at the end of the line) [367]. Because of
that, distribution companies prefer distributed generation to
be connected to higher voltage levels, where its impact in
voltage distribution is very small. However, connecting to a
higher voltage level increases the cost of the plant. In case the
wind farm is able to control reactive power absorption or
generation, voltage can be fixed, avoiding higher voltage
connection [365, 368].

The new Spanish regulation is an improvement from the
previous one that stated unity power factor at any time (at
peak hours the farm is rewarded to be capacitive and at low-
loads the farm is rewarded to be inductive). However, the
reactive bonus is obtained if a power factor is accomplished.
Therefore, reactive power injection depends on wind and grid
support is low at low active power (i.e. low winds).

A better utilization of the infrastructure can be attained
considering the availability of reactive power at low active
generation or even with no active power generation (many
wind turbine technologies can generate more reactive power
at low active power or even, without generating active
power). As the capacity factor of wind farms is usually low,
this would increase the exploitation of the infrastructure.

The suitable system operation may require a set point from
the control centre or measures at other points in the grid.
Indeed, the power factor band regulation of RD 436/2004
may be regarded as a rough estimation of the load depending
on the low-load, peak or medium-load time classification.

If online communication from control centre is not
available, the set point of reactive power could be scheduled
from the estimation of grid state and the forecast of near loads
(based on in time of the day, day of the week, working day,
weather, etc.). Moreover, the voltage at the supported node
can be estimated at each turbine without the requirement of a
centralised control. The wind farm model allows estimating
power injection from other turbines based on its power output
and its wind direction. With the estimation of power injection
of the wind farm and, eventually, nearby wind farms it is
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possible to compute a rough estimation of voltage at the
supported node. The change of taps in transformers that
connects the wind farm to the grid can be detected and
included in the estimation of the supported voltage node.

Other wind farm aggregate models are available in the

literature (see, for example [369]). However, the proposed
model is focused on the statistical behaviour of the farm.

A.2. Simplified electrical model of the
wind farm

A.2.1. Turbine power curve

The power curve relates wind at hub height and power
output [370]. Turbine manufacturers provide the curve along
with its uncertainty. Fig. 150 shows a power curve from a
pitch controlled turbine. The uncertainty is small, except at
cut-off wind speeds.
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Fig. 150: Example of measured power curve (from [370]).

The paper [371] normalize power curves to ease the
optimization of energy production. In this study, a simpler
power curve will be employed to be able to derive analytic
expressions. The power curve P, (wy;) of (2) is
characterized by cut-in, cut-off wind speeds and the wind
speeds where power speed is 25% and 75 % of turbine rated
power. It fits well to pitch and active stall wind turbines, but
it is less accurate for passive stall turbines. Those turbines can
be modelled more precisely following an analogue procedure
to the one shown in this work.
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Fig. 151: Simplified power curve from (587) for example dataof Annex I.
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The cumulative density function is derived in (3) and it is
plotted in Fig. 152 for the data shown in Annex I (a Weibull
wind distribution with parameter shape =2, known as
Rayleigh Distribution). (588)
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Fig. 152: Plot of CDFpoweroupu for the wind turbine of the example of
Annex I.

The statistical parameters of this distribution have been
derived analytically. The errors introduced in the
approximations needed to achieve expressions 4 to 6
(typically 1% to 4%) are far lower than the errors due to the
simplistic models of the wind and the turbine.

The median of power output can be computed using (4).
The median is approximately proportional to wind scale
parameter.

median ~ nominal

(589)

Wiso, = Wasos

| 1/shape
|:0.28015 scale (0.69315 ) - 051124 W5, +0.23109 w75%J

Mean wind speed and power output of wind farms —with
similar wind distributions and power curves— are linearly
related to a high degree, as can be seen in Fig. 153. However,
the adjusted straight line does not cross the origin (I_DWT ~
~a+bwwr with a#0).
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Fig. 153: Plot of average Power Output versus average wind speed at hub
height of the wind farm for the example.
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The standard deviation of power output (6) reaches the
maximum at mean hub wind speeds that correspond to half
the power, wsgy, as can be seen in Fig. 154. In those cases, the
probability density function (pdf) of power output is U-
shaped, with two modes at the extremes, as can be seen in
Fig. 155.
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Fig. 154: Plot of G power oupue Versus average wind speed at hub height of the
wind farm for the example.
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The probability density function can be obtained deriving
the CDF poywer ougput T€SpECt to power output.
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Fig. 155: Plot of PDF power ougpue for example of Annex I.
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The uncertainty of the power curve is bigger near cut-off
and between cut-in and rated power, as can be seen in Fig.
151. The uncertainty of power curve would be considered in
the wind farm power curve in the next section.

A.2.2. Wind farm power curve

The objective of this point is to get a simplified
representation of the wind farm enough accurate to use it in
the statistical model [372, 373].

Standard IEC 61400-123 [374] shows a detailed method to
compute the wind farm power output from data of the
meteorological mast. The description of the wind farm
operation consists of performance matrix M indicating the
declared power output expected of the wind farm for pairs of
wind speed and wind direction values.

In a farm, the distribution of the speed among the turbines
is quite dependent of wind direction and that is why the
prospective standard IEC 61400-123 utilizes a matrix
dependent on wind direction.

This matrix can be expected to be produced as an integral
part of the wind farm design process. The information needed
to compute this matrix can consist of:

e Long-term climate information at a reference position.
o Turbine performance characteristics.

e Wind flow models for assessing topographic, land cover
and turbine wake characteristics.

e Electrical data to compute losses inside the grid of the
farm.

Each matrix element m;; is the expected power output for
the wind speed w; and direction & corresponding to the bin
i, j. Therefore, the estimated power Posw can be computed
from the wind speed and direction bin probability, Pr(w; &).

. M N
Poupu = 3 Y m, ;*Pr(w,0)) (593)
J i

The distribution of power output can be found, for

example, using the relationship

Pr(pk < P(mtput < Pra )=

M N (594)
Zzif(pk <m; ;< P Pr (Wi’ej)’ 0)
7

To be able to obtain an analytic expression, a simpler
model will be employed based on the standard deviation o,
of wind speed inside the wind farm.  Therefore, the
considered characteristics of the wind would be its spatial
average w,, and its standard deviation o inside the wind
farm in ten minute intervals. If there is no data about the wind
distribution inside the farm, o,¢ can be estimated from the
standard deviation of turbine efficiency (from microsite
optimization) or from the variance of energy output that is
usually available at SCADA (average power and average
wind speed show a behaviour similar).

The main effect of the wind distribution inside the farm
would be:

e Decrease of wind farm w,,saverage speed from undisturbed
wind speed value wy of the site model (section III of this
paper). If performance matrix is not available and there
is no more information, it is reasonable to multiply the
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undisturbed value by an efficiency factor ny¢ that would
be around 90-95%, depending on the wake effects [375].

Wyr =My Wy (595)
e Smooth the power curve since each turbine experience a

slightly different speed. This smoothing is evident at
cut-off speed.

The power output of the wind farm would be the sum of
the output of the turbines (less the grid losses that would be
computed in next section).

If wind speed distribution inside the farm is known, the
power output distribution of the turbines would be:

1

pdf[‘uwer (pWF ) e —— pdf;v[ml speed (WWF )

596
output ‘d})w /dW‘ ( )

w=P,” (p)

The average power output for a given mean wind speed is
the cross correlation of the power curve and the wind
distribution:

— 30,
PPowyr (W) = I o

output 30w

pdf:vind (T) ’ PW (W+ T)dT

speed

(597)

The average power for a normal distribution cannot be
computed analytically unless some approximations are made.
However, if slope of power curve is quite steady in the
interval of w,, £ c.. the average power output can be
approximated as B, . (W)~ P(w). This is a good
approximation except for the cut-off speeds, when the
disconnection of turbines causes an abrupt change of the
power curve. For such cases, the wind farm power curve can
be characterized with two extra parameters that reflect how
abrupt the disconnection of the turbines is:

_ Wasy, T Wise,
P S
P, (wy) ="t | Tapp| Ln(3)——2—— |-
2 Wase — Wisw,

(598)

AW,

~ Tanh [Ln(_’)) D Ws ~ Veuor j
Aw,; is the difference between the wind speed when there is
a 25 % and 75 % of disconnection of the turbine due to
high wind.
Weurofr 18 the wind speed when there is a 50% probability of
the turbine to shut down.
Nwr is the farm mean efficiency factor.

wg 1is the undisturbed wind speed of the site
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Fig. 156: Power curve of the wind farm (solid) and the turbine (dashed) for
the example of annex 1.

Wind Power Variability in the Grid — Annex A

If all turbines of the wind farm are the same model, the
power curve normalised “per unit” is analogous for the grid
and for the turbine.

Near cut-off wind speed, the power curve is highly non
linear. Also, the uncertainty of power curve is greater there.
In such cases, the power show greater variability. In such
wind regime, the turbines would gradually shut down starting
from those more exposed.

Pr(Powery, < pye) = (599)
=Pr(Wind, < By (pys)) + Pr(Wind, > B,y (D))=
cut—in cut—off
= CDEy;4 (PVI;PI“ ' (Pwe)) +1-CDFy,, PVI;PI“ (Pwe))=
o e shape
— 1+ EBxpl- W + ?:ZZ) ArcTanh (1 - 2[:1';} 3
scale
_ shape
_Expi- Wasn ;— Wrse Wﬁzn_(;;“% ArcTanh [1 - %
n,, scale

The uncertainty of wind at the site is o5 (the uncertainty is
the deviation of the parameter measured or estimated). The
value of the combined standard uncertainty is equal to the
standard deviation of the measure, that is a stochastic variable
[376].

The relationship between the standard deviation of wind
farm speed o+ and power output of a single turbine G,,¢ due
to wind deviation can be approximated by:

Bromminal (Wrs;~Wass, )0 e

d urbine
S urbine (pWF) ~ diWF “Owr e (600)
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Fig. 157: Plot of PDF poyer ougpue for the wind farm power output of Annex I.

The deviation of the whole farm power output is not the
sum of individual turbine deviations since some degree of
cancellation is achieved. Unless more detailed data are
available, it is reasonable to expect a normal distribution of
wind speeds at the farm. If wind is distributed normally
independent among n turbines of a farm, the deviation is only
n times the deviation of a single turbine, instead of n.

Prominat Wrsoy = Wasy,) O

farm (60 1)
\/; Pwr [I)nominal 'Pj Ln(9)

S furm (pWF) i ‘/; Gturbinp( pWF) =

power power
output output

farm
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The standard deviation of power output of the farm o, due

to wind deviation at cut-off speeds can be approximated by:
Awof/

nominal farm

~ G,
\/; p (Pnaminal farm _pWF) Ln(9) '

The standard deviation of power output of the farm in
function of the undisturbed wind speed of the site wy is:

Sech LMQM
Ln(3)o,, A,

(602)

G/arm power (pWF )
at cut—off’

o (W ) _ nominal +
s )=
g 28| Aw,,
Sech Ln(3) NyWs — %(Wzs% T Wi, )
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Fig. 158: Power curve of the wind farm (dots) and the uncertainty of the
power for the example of annex 1.

The uncertainty of power curve near cut-off usually
partially accounts for this deviation since the wind varies
during the 10 minute interval used for the manufacturer to
compute the power curve.

A.3. Wind farm model

Within this point it is presented a new method to obtain the
equivalent of a wind farm from the characteristics of its
components. For the sake of simplicity, the method is applied
to a farm composed by a single type of generator with the
same load level.

In this model, the farm is divided into the following parts:

e substation (including the park’s substation and the
portion of the line that goes to the PCC)

e the medium voltage network that connects the substation
to the wind turbines.

e the wind turbines (including the MV to LV transformer
that usually is located into the tower)

The presented method is general and can be extended to
more complex topologies using fourth-pole transformations.

A.3.1. Final representation of the Farm

A) Farm with fixed tap transformer.

The equivalent circuit for the farm, that will be obtained at
the end of the modeling, will be represented by the farm’s
transmission matrix and the power generated by a turbine:

The basic operations required in order to obtain the
transmission matrix for the park are the cascade connection of
the elements (equivalent to multiplying the transmission
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matrixes) and the parallel connection of circuits (equivalent to
a weighted sum of the fourth-poles.

Grid’s Thevenin
equivalent

Zsc grid  -lgrid pcc A B
+ C D e

Farm equivalent
transmision matrix

'Iturbine (average)

Pturbine
Qt‘urbinc

Uturbine
(average)

PCC, point of
common coupling

Fig. 159: Model of the farm with fixed tap transformer using its transmission
matrix.

Fig. 151 shows the circuit based on the single-phase
equivalent. Thus, if the per unit method is not used, power
and voltages should be transformed into phase values.

In order to calculate the current injected to the grid, it is
necessary to use the transmission matrix considering the
network as primary side and the turbines as secondary side of

the fourth-pole). (604)
( Up ) :<l ZSCgrid) (A B) (Uturbj_ne)
Tgridece 0 1 mev ' C D/ ram ' Tturbine

Two solutions are found for the PQ node. The solution of
PQ node for stable operation of the turbine is given by the
following equation:

Cl=Uo’+B (P-1i Q) Conj[A] +A (P+1i Q) Conj[B]

Cl++/C12 -4 (P2 + Q?) Abs[A]2 Abs[B]?
2 Abs[A]2

Uturbine =

-P+3j0

Uturbine

Tturbine =
(605)
where P and Q is the power generated by the turbine (PQ
node). A, B, C, D are the parameters of transmission matrix.
Uy and Ujypine are voltage at primary and secondary side of
the equivalent fourth-pole. If Uj is voltage at infinite bus, the
parameters of the transmission matrix are

P i I
The static voltage collapse occurs at the following primary
voltage: (607)
Uo min =

\/{2\/1?2+Q2 Abs[A] Abs[B] - B (P- 1 Q) Conj[A] -

A (P+1i Q) Conj [B]]

B) Farm with tap-changing transformer

However, if the transformer allows load regulation, it is not
operating at the maximum of minimum value and the voltage
variation is slow, substation voltage at the MV side of the
transformer is almost the commanded value.

According to that, the steady-state simplified model of a
park with this type of transformer can be divided into two
uncoupled parts. Thus, the grid sees the park as a PQ node.
The output of the transformer, seen from the MV circuit side,
as a voltage source whose absorbed or generated power
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corresponds to a PQ node of the grid (power transmitted by a
ideal transformer does not depend on the tap).

Park with tap-changing transformer, seen from the grid

Thévenin equiva- PCC Equivalent circuit for Substation transformer with
lent of Grid the HV line fixed ratio
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Fig. 160: Model of the farm from the utility point of view.
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Fig. 161:
transformer (model from the WT point of view).

Voltage uncoupled model for parks with load regulation

C) Dependence on voltage of the power generated by a
turbine

If the efficiency of a generator can be assessed as a
function of voltage and the reactive power compensation
policy is known, the turbine can be modeled as a node Sy pine
= Pturbine:'Uturbinenp +j Qturbine'Uturbinenq~

In this case, Ugwpine can be find substituting P =
P 1urbine'Uturbinenp and Q = Qturbine'Ulurbinenq in the P Q equation
and numerically solving the expression. The values obtained
not taking into account the voltage dependence can be used as
initial value.

A.3.2. Substation modeling

Substation is connected to the grid in the point of common
coupling, PCC, with a HV line. In this model, the line and the
transformer are going to be represented by their transmission
matrixes (single-phase equivalent).

PCC Equivalent circuit for

Equivalent circuit for the  Auxiliary consumption, MV network

the HV line transformer compensation, ...

Lgsi Leircuit MV
orid
— E—
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= re: 1 g |
Yiin Zyy 3 £
L — I e~

Fig. 162: Model of the substation of the farm.

A.4. Modeling of the underground MV
network

Turbines are generally connected to an underground MV
cable (usually 20 KV, although there are also parks with
30 kW interior network). Usual distances among turbines are
around 80-300 m, they have a low consumption or generation
of reactive power, and the series impedance of the cable is
moderate. Under these conditions, the voltage drop between
the first and last turbine is small:

PR+0X
U

AU =~ (608)
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The voltage drop between the substation and the closest
turbine is usually small if the substation is located in the park.
In some cases, the substation is away from the park because
of environmental problems. In these cases the voltage drop in
the cable can be a limiting factor when choosing cable and
MYV network voltage.

A) Added model of turbines using the moments

A simple model that provides precise results even with
significant voltage drops is based in the voltage drop
calculation using the method of moment.

This method is equivalent to concentrating all the
generators in its load center of mass, which is at 17, of the
distance between the first and the last turbine, closest to the
substation’. In the case of parks with different types of cable
or different types of generators, this model can be adapted.

Considering that the current injected by the turbines varies
in an almost linear way for small voltage variations, like the
ones that take place between the first and the last turbine, this
model gives very accurate results.
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Liubstation

Usubsiation

b) Distance substation 1% turbine

Equivalent model with the

turbines concentrated at 1/3
S Lubstation distance from the first one
Usubsiation Nturb

Fig. 163: Concentrated model of a MV circuit in a park..
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~Lsubstation Zsub-1* wrbine + Z1-Last turbine / 3 magnetizing current)
<+

g

« g

£ = 2 Z Prurbines

E] g E!

E z s Z Qurbines
p— = — N

Fig. 164: Model of the MV circuit and the turbines of a park.

The power sent to the substation can be found using the
parameters of the equivalent fourth-pole of the medium

voltage cable. (609)
(AMI‘ BMI‘) :( 1+ 72cYa Zc
Cvr Dvr/ caple Ya+ Yo+ YaYp Ze 1+ ZcYp
MT
where

Zc = ZSub»l"turbine + Z1“—Ult turbine / 3

Ya = YSub—l“turbine 12+ Y1"‘-U1l turbine T Nturb Zutrafo

Yo = Y sub-trurbine / 2

N, number of turbines in the circuit

Lurbine @average current consumed by the turbines (negative
while in production)

Usubstation My 18 the cable voltage in the substation terminals

The centre of mass has been calculated using the criterion of equal cable
power loss. If the criterion of equal average voltage in both the equivalent
and the original circuits had been chosen, the turbines would be placed
further, at 1/2 of the distance between the first and the last turbine. The
power criterion is more realistic since the impedance of the cable usually

increases in the sections far from substation.
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Y jopLast i 18 the admittance of the part of the cable between
the first and the last turbine

Y sub-1# b 18 the admittance of the part of the cable between
the substation and the first turbine

Ziur wp 18 the series impedance of the part of the
conductor between the first and the last turbine.

Zsuwp-1* wrb 18 the series impedance of the part of the
conductor between the substation and the first turbine.
Z,rafo the magnetizing inductance of the transformer inside
the turbine

B) Aggregated model of the MV circuit branches

In order to solve directly, without iteration, a park with
various branches on the MV circuit, they must be grouped in
a single equivalent branch. The equivalent voltage of the
turbines is the weighted average of the circuits and the current
send to the substation is the sum of all the circuits.

The voltage in all the branches in the MV circuit is similar
if one of the following conditions takes place:

v" Circuits are short and, thus, the voltage drops are small.
v Circuits are long, but all have similar length and similar
number of turbines connected.

Like in the previous part, the equivalent models are based
in the linearization of the behavior of the turbines around the
average working voltage.

If all the turbines are the same type, it is convenient to
include the number of connected turbines in the transmission
matrix. By doing this, at the end of all circuits there is the
same PQ power corresponding to a single turbine. Inside the
matrix, the current is multiplied by the number of turbines in

each circuit.
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Fig. 165: Complete scheme of the medium voltage network, u;mg the
aggregated generator model.
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Fig. 166: Simplified scheme of the medium voltage network of the park with
added generator model.
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The parameters of the equivalent fourth-pole are found
adding the currents and calculating the equivalent voltage as a
weighted average of the voltages in each branch.

Ncircuits
N = Nturb;
= o (610)
SRS NEurb; Acirouit 1
AnetMv =
.. N (611)
ZliqimmsNturbiz Beircuit i
BnetMv = >
N (612)
Ncircuits
Chetmv = Ceircuit i
= (613)
> Y MENturb; Desreuit 1
DnetMV =
N (614)

This model can be extended to farms with turbines of
different types and with complex layouts.

A.4.2. Modeling of the turbines

A) Simplified model of the low voltage circuit

In the LV side of a turbine, voltage usually is near its rated
value thanks to the taps in the transformers. Small voltage
changes modify lightly electrical losses and reactive power.

Losses are due to Joule effect Pe, ~ Ry $? / U? and iron
losses, Pr. ~ Ry, U2 Thus, losses depend on voltage with a
function of the parameters of the generator. However, the
efficiency of the generator is usually high and it does not
depend greatly on voltage. Moreover, the effect of voltage
fluctuations in electrical losses is small compared to the
uncertainty in the power curve of the turbine.

Besides, reactive power consumed by the generator
depends on the square of both voltage and current Qge, = ( X,
— Xeap) UP + Xee IP = (X, — Xeap) UP + X S”/U. However,
reactive power consumption variations are nearly
compensated by the control of the capacitor sets, as long as
they are sufficiently sized. In other types of generators, the
control acts regulating reactive power.

The stochastic nature of wind affects the control, adding
uncertainty regarding which generator (in a machine with two
generators or one with different connections) or which
capacitor sets are connected. On top of that, some auxiliary
consumption shows an intermittent or cyclic behavior.

Because of all these reasons, the turbine can be
approximated on a load flow study, in a quite realistic way,
by a PQ node whose parameters are a function of the average
powers at each wind speed.

It is only necessary to consider the influence of voltage in
those studies focused on the behavior of the park in extreme
conditions (voltages out of normal operating range,
homopolar or inverse sequence voltages,...)

The value of active power as a function of wind speed can
be derived from the power curve. The value of reactive power
is not usually given by the manufacturer, but it can be
measured. In generators with various LV circuits in the
transformer, the power in all the LV circuits must be added
(A direct measure of power in MV is difficult to perform).
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It is desirable to obtain the reactive power curve from the
manufacturer as a function of active power or wind speed. If
the turbine can control reactive power, it is necessary to know
how the command is set (power factor, reactive power...) and
its limitations (working PQ plane).

B) Statistical model of the turbine

When the turbines do not have the same load level, the
previous equivalent circuit has some error. Active and
reactive power consumed by the transformers is proportional
to the square of the load level in each turbine, not to the
square of the average load level. Thus, using that model
underestimates the power consumed by the transformers
when the load level variation is important.

However, the previous model can be adapted to turbines
with different load levels using a statistical approach. The
turbine works around an average working point with active
and reactive powers upi, 4 qi and variances opis o-Qi2 [3].
Variance is due both to the difference in power among
turbines (spatial variation), and to the time variation of the
generated power.

Spatial variation can be estimated from a wind potential
study of the site, when measurements are not available. In
such a case, this variation can be considered deterministic.

Time variation of power can be estimated from the
maximum and minimum power in a time period. Another
option is to calculate the variance of the power according to
the uncertainty of the power curve. The exact calculation of
the joint variance requires knowing the correlation among the
time power variations in the turbines. However, in most
cases, it can be accepted that the time variations are
independent in every turbine.

Looking at the model in Fig. 165, a fairly simple model of
the circuit can be found, based in statistic parameters. The
sum of the generated power by the turbines is a statistic
variable whose average, for the active and reactive power, is:

Nturb

M sPturbines = HPi — (61 5)
i=1
Nturb Nturb Nturb Nturb
ERsc 2 2 2 2
Hpi” + Hoi” + opi” + ooi
Sease \ {7 i i =1
Nturb
M sQturbines = Hoi — (6 1 6)
i=1
Nturb Nturb Nturb Nturb
Exsc 2 2 2
AT S L S
Sease \ {7 i i =

In order to estimate the uncertainty of the power generated
by the turbines, it is necessary to have a statistic model of the
park. Some dynamic wind models can be found in the
literature [4-6]. However, taking into account that the aim of
this paper is to find a simple model that can be characterized
by few measurements, the following hypothesis are going to
be made:

Variance which appears in the previous formulae is due, on
one hand to the time variation of the power in a measuring
period and on the other hand to the spatial variation (along the
circuit) of the power generated by the turbines [7, 8].

Spatial power variation is due mainly to fast fluctuations
that can be considered independent form one machine to
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another. Spatial variations are correlated. For every
predominant wind speed there are machines that, in average,
generate more than others. This fact is taken into account
applying a coefficient C;, that is equivalent to the efficiency
of the location of each turbine, and it is obtained from the
micrositting of the park.

In order to consider these effects, the power generated by
every turbine is modeled as an average power

P = average power in a working point

P; = active p. from turbine i = C; P + &p spatial Xi T O p temporal Y

Q; = reactive power from turbine i =

= Ci Q + GqQ spatial Xi to Q temporal Y

X, Y = normalized statistical distributions, independent
between them

X; = distribution that represents the independent fluctuations
for every turbine (mainly fast variations due to turbulence,
tower shadow...).

Y = distribution representing the fluctuations that affect
proportionally at every turbine (mainly slow power
variations)

C; = efficiency coefficient of the location of a turbine inside
the park, relative to farm average.

2
O oeficients Ci2 = M

C = Hei ;
P N
P CP+ X+ Y CP
P—ExpectedValue{%}_E[z( i Gspzm;ll i T O temporal ) _ ZNl :

2 2 2 2 2 2
E [Z P, J =N"P (1 + O coeficients Ci ) *Op emporal T No, spatial

The equivalent average power in the turbine, in low
voltage, is the average power of all turbines minus the
average power consumption in the transformers. Performing
the same analysis for the reactive power results in:

— aRCC 2, _ &xcc 2
Pequiv turbine P- GS turbine > Qequiv turbine Q - S GS turbine
base base
2 (p2 2 2 2 2 617
GS turbine T (P + Q ) Gcocﬁcicms Ci + GP temporal + 6Q temporal ( )

2 2
+ GP spatial + 6Q spatial

N

It is important to know the variance of Pequiv turbina ¥ Qequiv
wibina, DECAUSE it is going to be the main contribution to the
uncertainty on the power generated by the park

2
2 GP spatial

~
GP equiv turbine "~ GP temporal N

(618)
G 2
2 2 Q spatial
GQ equiv turbine "~ GQ temporal + N
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Fig. 167: Joint model of the MV circuit and the turbines of a park.

In order to have into account the consumption of active and
reactive power when the load level is not the same in all the
turbines, it is necessary to decrement the average power
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Equivalent transmission matrix of the branch

PQ node corresponding to an
Liurbine Lv

operation point of the farm
whose values are measured
at LV side of a turbine with
a wattmeter.

Lsubstation . Z, (average)

t
Al 1 Bl 1 r‘
Cy Dy Jcabieny Nturb
pranch | 0 ———

Pequwalem turbine

Qequiwa]enl turbine

ULV (average)

Usubstati
| ‘ waslauon MV

Fig. 168: Compact model, compensated for the variability of the power
injected by the turbines.

The parameter Geoeficiens ¢; €an be found from the study of
the micrositting of the park, or from the correlation of the
active and reactive power of each turbine with the average in
the park.

The parameter Gypia can be determined from an operating
park, through the remote measurement system, with the
correlation matrix. For a farm that is not operating yet, the
order can be estimated from, at least two wind measurements
and the active and reactive power curves.

The parameter Gimpoa Can be found measuring the
standard deviation of active and reactive power in one turbine
whose turbulence is on the same order as the one of the park.
It can also be estimated from the maximum and minimum
power in the time period, although this method has less
precision.

C) Electronically controlled generators.

Models for generators controlled by power converters can
be found in the literature. The more frequent configuration is
the doubly-fed induction generator, because of the lower cost
of the power stages. However, it is becoming more common
to find squirrel cage induction generators or synchronous
generators connected to the grid through converters, in order
to achieve variable speed.

The main problem when trying to model this type of
generators is that there is no precise information about the
control of the machine. In general, it is useless to try to find a
precise model of the machine in a power flow study when the
control strategies have to be “guessed” and whose parameters
vary in each farm in order to achieve maximum efficiency at
every location.

Taking into account that the efficiency of the generator is
high, that the voltage is within a narrow range, that usually
the information about the control is insufficient and that the
power curve has a uncertainty from 3% to 5%, it is acceptable
to approximate the group generator + electronics + auxiliary
consumption by a PQ model.

Because of that, unless there is in-deep information about
the generator (usually available only for the manufacturer),
the model to be used is the simplified one.

D) Specific model for induction generators, directly
connected to the grid.

The typical induction generator can be modeled as the
cascade connection of the fourth-pole corresponding to the
equivalent circuit of the generator, power factor correction
capacitors and transformer. The variable resistor on the left
represents the mechanical power in the generator.

Equivalent circuit of Banco de condensadores Equivalent circuit of
Liotor’ generator + cosumos auxiliares transformer “Liurbine MV
Z: Zs < Z, 7, »e
e g
iy e s c
UL g 3 &
g Zyy = Zyy, <
. & =
—®

Fig. 169: Equivalent circuit of a turbine with a directly connected induction
generator.

The transmission matrix is the cascade composition of the
transmission matrix of the equivalent circuit of the generator
(without the variable resistor), the capacitors and the
transformer, (Egenerator’ 1S the e.m.f.. of the generator in the
rotor, referred to the stator).

If it is assumed that all the generators in the circuit work at
the same point, the inverse transmission matrix can be found
by cascade multiplying all the corresponding fourth-poles.

Tfarm 5y A B
C D farm

5
Irutur

-
,mumuaﬁé

¢

1 }— -
AHPH

|

|

Fig. 170: Complete model of a park with directly-connected induction
generators, valid when the number of capacitors and the auxiliary
consumption can be estimated.

The slip of the generator depends on the terminal voltage.
However, induction generators operate with at low slip
(around 1% at full load) and it can be considered that blade
speed is almost constant and thus, P,; does not depend on
voltage.

If the number of capacitor banks and the auxiliary
consumption can be estimated, the influence of voltage in
active and reactive power can be approximated by a power of
voltage. In order to obtain the optimum power, the following
equation can be solved with the rated values of the turbine.

O (Purbina[Uvr, Prmi] Uvr ™) (619)
= =
OUmr
( Uvr 0P
Pturbina[UMrs Pmil] = Pturbinal Unominals Pmi] - | —— |
\ Unominal /
3 (Quurbina[Uir, Prs] U ™) (620)
OUmr

/ U )0a
Qturbina[UMrs Pmi] = Qturbina [ Unominals Pmi] - | —— |
\ Unomj_nal )

Coefficients np y ng can be calculated analytically as a

function of the inverse transmission coefficients. For sim-

plicity, the quotes have been omitted from A’ , B’ , C’ y D’ ):

cl - cOs[ArgN

(BC-AD)?+4BDPmi
B2 D2 ]]

(621)
J@CAW2+4BDHM
C2 =BD (BC+AD)
B2 D2
Cl (BC-AD)?-C2
np = Re{—l— - }
Cl ((BC-AD)2+4BDPmi) -C2 (622)

(BC—AD)2+8BDPmi]

no = Re|-1-
© { (BC-AD)2+ 4BDPmi

(623)
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For a 600 kW turbine, the following curves have been
obtained.

0.19
Porbina[Umr, Pmil = Ptowbina [ Unominal, Pmi] - Umr
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Fig. 171: Influence of voltage on real power.
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Fig. 172: Influence of voltage on reactive power.

Powers np or ng near cero show little influence of voltage.
In the previous example, it can be seen that the influence of
voltage in P and Q is small because the machine operates with
power factor near unity and the resistance in the system is
small.

The previous expressions have been obtained with a fixed
number of capacitors connected (without power factor
regulation with voltage).

The generator emf referred to the stator, Egenerator » €an be
calculated from the voltage at the PCC, solving the PQ node.
Then, the generator terminal voltage can be easily calculated
using the impedances of the generator equivalent circuit.

Zy ) ( Pmi \*( Zr Zs )
U, : = & ! (l [ - ——1 Zy Zg + \
terminal generator | + Zg}_,[ J kggenerator' J r 4s Zgu J

generator
(624)

A.4.3. Uncertainty of the model

The uncertainty of the power injected to the grid by
the wind farm can be divided in two parts, depending on its
origin. One part is due to the stochastic behavior of the wind,
and the other is due to the electric model[[9]]

A) Uncertainty due to the stochastic behavior of the
park.

The main source of uncertainty is originated by the
variability of the primary source of energy, the wind. This
affects directly both Pypine and Quurbine-
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In the part dedicated to the stochastic modeling of the
turbines, a very simplified model has been used. In practice,
wind will interactuate with aerodynamics and the control
system. The uncertainties can be found from data measured in
a park.

GP spatial

2
~P 2y —Fopaal
uP due to the wind ~ * farm GP temporal N (625)

2
(¢) .
- 2 Q spatial
uQ due to the wind "~ Qfarm \/GQ temporal + N

Uncertainty due to the stochastic operation can be around
5%, although depends greatly on the measuring period and
the power sampling speed. If uncertainty is calculated from
field data, these will include the effect of outage of the
turbines.

B) Uncertainty due to the simplified model of the park.

In general, the uncertainties introduced by the park model
will be much lower than the ones introduced by the wind,
because in normal operation AV <3 %.

The uncertainty due to the approximate solving of the
circuit of the park depends on the voltage difference among
turbines. The model is based in the assumption that all the
turbines work at the average voltage. In practice, errors are
introduced because the behavior is not lineal. The uncertainty
associated to the voltage distribution is, as a function of the
impedances of the circuit in p.u.

v -V,

max_turbine min_turbine .
A\]lurb - 2 H
(626)
2
S ~ ZCable First-Last turbine + Zt“fbinc trafo |SbranCh
Zserie 3 N Vz
turbines
2
aSZscric ~ 2[ ZCablc First-Last turbina + Zturbine trafo ] Scircuito (627)
3
a\/turb 3 Nturbincs V
OP YAV,
uP due to AV among turbines = (3\/ \/— ~ (628)
) 3

2

= E —_2 A M + Rtrafo turbine |Sbraﬂch
= \/7 turb b N V3
N branches 3

U e, = [@JMz (629)
ue to AV among turbines
ov) 3

[XCable First-Last turbine + Xtmfo turbine j |S

turbines

2

branch

V3

-2
N b;:hes \/g AVt“rb
There are other sources of uncertainty, like the dependence
of generated power with voltage. However, the behavior of
the turbine is highly dependent on the technology used and on
the parameters of the machine, so it would be necessary to
measure or simulate it precisely.

2 N

turbines

Using these data, the turbine can be represented by a node
Sturbine = Pturbina'\/p.u,np +j Qturbine'Vpu.nqa where the parameters
n, y nq show the influence of voltage. Uncertainty from these
parameters is:

np nq
‘/turbme ]
Vno min al

turbine

(631)

+ thurbine'[

turbine " turbine [
no min al
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u . . ~
P due to V different from nominal

np-1

n P, . ‘ (633)
p™ farm
~ P turbine 1— turbine
\/g nominal nominal
~
uQ due to V' different from nominal
ng-1
nQ, , , (634)
q ¥ farm turbine 1 turbine
~ —_Luroine — __Lurome |
\/5 nominal nominal

C) Uncertainty due to grid voltage

In the model it has be assumed an infinite bus voltage U,
corresponding to the Thevenin equivalent. This voltage varies
in parks connected to distribution networks, lines with highly
variable consumption... The uncertainty associated to voltage
variations in the grid is:

AVgrid _ Vmax grid PCC Vmin grid PCC (635)
2
8 Sf arm * farm
oV =44 grid pecT —  (636)
grid . V2
\/B'D'S ‘ +L“’(A'Du 30)
Jarm 4
u _ Re farm A ‘/_(/r‘id ( 6 37)
P due to AV in the grid
t t a ‘/grz'd \/5
_ I farm A K]m‘d 6 3 8
UQ due to AV in the grid m ( )

I/gr"i,d \/g

D) Total uncertainty

In order to calculate the total uncertainty of the power
injected to the utility, due to all the factors previously
mentioned, the square addition law must be used. In general,
it is normal to use the total extended uncertainty k=2 (interval
where power is the 95% of the time, for a given set of
operating conditions).

w’ (639)

P V=nominal

_ 2 2 2
uP - 2\/uP wind + uP AVgrid + UP A Vturbines +

u :2\/u2 o o (640)

2
Q Q viento Q AVgrid + UQ A Vturbines UQ V=no min al

A.4.4. Model of the electrical grid of the
farm

The approach followed in this section is based in [377],
where a simplified model of the wind farm is derived based
on the fourth-pole equivalent representation of the electrical
elements, the distributed layout of the turbines, the stochastic
nature of power output and small-signal analysis of the grid.
The uncertainties of the approximations made in the model
are also assessed there. The overall system uncertainty is
barely affected by this representation since it is precise
enough and the grid behaviour is much more deterministic
than the wind and power curves.

The approximate method of the moments is widely
accepted in electrical engineering. Using that approach, the
turbines can be concentrated in some points, as it is pictured
in Fig. 159. Due to the fact that the turbines inside a wind
farm have similar power output and voltage, a “concentrated
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model” can be used for accounting power losses in shunt
admittances and series inductances.

The behaviour of turbines resemble PQ nodes because its
efficiency is high, voltage is near nominal value for usual
operation and because reactive control tries to reach control
target (usually certain power factor).

Distance 1* turbine - last

N TAAA AT

Dist. 1" turbine - last
3

a) Distance substation 1% turbine

b) Distance substation —1* turbine

Equivalent model with the
turbines concentrated at 1/3
distance from the first one

Nturb

Fig. 173: Original and concentrated model of a MV circuit in a park.

Paper [204] computes the model parameters form
resistance, capacity and reactance of each element, obtaining
the farm equivalent transmission matrix shown in the Fig.
158. However, it is more convenient to estimate the
parameters from power flow solutions.

Grid’s Thevenin
equivalent

Farm equivalent
transmision matrix

C D Farm

Fig. 174: Model of the farm using its transmission matrix.
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The farm equivalent can be regarded as IT or T equivalent.
However, an approximate representation with a shunt
admittance and series impedance will be used to simplify the
analytic expressions. If a more precise model of the farm is
needed, a full IT or T fourth pole equivalent can be used
(another simulation case would be needed to estimate the
extra parameter).

Grid’s equivalent

seen from wind farm Equivalent circuit of the farm grid
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Fig. 175: Model of the farm using a fourth pole realization.
(632)

In this article, the electrical parameters of the farm will be
expressed in per unit using the nominal power of the wind
farm as base.

The relation of power flow at turbines and at point of
common coupling PCC can be easily derived.

P 2 +Q 2
PPCC :PWT -R series % -G shunt UPCC2 (64 1 )
PCC
PWT2 +Q WT ’ 2
QPCC :Q WT _Xseries 5 2 +BshuntUPCC (642)

UPCC2
Where

Pwr = X Pypines = sum of active power of all turbines
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Qwr = Z Quibines = sum of active power of all turbines
Ppcc = Active power injected at PCC
Ppcc = Reactive power injected at PCC

Rgeries and Xgeries are the real and imaginary part of Zges, i.€.
the resistance and reactance of the series equivalent.

Gihune and Bghun are the real and imaginary part of Y gy, 1.€.
the shunt conductance and susceptance.

In case of fixed capacitors that are always connected, it is
more precise to compute them in By, Also, if the maximum
supply or drain of reactive power is being studied, all the
capacitors and inductances shunt connected should be
included in By, In other cases, the automatic reactive
compensation must be included in Qwr.

Even though the voltage inside the farm varies, it is
expected to be near to assigned value on normal operation
(Uarbine ~ 1 p.u.). This simplification is only a small source of
uncertainty of the model since Zg. s are expected small p.u.
(around 0.12 p.u.) and Y, is expected to be big (at least 20
p.u.). Standard UNE 206005 [378] assess the reactive power
ability of wind farms at Uggpine = 0,95 p.u., 1 p.u. and 1,05
p.u. This standard states a method to compute farm power
losses that is equivalent to the one presented in this section.

The new method to obtain the farm equivalent consists on
simulate the wind farm with a power flow program at two
power levels and to solve the parameters Ryeries, Xseriess Gishunt
and By, from equations (641) and (642). For 1 p.u. voltage
at PCC and power simulations at calm (Pwr = 0, Qwr = 0) and
full power with unity power (Pwr = 1 p.u., Qwr=0), the
parameters are:

Gshum = _PPCC Py1r=0, Qur=0
B,.. =0,
shunt PCC Py=0, Qyr=0
(643)
Rseries :1_ PPCC Pyr=1, Qyr=0 ™ shunt
series = QPCC Pyr=1, Qyr=0 series

A.4.5. Model of nearby wind farms

The influence of near wind farms should be taken into
account because their active power output are quite correlated
(they show a similar behaviour).

A simple linear correlation can be enough precise for grid
studies of near wind farms. Far away wind farms show
generally complex relationships and have low correlation
coefficients. But those farms are expected to interact less with
the studied wind farm. Therefore, a linear correlation of the
farms is enough in most cases (the more influencing wind
farms are better modelled).

If grid parameters vary linearly with the power output of
the analyzed wind farm, the average effect of other wind
farms would be approximately computed using average
power for the given selected power level of the studied farm
(a linear function, applied to a stochastic variable, also
transform linearly the expected value and standard deviation
of that variable). For example, voltage deviations and power
flows are related mainly linearly with power (except near a
voltage collapse or very high wind share).

The linear regression of the power predicted in wind farm

“” based on the power of the reference farm “i” is given by:
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(644)

b, =r, —f (645)
where Fjand Eare the average power output in park “j”
(estimated farm) and “i”” (reference farm);

r;; is the experimental correlation coefficient;
s;and s; are the standard deviation of power in farms i and j.

The interaction between reactive power of wind farms must
be also taken into account. If the control is a fixed power
factor, Q = P tan ¢, a linear correlation is also advisable for
compute reactive power injection of other wind farms (note
that unity power factor is a special case where ¢ =0).

In case of Automatic Voltage Support or other control
strategies, the reactive power of the wind farms must be
estimated accordingly.

A precise model of interaction can be needed in some
studies (topology changes and congestion typically show a
non-linear behaviour). In such cases, a Monte Carlo
simulation is advisable, where wind power and load are
stochastically modelled. This type of study is beyond the
scope of this article.

A.5. Reactive power control

A.5.1. Limits on reactive power

The maximum amount of reactive power that can be
injected or absorbed are given by:

e Limits provided by the turbine manufacturer. Second
edition of IEC 61400-21 will include a section devoted
to the reactive power capability and the ability to
participate in an automatic voltage control scheme.

o Allowable voltage limits at the turbines. The wind turbine
that is electrically farer from PCC will suffer the
greatest voltage deviations of the wind farm.

o Allowable current in series elements (electronic converters,
lines, transformers, etc).

Turbines inside a wind farm operate at similar power levels
and voltage drops are small enough to use the linear
relationship:

(RSC at PCC +Rseries ) PWT + (XSC at PCC +Xseries ) QWT
UO

Uyr = U, +

AU e =Rz Pyr + XefoWT

turbine

(646)

where the parameters R ; y Q,; can be adjusted from a
simulated power flow with P, =1p.u., Q,; =0 and with
Py =0, Qyr =1/3 p.u. (a simulation with Q. =1 p.u. can
lead to voltage out of range in many cases and the linear
aproximation is not valid near voltage collapse).

R . = R MR ries _ U -uU
off = - worse 0
0 turbine Pyr=1 p.u., Qyp=0
(647)
o XX 1 U
off = U - 3 worse 0
0 turbine Pyr=0, Qur=1/3 p.u.
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The limit of voltage rise or drop leads to a band of allowed
power in the P,Q plane (p.u.).

Umin < UO + Aljwmrse < Umax
turbine
AUmin :Umin - UO < AUworse < Umax - U = AUmax
turbine
AUmin <R cﬁ + chf PWT < AUmax

Upper voltage llmzt : (648)
R ¢ Pyr + Qe Py = AU

Lower voltage limit :
cft + Qcﬁ

The locus of excessive current is determined by a

max

- AU min

circumference of radius S.x = Urbine Imax (P-U.)
P 2 +Q 2
WT WT 2 2
< Imax U urbine PWT +QWT < Imax (pu) (649)
turbine ~1pu

Fig. 176: Operational limits of turbine reactive power Qwr due to excessive
voltage deviations and over current at the wind turbine.

The quadratic equations (550) and (642) transforms the P,
Q limits of Fig. 160 (at turbine) to the P, Q values that are
achievable at PCC. Therefore the straight lines bend a little
and the circle is slightly smashed when the power limits are
calculed at PCC

A.5.2.

Nowadays, most turbines use unity power factor regulation
[379]. However, the reactive power injection can achieve
some goals:

Reactive Power Policy

e Minimize voltage variations at a point in the grid due to the
wind farm. This control would lead to a power factor near
unity at wind turbines (slightly inductive).

o Stabilize voltage at a nearby point of the network. This
control would need to measure the actual voltage at the
reference node or, alternatively, an algorithm to estimate
voltage there from voltage measured at wind farm.

e Try to compensate reactive needs in the surrounding grid.
In fact, this would also minimize power losses in the grid.
This strategy would be typically managed by a control
centre that measures nearby load consumption, line flows
and grid constrains.

A.5.3. Constant power factor regulation

The voltage variations due to a wind farm with constant
power factor would be proportional to active power.
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R+ X, tang
AUWT = U ! L WT :KqJPWT
R+ X S 4 S (650)
e eff 1 + Khuan series

1+Y, Z
UO ' U shunt “ series

1+Y,..Zsc

shunt

The voltage influence of the farm can be cancelled at the
wind turbines (AU, = 0) or at the PCC (AU, = 0).

If the target is not to influence voltage at a point, the wind
farm will behave inductively, that in many scenarios is not a
desired scenario.

AUy ~0 = K, =0 = tanp=-R_, /X, (651)

If the target is AU,.. =~Othen the power factor is
determined by the short circuit impedance at the PCC,

tan ¢PCC SC at PCC

If the target is a fixed power factor at PCC, then the value
of turbine reactive power Qwr can be determined solving the
quadratic equations (550) and (642). For unity power factor at
PCC, there must be injection of reactive power at the wind
farm that is not proportional to Pyr.

/XSC at PCC

PCC \/UPCC +4 Bshunt X, Upcc3 _4PWT2 X e vz

2X (652)

The effect of a power factor in the voltage profile can be
computed taking into account that the voltage deviation due
to the farm is proportional to the active power
output, AU, = K Py, . Therefore, the voltage distribution
and the power have the same shape as (see Fig. apparent and
complex power )and the scale factor is K, .

QPCC

series

A.5.4. Automatic voltage control

The wvoltage control is difficult to achieve without
communication with a control centre. If neither the detection
of voltage regulators is made nor there is connection to a
monitoring centre, the estimation of voltage at PCC from
farm voltage can be fooled. Think in an under voltage
scenario, where tap or a topological change in the grid push
up the voltage at the wind farm. Then, the automatic voltage
regulator (AVR) can make the wind farm to restrain the
reactive power injection (or even, to start behaving
inductively), increasing the deficit of reactive power in the
grid.

Even if there are other loads connected between the wind
farm and the reference node (usually, PCC), the state of tap
changing transformers or voltage boosters in the line can be
accounted. If tap changing transformers are close to the wind
farm, the sudden voltage or angle jump can be detected and
identified. However, the voltage or angle jump must be
significantly bigger than voltage variations due to nearby
sudden load variation or connection of nearby farms.

A Bayesian decision tree can be used to detect tap changes.
Voltage deviations due to nearby loads can be estimated from
statistical data of consumers, even though these data can be
difficult to obtain in a de-regulated market (for example, the
loads can be estimated from working day classification,
month and hour)
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One way to compute Qwr to support voltage a net node is
to compute oU, ,, /0Q,, through network simulation at two
power levels.

8Unode ~ AUﬂode — node Oyr =Quax B Unode Owr=0 (653)
6QWT AQWT QMAX -0
A Umeasured or
Q — K v estimated at node (654)
" O 6Unode
00y,

The weighting factor 0<K, <1 accounts for the fact
that more generators and devices are performing voltage
support. This factor must be small if the supported node is
electrically far from the wind farm. Otherwise, the turbines
would operate very often at maximum reactive power
absorption or injection.

A.5.5. Scheduled reactive control

If communication with the system operator (S.0O.) is not
possible, a schedule of reactive power at PCC based on load
is possible. In fact, Spanish regulation RD 436/2004 [366]
rewards certain power factor depending on the time of the day
and the Spanish region. This is an improvement from past
regulation (unity power factor) since there is more correlation
between system reactive needs and reactive generation.

However, actual Spanish regulation is based in type 3
classification of the tariff established in OM 12/1/1995 [380].
A clear improvement would be to establish the bonus based
on type 5 schedule, where the type of the day (labour,
weekend, bank holiday) and the season would be also
considered. The improvement would be due to higher
correlation between system reactive needs and reactive
generation. The increase of control complexity with type 5
schedule is very small since all SCADA have a built in
calendar.

o 0 5Probability of Voltage deviations AUpcc
5 0.
o) .
- VMalley Medium
0.4 1
5, 2% [ours hours
ar 8f/da 12'h/day,
9 0.3
L Peak hours
3 0.2 AHriday
o (Capacitive
%. 0.1 behaviour)l/
Q
g
A -0.005 0 0.005 0.01 0.015 0.02 0.025
Voltage deviation at PCC (p.u.)

Fig. 177: Distribution of voltage deviations at PCC due to the wind farm of
Annex I (data corresponding to P.F. at wind turbine 0,95 inductive in blue;
0,95 capacitive in yellow and unity in magenta).

One drawback of power factor discount is that, as active
power is random, voltage and reactive power support would
be also. Calm and low wind are the more likely states at wind
farms, as can be seen from Fig. 6. In such states, the grid
support and the use of available infrastructure is low.

Moreover, the reactive power capability of most wind
farms is bigger at low active power: many technologies and
compensating devices can inject or absorb reactive power
when the generator is not connected.
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Therefore, other clear improvement is to compute the
reactive bonus on reactive power, not on power factor.

Voltage at PCC for several power factors

Reactive Power at PCC, Qecc
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Fig. 178: Reactive power injected at PCC by the wind farm of Annex I.
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A.5.6. Reactive power under centralized
control

The optimum policy for reactive power control must
support voltage and try to maintain power losses at low level,
avoiding network congestion.

The cost of voltage support, power losses and net
congestion can be derived from voltage deviation penalty at
border nodes, mean power tariff and costs derived from
congestions. An optimum power flow could attain a global
optimum considering these factors [381].

Reactive power pricing must be adjusted carefully for the
optimum control to be performed.

The availability of reactive power injection is a random
variable because it depends on wind. It must be assessed
depending on the technology of wind turbines, ancillary
reactive devices and wind potential at the site. Even though
active and reactive power are related, existing technology
allow some level of control freedom.

For example, Fig. 15 show the realizable power at a turbine
equipped with a full rated converter. The limits on the
converter displayed are due to maximum current and
maximum voltage at turbine. Other constrains can appear due
to internal features of the converter, but they are not
considered here (for example, the choke coils can decrease
the capacitive capability of the converter, but here is not
considered).

The probability of being able to inject more than Q
reactive power at the PCC can be computed trough the
cumulative distribution of power.

Pr(gy, < Maximum Q) = Pr(Power < Oy, MAXil(qWT ) (655)



Annex A: Simplified Electrical Model Of The Wind Farm

Qur capability at Wint Turbine

0.6

——
\\

0.4 \\
0.2 \
4
)
)
)
)
]
/
’
7
J
J

(p.u.)

Reactive Power, Qur

s
S=~a 4

-
~ 4
=<7

0 0.2 0.4 0.6 0.8 1
Active Power , Pyp (p.u.)

Fig. 179: Realizable reactive power at the wind turbine for the example of
Annex L.
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Fig. 180: Availability of reactive power injection (capacitive behaviour of the
WT) by the wind farm of Annex I.
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Fig. 181: Availability of reactive power absorption (inductive behaviour of
the WT) by the wind farm of Annex I.

The calculus of availability is quite straightforward from
CDF of the wind farms.

Pr(Minimum Q < qy;) = Pr(Power <+[S, > = qy:)) -

.. 3 -1
- If( Minimum Q, _ < gy s Pr| Power < Pypuee ~ (dyr)
w operating region

(656)

The optimum reactive power Qwr, from voltage point of
view, can be computed taking into account several node
voltages, each one with its weighting factor.
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AU

n measured or
estimated at node i

ou,

i=l node i

Qyr

(657)

A.5.7. Effect on power losses

The farm power output influence elements active and
reactive power network losses. Power in shunt elements is
voltage dependent in a non-linear way. Since the farm affects
voltage only at nearby nodes and the main losses are in series
elements, the influence of the farm in shunt losses will not be
considered in this simplified approach.

Let’s consider power losses Pjoses, i I @ series element i
that carry an apparent power Sejement, i- 1he power injected by
the farm would spread along the grid. Active and reactive
power flows are quite decoupled and the farm power is
approximately linearly distributed between parallel elements.
Therefore, it is reasonable to use the following simplified
model for the power loss in a grid element:

Ploss, i :&Slzﬁ
U, (658)

S’ ~ (PO’i K Pyr )2 + (Qo,i o Qur )2

Py; and Qo; are the power flow at the elements when the
turbines are disconnected. Approximate factors kp; and ko
can be estimated simulating the network at maximum active
and reactive power and computing the power flow difference
at the element. The overall power loss with the
aforementioned approximations would lead to a quadratic
behaviour of net losses.

Ploss :Z Plosses‘ i = Ploss
i

2 2
ta, PWT+bp PWT + aq QWT+ bQ QWT

+
Pwit=0, Qwt=0

(659)

The five coefficients of (659) can be adjusted from the
power flow losses in 5 different combinations of active Pyt
and reactive Qwr wind power.

If the network losses due to wind power are allocated
mainly in elements electrically close to the wind farm, bp and
by will have greater values. Thus, the relationship would be
mainly quadratic with Pyt and Qyr.

If wind power influence losses in elements mainly
electrically far from the wind farm to vary, ap and ag will
have greater values. Thus, the relationship would be mainly
linear with Py and Qwr.

If network configuration or flows can change notably on
high, medium and low load, the coefficients must be
computed for those cases. Therefore, the reactive control of
the wind farm might take into account the load classification
at each time (a different control policy must be used
depending on a scheduled load classification).

Reactive power losses also show an analogue relationship
with Pyt and Qwr.

A.5.8. Uncertainty analysis

The uncertainty in the farm power output is due to:

¢ Adjustment of wind resource to a Weibull distribution.
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The uncertainty of the power curve.

Simplistic model of the power curve with only two or four
parameters.

The wind farm speed characteristics are usually not well
known and they depend on wind speed and direction.
More over, the “undisturbed wind speed” should be
estimated once the wind farm is in operation.

e Approximations done in the model of the grid (for
example, considering U, constant).

o Availability of turbines and network.

The main source of uncertainty comes from the wind and
the power curve. In case the performance matrix of the farm
is available, the uncertainty can be notably decreased. The
grid influence in power output is low since characteristics are
usually well known and it is designed for high efficiency.

The availability of turbines is high due to scheduled
maintenance and high reliability (the availability of the
electrical network is even higher). However, the effect of
events such as nearby short-circuits in some situations can
trip many wind power stations. This is an example of very
infrequent event but that can affect power quality because it
concerns system stability in grids with high wind share.

The estimation of uncertainty is not easy. Apart form the
ISO guide of uncertainty, GUM [382], all the power curve
standards ISO 61400-12-1 [370], 61400-12-2 [383] and
61400-12-3 [339] include some annexes to help in uncertainty
assessment.

The general procedure is to estimate the uncertainty of
each component (i.e. power curve, wind distribution, etc).
The sensitivity coefficients of individual uncertainty in the
overall power output must be derived. Also, a model of
propagation between uncertainties must be supposed. Should
the uncertainties be uncorrelated, they partially cancels and
the rooted sum of squares law should applied instead of the
arithmetic sum of uncertainties. Sometimes, it is not clear
which type of assumption is more adequate. In those cases,
the assumptions can be classified as “conservative” or
“optimistic”. At the end, the uncertainty computed for several
scenarios (optimistic, conservative, etc.) can be weighted by
its likelihood or by an expert to obtain the expected
uncertainty.

The uncertainty of the power output can be reduced using
more detailed data. The process is roughly the same that has
been presented here except that the majority of the
computations must be done numerically. Moreover, the
Monte Carlo method can be used to cope with detailed
models. However, the increase of accuracy comes at the cost
of a not so easy analysis of parameter sensitivity as in the
analytic case.

Wind Power Variability in the Grid — Annex A

Even though there is a small correlation of renewable
energy and consumer load through the weather, this effect can
be neglected in energy sources as wind and non-storage
hydroelectric [384].

Conclusions

The annex shows a statistical model of the farm that can be
used in power flow studies, and a methodology for adjusting
its parameters to the available data (if it is already operating)
or using data from micrositting and power curve of wind
turbine (if it is under project state).

The model is fairly simple and reflects the normal
operation of the farm. Moreover, the minimum voltage for
stable operation is assessed in farms with asynchronous
generators.

The uncertainty of the model is also estimated. The sources
of uncertainty are stochastic operation of wind farm, employ
of a simplified model and grid voltage.

This work shows a statistical model of wind farms and a
methodology for adjusting its parameters. This model has
been used to assess the grid impact of a wind farm reactive
power during normal operation. Several reactive power
control strategies are analyzed.

The uncertainty of the final data due to the approximations
made is studied. The accuracy can be increased if non-
parametric models of farm power curve and wind resource is
employed.

Annex: Example Data

A) Power curve shown in figures:
Wasy,= 7,5 M/s; Wysy, = 10,5 m/s; Weyrin = 4 m/s;
Weut-off = 25 m/s; Pnomina1: 1 pus Owf = 135 m/s

B) Parameters of wind speed distribution:

scale=2 uwmd/\/n; shape =2

C) Parameters of the wind farm:

Nwr=0,93; Aw,, =2 M/S; Weteotf = 25 mM/S; e = 1,5 m/s
Reeries = 0.03 p.u; Keries= 0,12 p.u; Ggpne = 0.005 p.u;
Bgspunt = 0.01 p.u.; Ry =0.02 p.u; X=0,18 p.u;

Hwing 18 assumed to be 7 m/s if it is not stated.

D) Limits of reactive power generation:

Siax = 1 p-u.;  AUmax = 0.10 p.u. at turbine converter.



Annex B: Analysis of wind power

variability from measured data

B.1. Fixed speed, stall regulated turbine
of 750 kW

This subsection studies the power fluctuations of a 750 kW
wind turbine from TAIM-NEG MICON (Nordtank squirrel
cage induction generator and stall regulation) measured at
Valdecuadros wind farm (Spain) [52]. For the shake of
clarity, most plots show either 10 s or 20 s of typical turbine
operation. The measured amplitude is around 1/30™ of the
nominal power and the shape varies continuously and it is
quite random. This behaviour has been found in other wind
turbines with different frequencies and amplitudes of the
fluctuations.

Almost periodic behaviour can be characterized as a
sinusoidal fluctuation at the blade frequency with random
amplitude. However, the shape and the amplitude vary and
they are quite random. The amplitude modulation can be
decomposed into oscillations of close frequency. To test this,
the power spectrum density (PSD) of power during 5 minutes
have been calculated in Fig. 187, showing several
overlapping peaks spread around f,,,,, = 1,06 Hz, %f,,.. =
0,77 Hz and 'f;,.. = 0,51 Hz. The harmonics of tower
shadow are very sharp and thus, their power content is much
lower than the fundamental component and its % and " sub-
harmonics. Therefore, tower shadow harmonics can have
structural concerns but their influence in the variance of
power is small.
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Fig. 182: Operation of a SCIG 750 kW wind turbine for wind speeds around
6,5 m/s during 14 minutes. From top to bottom, time series of the real power
P [kW] (in black), wind speed U,,,, [m/s] at 40 m in the met mast (in red,
with a magnification factor x 10 respect the vertical axis) and reactive power
@ [kVAr] (in dashed green).

B.1.1. Record of 20/10/00, 13:37-13:50
(low winds)

The record analyzed here corresponds to date 20/10/00 and
time 13:37-13:50 (about 13 minutes). The average blade
frequency in the interval was f,,~1,12 Hz. The wind,
measured in a meteorological mast at 40 m above the surface
with a cup anemometer, was U,,,,=6.7 m/s £1,86 m/s

(expanded uncertainty, aka k£ = 2 or twice the standard
deviation, is used to indicate range variation of stochastic
magnitudes unless otherwise is stated). The main features of
this record are summarized in the following table and Fig.
182.

TABLE XIV: PARAMETERS OF THE 750 KW SCIG TURBINE,
SERIES 20/10/00, 13:37-13:50 (F,,,=1,12 HZ)

Uina[M/s] P [kW] Q [kVAT]
Mean 6,7 m/s 192,83 kW -7,70 kVAr
Variance 0,93 m/s 63,48 kW 18,01kVA
Ratio Std. | ) 5o, 4,0 % 3,0%
Dev./mean
Mean + 6.7 192,83 -7,70
uncertainty | +£1,86 m/s | £126,96 kW | £36,02 kVAr
7’ ~0,85 ~1,35 ~0,88
0,0152 5 )
L + 9
P/ ~PSD (1) (m/s)z/HZ 1,02kW</Hz 2kW-/Hz
fi <0,008 Hz | <0,013 Hz <0,004 Hz
fo © 12 Hz o0

B.1.2. Analysis of real power output

In the graph of the full time series, Fig. 182, the
oscillations due to rotor position cannot be seen clearly. In the
following magnified graphs, one oscillation per 0.9 second
are noticeable in turbine power output.
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Fig. 183: Real power of a SCIG 750 kW wind turbine for wind speeds around
6,5 m/s during one minute.

For simplicity, tower shadow of Fig. 183 can be
characterized as a sinusoidal fluctuation at the blade
frequency with random amplitude (i.e. an amplitude
modulated signal) [385]. In fact, the modulation can be due to
the sum of fluctuations at frequency f,,,. dependent on rotor
position and tower resonance frequency f,,,., (the modulation
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happens when two oscillations of similar amplitude and
frequency are close). There are also a higher frequency
oscillation (possibly due to oscillation modes of the mechanic
system of frequency around 6 Hz). A similar behaviour (but
with lower 6 Hz oscillation) is shown in [186] .

However, when the coupling of generator and turbine rotor
is stiffer, high frequency vibrations are transferred more
directly to the generator [48]. In those cases, generator
fluctuations have a wider frequency spectrum and more
complex shapes.
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Fig. 184: Real power of a SCIG 750 kW wind turbine for wind speeds around
6,7 m/s during 20 s.

Fig. 185 shows a rich dynamic behaviour of the real power
output, where the modulation and high frequency oscillations
are superimposed to the fundamental oscillation.
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Fig. 185: Real power of a SCIG 750 kW wind turbine for wind speeds around
6,7 m/s during 10s.

The previous images are comparable to other time series
found in the literature. For example, Fig. 186 shows
modulation and high-frequency oscillations superimposed to
the fundamental oscillation.

Fig. 187 indicates that power spectrum is quite constant for
frequencies bellow 0,02 Hz. The wide peak between 0,8 to
1,12 Hz is due to the rotational effects, which excites tower
vibration modes. In fact, the peak at 0,5 Hz is the %
subharmonic of the fundamental oscillation at blade
frequency. Other narrow peaks corresponding to harmonics of
fundamental oscillation can be clearly seen in Fig. 187.

Fig. 188 shows the contribution of each frequency to the

variance of power o7 ; —the area bellow fPSD,’(f) in a
semi-logarithmic plot is the signal variance according to (10).

Annex B: Analysis of wind power variability from measured data
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Fig. 186: Power from a fixed speed stall-regulated wind turbine at 10 m/s
(from [186]).
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The main contributions to power variability are:

— Low frequencies due to wind variation (f< 0.1 Hz).

— Blade and tower fluctuations (0.5 Hz <f< 1.5 Hz).

— Minor contributions in 5 Hz <f < 7 Hz, due mainly to
drive train, generator and blade frequency harmonics.

B.1.3. Analysis of reactive power output

The main features of reactive power are the capacitor
switching and the variations of reactive power due to
variations of generator slip and power. The capacitor bank
switching is seen in Fig. 189 as jumps of 50 kVAr in the
reactive power. The control can be further optimized since
there are 3 switches in 13 minutes.
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Fig. 189: Reactive power of a SCIG 750 kW wind turbine corresponding to
Fig. 183.
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Fig. 190: Reactive power @ [kVAr] of a SCIG 750 kW wind turbine
corresponding to the real power of Fig. 184.

At frequencies bellow 0,02 Hz, the PSD of reactive power
in Fig. 191 is similar to the PSD of real power in Fig. 187
since the static relationship between P and @ holds valid.
Between 0,2 Hz and 0,6 Hz, the spectrum remains quite
constant due to generator dynamics. Oscillations at blade
frequency and its harmonics and sub harmonics are much
smaller in the reactive power than in the real power. Beyond
8 Hz, the frequency content of the signal drops sharply. The
system order for the reactive power is similar to the wind and
to the voltage, indicating that the behaviour of reactive power
could be influenced by voltage, which, in turn, is influenced
by wind since there are many turbines connected nearby.

The system order 7 of @ is 0,88 —quite similar to wind and
voltage order— while the system order 7” of P is significantly
different, r” = 1,35. This discrepancy can be due to the poor
fitting of the reactive power in Fig. 191 and the great
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influence of voltage in . Conversely, real power is less
related to the line voltage and more related to the angle
between rotor and stator magnetic moments.
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Fig. 191: PSD,*(f) of the reactive power corresponding to Fig. 187.

B.1.4. Analysis of wind measured at the
meteorological mast 40 m above surface
level

The PSD 4" (f), estimated during the same interval that
PSD,*(f) in Fig. 187, is shown in Fig. 192. Due to the
anemometer inertia, it behaves as a low-pass filter of cut-off
frequency around U,,;,,/ 10 m ~ 0,67 Hz (from such cut-off
frequency, the recorded wind speed shows an additional drop
corresponding to a low-pass 1% order system). Beyond 3 Hz,
some artifices appear related to the measuring procedure. At
higher frequencies, the system introduces errors in the wind
measure.

Up to anemometer cut-off frequency, the slope is smooth
and it fits well the model (184) (black and red lines in Fig.
192 are almost superimposed up to 0,67 Hz). The system
order is 7" ~ 0,85 (agrees approximately with the order r° =
5/6 = 0,833 corresponding to the Kaimal (11), Harris (13) and
Von Karman (14) spectra).

Taking into account the measuring system limitations, the
real frequency content in the wind is expected to be quite
close to the adjusted model (184) —in thick solid red in Fig.
192— and to the Kaimal Spectra.

The pole is f, < 0,008 Hz, corresponding to an integral
length scale of the turbulence {yying 2 (Uwina)/(6 a f) =
82 m, assuming a = 1,7 according to the draft Eurocode ENV
1991-2-4 and (11). Low values such as the previous one are
possible in unstable atmospheric conditions in complex sites.
However, the analysis of longer duration meteorological
records indicates that the turbulence length scale is usually in
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the order of 1 km and the actual length scale in this sample is
believed to be significantly greater than 82 m.

The scale parameter is P, ~ PSDy,..."(f=1Hz)
0,00153 (m/s)*/Hz. The value of the wind variance is o, =
0,93 m/s, corresponding to a turbulence intensity I =
Cind { Uning) = (0,93 m/s) / (6.7 m/s) = 13,8 % —high since the
turbine was in a hill top and surrounded by other turbines.
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Fig. 192: PSD " (f) of the wind corresponding to Fig. 187 (U,,.= 6.71
m/s +1,86 m/s at 40 m height). Beyond 0,67 Hz, some artifices appear due to
measuring limitations.

B.1.5. Analysis of phase-to-phase voltage

PSDy."(f) of the low voltage phase to phase
corresponding to Fig. 187 is shown in Fig. 193. The voltage
during the series is quite variable for a period of 13 minutes,
691,2 + 2,06 V (extended uncertainty). The PSDy,, (/)
corresponds to a first order system, approximately (the slope
of the voltage spectrum is 7 = 0,9-1,1). The influence of
nearby generators and loads are similar to the contribution of
the analyzed turbine, AVys ~ (R; AP +X,3 AQ) / (V).
The individual effect of the analyzed turbine in the voltage is
difficult to distinguish from external influences without
extensive measurements.

A L-R circuit behaves as a first-order filter with cut-off
frequency fi = R, /(2wL,y). Considering only the external
loads and generators, a L-R network fed by random loads and
generators with constant PSD,*(}), also referred as a “white
noise” loads or generators, would experience a voltage with 7°
~ 1. In such case, the cut-off frequency f; would be
determined from the effective resistance R, and reactance
L, shared by the white noise loads/generators and the
analyzed turbine (R, and L ; can be computed from a small-
signal model of the grid).

Despite L, (equivalent grid shared inductance) and R,
(equivalent grid shared resistance) could not be computed, the
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cut-off frequency f; = 0,0025 Hz would correspond to a ratio
Ry /X5~ £i/50 = 5107 for a 50 Hz grid.

Usual ratios R, /X, are in the range of a few units to
some tenths. Table XV, taken from [386], shows typical
values of resistance and reactance per kilometer depending on
the voltage level.

TABLE XV: TYPICAL LINE PARAMETERS [386]

fli R’ X In I

Type of line [Vkm] | [Vkm] | [A] R’/X
low voltage line 0,642 0,083 142 7,7
medium voltage line 0,161 0,190 396 | 0,85
high voltage line 0,06 0,191 580 | 0,31

Since generators and loads are connected by medium and
high voltage networks, the cut-off frequencies inherent to the
RL tie lines are in the range of 15,5-42,5 Hz (the filtering
effect of the reactances of the grid is negligible at frequencies
far bellow 5012,/ X}, ). The expected ratios 50- R,/ X, are
much higher than the cut-off frequencies f; observed in
voltage spectrums. Thus, the hypothesis of the “white noise”
loads and generators should be rejected.
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Fig. 193: PSDy,,*(f) of the low voltage phase to phase corresponding to Fig.
187.

The observed voltage frequency response would be due, in
great extent, to nearby generators and loads behaving as
colored (not white) noise. Nearby wind turbines introduces
small voltage fluctuations somewhat proportional to wind
variations (7’ =~ 0,88 ~1), adding colored noise in the voltage
instead of white noise and this is the expected cause of the
drop in PSD,,,*(f). Due to the spatial spreading of the
turbines, the cut-off frequency f; in the voltage can be much
lower than the f; corresponding to the power of a single

turbine.
The voltage drop in the line up to the main transformer (a

690 V line of 300 m) is (quite approximately) linearly related
to the reactive and real power. Hence, the PSD of the voltage
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drop should be similar to a combination of Fig. 191 and Fig.
187. The small peak near the blade frequency is due to the
oscillation due to rotor angle. However, the amplitude of the
fundamental peak of voltage is noticeably smaller than in Fig.
191 and Fig. 187. The rest of harmonics cannot be
distinguished in Fig. 193, indicating that the background
voltage fluctuation in the network is, in general terms, bigger
than the voltage drop due to the varying reactive and real
power. In fact, this background oscillation can be considered
a “noise source” in the odd Bode plot of reactive power
respect real power in Fig. 195.

B.1.6. Bode magnitude plots

The turbine can be assumed to be a system whose primary
input is wind and its main output is real power. Even though
considering the real turbine a linear single-input single-output
system is an obvious oversimplification, it allows to derive a
small signal model for accounting wind variations in power.

The transfer function has been estimated as the smoothed
ratio of the Fourier transforms of the input and output
magnitudes. Since the system has actually many inputs, the
gain includes cross-effects due to relationship among input
variables (the transfer function matrix might be estimated for
a more rigorous analysis of MIMO —multiple input, multiple
output— systems). For example, the Bode plot of voltage vs.
power will be influenced by the turbine where the voltage is
being measured but also by the nearby turbines.

When the transfer function is above the average gain
(indicated with a horizontal red line for convenience), the
oscillations of these frequencies in the input are amplified in
the output above the average. When the transfer function is
below the average gain, these frequencies are attenuated or
damped respect the average.

The ratio of the spectrum of real power P to the spectrum
of wind U,,,, is the frequency response of the real power
respect to the wind at the met mast in Fig. 194. Wind is
measured at the met mast with a cup anemometer (its
frequency response is only ~ 0,67 Hz). At frequencies higher
than 0,7 Hz, the measuring system introduces error in the
wind measure and thus the transfer function is not reliable.

In Fig. 194, the peaks due to rotor position and turbine
vibration modes in real power do not appear in wind, and
hence correspond to gain peaks at 0.7-1.4 Hz and 5-7 Hz
frequencies in the transfer function. Conversely, 0,02~0,5 Hz
fluctuations are damped by the aecrodynamic stall and its gain
is below the static gain.

Near blade frequency, f ~ f,.q. » the ratio of wind to power
fluctuation presents a peak but this is due to the tower shadow
effect, which is not proportional to the fluctuation of the wind
in such range. Thus, fluctuation of power at blade frequencies
and its sub-harmonics and harmonics should be regarded as
an additive factor (almost) insensitive to wind turbulence.

Fig. 195 shows the bode plot of the reactive power @
respect to the spectrum of wind, U, at the met mast.

Between 0,02-0,2 Hz, the transfer function shows a small dip
and then outreaches the static gain in the 0,2-0,7 Hz range.
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Fig. 194: Bode magnitude plot of real power P [W] respect wind U,,;,, [m/s]
(beyond 0,7 Hz, the transfer function is underestimated due to limitations in
the wind measure).

LOE+7

1,0E+67

1,0E+5 7

1,0E+4 <]

1,0E+3 7

1,0E+2 7

4J0E+1—: —rt . S— —hz
1,0E-3 1,0E-2 1,0E+0 1,0E+1 Z,5E+1

Fig. 195: Bode magnitude plot of reactive power @) [VAr] respect wind
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Fig. 196: Reactive power @) [VAr] versus real power P[W] in the 750 kW
SCIG turbine (25 kVAr capacitor banks).

Fig. 197 shows the bode plot of the reactive power @
respect to the real power P. There is a quasi-static quadratic
relation among real and reactive power in a SCIG generator
[160] provided the voltage and the number of connected
capacitor banks are constant (see Fig. 196).

Regardless the number of capacitor banks connected, the
slope of the X/Y graphs is roughly the same: AQ ~ 0,3AP.
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Thus, the linearized small signal model can be valid if real
power excursion is small and voltage is fairly constant. This
could explain why the horizontal line of constant gain 0,3 is a
simple fit of the bode plot in Fig. 197.
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Fig. 197: Bode magnitude plot of reactive power () [VAr] respect real power
P[W].

Since the rated slip of induction generator is as low as 1%,
the rotor current have noticeably slower dynamics than the
stator current. The frequency response of () respect P in Fig.
197 reveals that real power fluctuations in the ranges 0,3-
0,6 Hz and 1,5-5 Hz have stronger impact in the reactive
power. Fluctuation at blade frequency and its subharmonics
are damped in the reactive power.

The influences of real P and reactive () power on line
voltage (V) are shown in Fig. 198 and Fig. 199. Since the
real and reactive powers are closely related, both plots are
cross-related. The small-signal lineal model for voltage is
AVipg~ (Ry AP +X,; AQ) / (Vyg), where R ; and X, are
the effective Thévenin resistance and reactance seen from the
voltage point of measure. However, the presence of other
independent loads and generators electrically near, makes the
values of R ;and X ;depend on the frequency.
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Fig. 198: Bode magnitude plot of line voltage Vg [V] respect real power P
[W].
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Fig. 199: Bode magnitude plot of line voltage V¢ [V] respect reactive power
Q [VAT].

B.2. Fixed speed, stall regulated turbine
of 600 kW

This subsection studies the power fluctuations of a 600 kW
wind turbine from TAIM-NEG MICON (Nordtank squirrel
cage induction generator and stall regulation) measured at
Valdecuadros wind farm (Spain) [52].

B.2.1. Record of 28/7/00, 13:48 to
13:52 and 13:36 to 13:41 (medium
winds)

The time series analyzed in this subseries corresponds to
date 28/7/00. Some starting and stopping test were done, and
data considered in this test corresponds to the portion of time
the turbine is in continuous operation, after all the switching
transients have faded away. After discarding the transients,
there are two series since there is a turbine stop and a start in
between. The time series #1 last 5:30 minutes (from 13:36:10
to 13:41:40) and the time series #2 lasts 3:30 minutes (from
13:48:30 to 13:52:00).

The wind, measured in a meteorological mast at 40 m
above the surface with a cup anemometer, was U,;,,= 9,5 m/s

vind
+2,8 m/s and U,,,= 9,8 m/s £2,8 m/s in the first and second
series (expanded uncertainty).
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Fig. 200: Operation of a SCIG 600 kW wind turbine for wind speeds around
9,5 m/s during 5:30 minutes (series #1). From top to bottom, time series of
the real power P [kW] (in black), wind speed U,;,,[m/s] at 40 m in the met
mast (in red, with a magnification factor x 10 respect the vertical axis) and
reactive power @ [kVAr] (in dashed green).
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The main features of the time series from 13:36:10 to
13:41:40 (5:30 minutes of duration) are summarized in the
following table and Fig. 200.

TABLE XVI: PARAMETERS OF THE 600 KW SCIG TURBINE SERIES #1, (DATE
28/7/00, FROM 13:36:10 TO 13:41:40, Fyy;,,~1,35 HZ)

upper bound limit of f,. In other words, f; should be estimated
using longer data series.

No significant spectrum noise floor has been observed in
the 600 kW series. Thus, the root frequency f, is beyond the
maximum frequency of the measuring system and,
consequently, f, has been considered o in all measurements
from the 600 kW turbine (i.e., negligible).

TABLE XVII: PARAMETERS OF THE 600 KW SCIG TURBINE, SERIES #2, (DATE

28/7/00, FROM 13:48:30 TO 13:52:00, Fy, ,,=1,35 HZ)

Usyina (/5] P [kW] Q [kVATr]
Mean 9,50 m/s 322,7kW 40,7 kVAr
Variance 1,42 m/s 80,7 kW 13,9 kVA
Ratio Std. 73% 2.6 % 4.7%
Dev./mean
Mean + 9,50 322,7 40,7
uncertainty | £2.84m/s | £161,4kW | 27,8 kVAr
7’ ~1,1 ~1,3 ~1,35
P ~PSD*(1) 0,02 10 kW*Hz | 0,27 kW*/Hz
! (m/s)*/Hz ’
fi <0,025Hz | <0,020 Hz <0,020 Hz
fo 0 © ©

The second series (from 13:48:30 to 13:52:00, 3:30
minutes of duration) is quite similar (see Table XVII and Fig.
200).

The differences in the order r° between the runs depend
greatly on the weighting of the error at different frequencies.
Even though the wind speed in the 750 kW and 600 kW
SCIG turbines is measured in the same meteorological tower,
the series presented at the 750 kW and 600 kW sections
corresponds to different atmospheric conditions. In the data
from 750 kW, the system order matched well the Kaimal
spectrum. But in the data of the 600 kW series, the order is a
bit beyond unity, indicating a worse fit. The study of the wind
spectra requires complete atmospheric information and
systematic measure of meteorological magnitudes. Thus, no
conclusions can be drawn except that experimental wind
spectra can differ notably from Kaimal, von Karman or
Davenport models.
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Fig. 201: Operation of a SCIG 600 kW wind turbine for wind speeds around
9,8 m/s during 3:30 minutes (series #2).

In the analyzed data, the estimated parameter f, is only 4 to
9 times the inverse of the time series duration, 1/7T. Therefore,
the estimate of the pole frequency f; is severely influenced by
the limited data duration and actual estimate is, in fact, an

med [m/s] P [kW] Q [kVAr]
Mean 9,8 m/s 338,2 kW 43,4 kVAr
Variance 1,43 m/s 81,5 kW 13,95 kVAr
Ratio Std. |5 g, 2,5% 23,0%
Dev./mean
Mean + 9,8 3382 43,4
uncertainty | +2,86 m/s + 162 kW + 27,9 kVAr
r ~1,04 ~1,373 ~1,45
0,0309 17,7 0,258
L + l ) s
PraPSDY (| (omz | kwiHz KW2/Hz
fi <0,025Hz | <0,025Hz <0,025 Hz
fo 0 0 0

B.2.2. Analysis of real power output

In the full graph of the time series, Fig. 200 and Fig. 201,
the oscillations due to rotor position cannot be seen clearly. In
the following magnified graphs, approximately one
oscillation per 0,8 second is noticeable in turbine power
output.

The oscillation pattern in the 600 kW is complex since
subharmonics '/, '/, and %/ of the blade frequency f,,,, have
similar energy content to the fundamental component. The
presence of subharmonic '/3 is very likely bound to
misalignments in the blades or in the rotor. Thus, the turbine
experience a mixture of oscillation modes resulting in a more
complex signal than an amplitude modulated single tone.

Harmonic content in the 600 kW turbine is lower than in
the 750 kW turbine and only harmonics 4 and 5 have
significant energy content (harmonics 2 and 3 are noticeable
but small). This is due to lower stiffness and higher damping
in the mechanic drive train of the 600 kW turbine respect 750
kW case.

The 600 kW data corresponds to near rate wind (U,,;,; ~ 9,8
* 2,86 m/s) whereas the 750 kW data corresponds to smaller
wind speeds (U,;,, ~ 6,7 £ 1,86 m/s). Free stream turbulence
intensity in both cases is similar (14,6 % for 600 kW and 13.9
% for 750 kW), but the 600 kW turbine is operating near the
rated speed and blades are more likely to stall, producing
separation of the boundary layer and unsteady flow. Unsteady
flow increases fast power fluctuations, such as subharmonics
s, 1y and /5. Conversely, stall limits overall power excursion
and the ratio of the power variance to the power mean is
lower for greater wind speeds since the slope of the power
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curve is smaller. In plain words, the aerodynamic stall limits
the signal excursion decreasing very low frequency content
and widening the spectrum peaks (narrow peaks are related to
high amplitude tones in the time domain).
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Fig. 202: Detail of real power of a SCIG 600 kW wind turbine for wind
speeds around 9,5 m/s during 1 minute in series #1.
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Fig. 203: Detail of real power of a SCIG 600 kW wind turbine for wind
speeds around 7 m/s during one minute in series #1.
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Fig. 204: Detail of real power of a SCIG 600 kW wind turbine for wind
speeds around 9,5 m/s during 20 seconds in series #2.

Annex B: Analysis of wind power variability from measured data
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Fig. 205: PSD,"(f) parameterization of real power of a SCIG 600 kW wind
turbine for time series #1.
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Fig. 206: PSD,"(f) parameterization of real power of a SCIG 600 kW wind
turbine for time series #2.

Root fz=100,(Hz

B.2.3. Analysis of reactive power output

The main features of reactive power are the capacitor
switching and the variations of reactive power due to
variations of generator power. In this model, all the capacitor
banks are connected just after the generator coupling and they
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are not disconnected until a bit earlier than the generator
uncoupling.

Therefore, a static relationship can be used to relate real
and reactive power. Fig. 207 shows the measured reactive
power (in solid black) and its estimation from real power with
a least square linear relationship with red dots (@ = 0,1702 P
—14,524).
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Fig. 207: Rective power @ [kVAr] (in solid black line) of a SCIG 600 kW
wind turbine for series #1, corresponding to Fig. 200, and its linear
estimation from real power.
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Fig. 208: Detail corresponding to the reactive power of Fig. 204 (in solid
black line) and its linear estimation from real power (red dots).
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In fact, the scatter plots of real and reactive powers (Fig.
209 and Fig. 210) shows that the relationship is quadratic
since reactive consumption of the generator is approximately
proportional to the squared current and real power is
proportional to current provided grid voltage is held constant.
In fact, part of the error in the quadratic fit can be due to the
variability in grid voltage.
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Fig. 209: Reactive vs. real power scatter plot of series #1 of a SCIG 600 kW

wind turbine.
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Fig. 210: Reactive vs. real power scatter plot of series #2 of a SCIG 600 kW
wind turbine.

Due to the almost linear relationship between the real and
reactive power, both PSD are very similar (see, for example,
Fig. 205 and Fig. 211). However, the discrepancy is greater
when the power excursions are bigger and a quadratic fit
outperforms a simple lineal relationship. The system order 7’
of real P and reactive ) power are quite close, as it can be
seen in Table XVI and Table XVII (differences have the same
order of magnitude than the uncertainty of 7). The better
agreement of real and reactive power, compared to the 750
kW data, can be partly due to greater stability of grid voltage
during the measuring campaign in the 600 kW turbine.
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Fig. 211: PSD"(/) of the reactive power corresponding to Fig. 207.
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B.2.4. Analysis of wind measured at the
meteorological mast 40 m above surface
level

The PSDy,."(f) estimated in series #1 and #2 are shown
in Fig. 212 and Fig. 213, respectively. The cup anemometer
behaves as a low-pass filter of cut-off frequency around
Uyna/ 10m ~ 1 Hz. The recorded wind speed show an
additional drop corresponding to a low-pass 1* order system
from 1 Hz and some artifices due to the digital treatment of
the signal appear beyond 3 Hz.

Up to anemometer cut-off frequency, the slope is smooth
and it fits well the model (184) (black and red lines in Fig.
212 and Fig. 213 are almost superimposed up to 0,67 Hz).
The system order is 7” = 0,97~1,1 (higher than the usual order
5/6 = 0,833 corresponding to the Kaimal (11), Harris (13) and
Von Karman (14) spectra). Taking into account the measuring
system limitations, the real frequency content in the wind is
expected to be quite close to the adjusted model (184) —in
thick solid red in Fig. 192—, which can be thought as a
generalization of the Kaimal Spectra.

The pole is f;, < 0,020~0,025 Hz, corresponding to an
integral length scale of the turbulence €y = (Uyina)/(6 a
f) =~ 37~46 m, assuming a =1,7 according to the draft
Eurocode ENV 1991-2-4 and (11). Since the turbulence
length scale of this site is usually in the order of 1 km, the
actual length scale in this sample is believed to be
significantly greater than 46 m.

The scale parameter is P, =~ PSDy,..(f=1Hz) =
0,020~0,037 (m/s)*/Hz. The value of the wind variance is
Owina = 1,42 m/s, corresponding to a turbulence intensity [ =
Cind { Upina) = (1,42 m/s) / (9.65 m/s) = 14,7 % —high since
the turbine was in a hill top and surrounded by other turbines.
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Fig. 212: PSD .47 (f) of the wind corresponding to series #1. Beyond 1 Hz,
some artifices appear due to measuring limitations.

Annex B: Analysis of wind power variability from measured data
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Fig. 213: PSDy,,.7(f) of the wind corresponding to series #2. Beyond 1 Hz,
some artifices appear due to measuring limitations.

B.2.5. Analysis of phase-to-phase voltage

PSD,,*(f) of the low voltage phase to phase
corresponding to Fig. 187 is shown in Fig. 193. The voltage is
684,2 + 0,48 V. Voltage at series #1 and #2 is significantly
more stable than the series for the 750 kW turbine and this is
the likely cause of the better agreement of the real and
reactive.

The slope of the voltage corresponds to a first order system
(r’ ~ 1), similar to the wind spectra (7" = 0,97~1,1). Small
voltage fluctuations are somewhat proportional to wind
variations (partly due to the turbine analyzed and partly due
to the other turbines electrically close).

The voltage drop in the line up to the main transformer (a
690 V line of 500 m) is (quite approximately) linearly related
to the reactive and real power. Hence, the PSD of the voltage
drop should be similar to a combination of Fig. 206 and Fig.
211.

The small peak near the blade frequency is due to the
oscillation due to turbine angle. However, the amplitude of
the fundamental peak of voltage is noticeably smaller than in
Fig. 205 and Fig. 211, indicating that external influence is
strong. On one hand, the voltage oscillation around 0,08 Hz is
not related to the turbine and thus, its origin is assumed to be
outside the turbine. On the other hand, the power fluctuations
of the turbine in the 5-8 Hz range have a limited effect on the
voltage (likely, because other nearby turbines are not
experiencing these oscillations).
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Fig. 214: PSDy,,”(f) of the low voltage phase R to phase S corresponding to
series #1.

B.2.6. Bode magnitude plots

The ratio of the spectrum of real power P to the spectrum
of wind U,,,, is the frequency response of the real power
respect to the wind at the meteorological mast in Fig. 215.
Wind is measured at the met mast with a cup anemometer (its
frequency response at 10 m/s is only ~ 1 Hz).

In Fig. 215, the peaks at subharmonics ', ', and %5 and
harmonics 3, 4 and 5 frequencies correspond to rotational
effects. They appear as gain peaks at fundamental frequency
since rotor position and turbine vibration modes are not
present in wind. Thus, they should be considered as additive

factors quite insensitive to wind turbulence.
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1,0E-3 1,0E-2 1,0E-1 1,0E+0 1,0E+1 Z,5E+1
Fig. 215: Bode magnitude plot of real power P [W] respect wind U, [m/s]
for series #1 (beyond 1 Hz, the transfer function is underestimated due to

limitations in the wind measure).

There is also a small peak at 0,12 Hz and a damping in the
0,2-0,5 Hz range. The quasi-static approximation AP ~
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68000A U,,;,, can be valid for simplistic calculations, i.e. the
static gain is 68 kW/(m/s).

Fig. 216 shows the bode plot of the reactive power @
respect to the spectrum of wind at the met mast U, The
behaviour is similar to the frequency response of real power
P respect to U, The quasi-static approximation AQ ~

11200A U,;,, can be valid for simplistic calculations.
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Fig. 216: Bode magnitude plot of reactive power () [VAr] respect wind
Uyina [m/s] for series #1  (beyond 15 Hz, the transfer function is
underestimated due to limitations in the wind measure).

Fig. 217 shows the bode plot of the reactive power
respect to the real power P and the reference quasi-static
approximation A@Q ~ 0,157AP.
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Fig. 217: Bode magnitude plot of reactive power () [VAr] respect real power
P [W] for series #1.

The influences of real P and reactive () power on line
voltage (V5g) is shown in Fig. 218 and Fig. 219. Since the
real and reactive powers are closely related, both plots are
cross-related. The small-signal lineal model for voltage is
AVips ~ (RGAP +X 3 AQ) / (Vys), where R, and X, are
the effective Thévenin resistance and reactance seen from the
voltage point of measure. However, the frequency response
beyond 0,7 Hz increases at a pace of a system of order Y%.
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Fig. 218: Bode magnitude plot of line voltage Vg [V] respect real power P
[W] for series #1.
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Fig. 219: Bode magnitude plot of line voltage V¢ [V] respect reactive power
@ [VAr] for series #1.

B.3. VRIG wind farm

This subsection studies the power fluctuations of Borja
wind farm (Spain) a wind farm composed by 26 wind
turbines of 600 kW with variable resistance induction
generator (VRIG) [52] with “opti-slip” control from
VESTAS. The datalogger recorded signals either at a single
turbine or at the substation. In either case, wind speed from
the meteorological mast of the wind farm was also recorded.

One-second or two-second averages were customarily
stored. The low frequency spectrum band could have been
compared on the basis of these data sets at the turbine and at
the substation. The comparison of magnitudes at a single
turbine and at the wind farm can lead to experimental
estimation of the coherence of the fluctuations in the low
frequency band. Due to the magnitude of this chapter, this
work line has not been considered here.

Waveforms of the substation were only occasionally kept
stored. Only a data sequence corresponding to wind farm
waveforms analyzed at grid frequency will be considered in
this subsection.

Annex B: Analysis of wind power variability from measured data

B.3.1. Record of 26/2/99, 13:52:53-
14:07:30 (low winds)

The record analyzed in this subsection corresponds to date
26/2/99 and time 13:52:53-14:07:30 (about 14:37 minutes).
The average blade frequency in the turbines was f;, ,~ 1,48
10.03 Hz during the interval. The wind, measured in a
meteorological mast at 40 m above the surface with a
propeller anemometer, was U,,= 7,6 m/s +2,0m/s

(expanded uncertainty). The main features of this time series

are summarized in the following table and plot.

TABLE XVIII: PARAMETERS OF THE VRIG WIND FARM,
SERIES 26/2/99, 13:52:53-14:07:30 (F,, 1,48 Hz)

Uina[m/s] P [kW] Q [kVAT]
Mean 7,59 m/s 3614 kW 524 kVAr
Variance 1,0 m/s 466 kW 79 kKVA
Ratio Std. 02 % 13 % 1.5%
Dev./mean
Mean + 7,6 3614 -524
uncertainty 12,0 m/s 1932 kW +158 kVAr
7’ ~1,341 ~1,253 ~1,15
0,00325 2 2
LI + 2
P ~PSD*(1) (m/s)/Hz 129kW*/Hz 8 kW*/Hz
fi <0,03 Hz <0,008 Hz <0,008 Hz
f © 11 Hz o0

1

T e it gt et
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14:08:00
26/02/99
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14:04:00
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Fig. 220: Operation of VRIG wind farm with wind speeds around 7,6
+2,0 m/s during 14,6 minutes. From top to bottom, time series of the real
power P [MW] (in black), wind speed U,,,,[m/s] at 40 m in the met mast (in
red) and reactive power () [MVAr] (in dashed green).
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B.3.2. Analysis of real power output

In the graph of the full time series, Fig. 221, the
oscillations due to rotor position are not evident since the
total power is the sum of the power from 26 unsynchronized
wind turbines minus losses in the farm network.
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Fig. 221: Real power of a VRIG wind farm for wind speeds around 7,6 m/s
during one minute.

Fig. 221 and Fig. 222 shows a rich dynamic behaviour of
the real power output, where the modulation and high
frequency oscillations are superimposed to the fundamental
oscillation.
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Fig. 222: Real power of a VRIG wind farm for wind speeds around 6,7 m/s
during 20 s.

‘Wrmns~2fHz
1,0E+14+

26/02/99

Averaged Periodogram from Power Spectrum

L

1,0E+13

1,0E+12

1,0E+11+
1,UE+1EI*;
1,UE+9*;
1,uE+sé
1,DE+7—;
1,UE+6;

1,0E+5

[ | Hz
1,0E+1 2,56+1

1,0E+4 -
1,063

1,02 1,0E-1 1,0E+0

Relative deviation g, in each blade frequency bin

10,00

1,00+

0,104

Hz
1,0E+1 2,5E+1

0,01
1,03

1,0E-2 1,061 1,0E+0

Fy= |1,Z96+& Wrme™2/Me Systemorderr’= 1,25 Pale F=|0,0060 Hz  Root fp= 11,0 He  Fpjage= 1,48 He

Fig. 223: PSD,*(f) parameterization of real power of a VRIG wind farm for
wind speeds around 7,6 m/s (average power 3,6 MW) computed from Fig.
220.
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Fig. 223 indicates that power spectrum is quite constant for
frequencies smaller than 0,013 Hz. The peak at blade
frequency fy..~ 1,48Hz and its '/; subharmonic are
noticeable (subharmonic '/; is due to misalignments in the
rotor). Other narrow peaks corresponding to harmonics of
fundamental oscillation are very low in Fig. 223.

Fig. 224 shows the contribution of each frequency to the
variance of power O'PT  —the area bellow fPSDy"(f) in a
semi-logarithmic plot is the signal variance according to (10).
The main contributions to power variability are:
Low frequencies due to wind variation (f< 0,3 Hz).

— Blade (~1,5 Hz) and rotor frequencies (~0,5 Hz).

— Contributions at f > 3 Hz due mainly to drive train,
generator and blade frequency harmonlcs
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B.3.3. Analysis of reactive power output

The reactive power shows significant fluctuations at f >
0,5 Hz, as it can be seen in Fig. 225 and Fig. 226. Although
reactive power fluctuations are, in absolute value, smaller
than real power fluctuations, reactive power fluctuates at
higher frequency than real power. In fact, reactive power
fluctuations are significant up to 6 Hz due to VRIG generator
dynamics. Beyond 8 Hz, PSD,"(f) decreases sharply but the
frequency content of the reactive power is still noticeable.
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Fig. 225: Reactive power () [MVAr] of a VRIG wind farm corresponding to
real power P shown in Fig. 221.
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Fig. 226: Reactive power () [MVAr] of a VRIG wind farm corresponding to
the real power of Fig. 222.
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The static relationship between P and () can be seen in Fig.
226. It can be inferred from this image that AQ ~ 0,164 AP,

approximately.
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Fig. 227: Reactive power () [VAr] versus real power P [W] computed from
Fig. 220.
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The PSD of reactive power in Fig. 228 is comparable to
the PSD of real power in Fig. 223 except in the 1-6 Hz range.
This deviation is likely due to the dynamics of rotor current.
Real and reactive power order is similar, but reactive power
descends slower.

The system order for the reactive power is r’'=1,15, a value
between the voltage order (°'~0,81) and the real power order
(r"'=1,25). This discrepancy can be due to the poor fitting of
the reactive power in Fig. 228 and the great influence of
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voltage in (). Conversely, the behaviour of voltage is
influenced by wind since there was other wind farms
connected nearby.
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Fig. 228: PSD,*(f) of the wind computed from Fig. 220.

B.3.4. Analysis of wind measured at the
meteorological mast 40 m above surface
level

The PSDyy.. (f) is shown in Fig. 229. Due to the
anemometer inertia, it behaves as a low-pass filter of cut-off
frequency around U,,,/1m ~ 7,6 Hz (beyond such
frequency, some artifices appear). Notice that the length
constant of the propeller anemometer used here (~1 m) is
significantly smaller than the cup anemometer length constant
used in the previous subsections (~10 m).

Up to anemometer cut-off frequency, the slope is smooth
and it fits well the model (184) (black and red lines in Fig.
229 are almost superimposed up to 6 Hz). The system order is
r’ = 1,34, significantly bigger than the order = 5/6 = 0,833
corresponding to the Kaimal (11), Harris (13) and Von
Karman (14) spectra.

The pole is f; < 0,03 Hz, corresponding to an integral
length scale of the turbulence Cyying 2 (Uwina)/(6 a f) =
24 m, assuming a = 1,7 according to the draft Eurocode ENV
1991-2-4 and (11). This very low value indicates that the

anemometer is affected by wakes.

The scale parameter is P, =~ PSDy,.. (f=1Hz) =
0,00325 (m/s)*/Hz. The value of the wind variance is o, =
1,0 m/s, corresponding to a turbulence intensity I =
Cind (Upina) = (1,0 m/s) / (7,6 m/s) = 13,1 % —high since the
wind farm was in a hill top and the met mast is surrounded by
turbines.



Wind Power Variability in the Grid — Annex B

m/srms~2/
1,0E+2 7

Averaged Periodogram from Power Spectrum

1,0E+1 ]

1,0E+0 -
1,061 4]

1,0E2

1,0E-3

1,064 4]
1,065

1,0E-6

1,0E-7 - L ! L | Hz
1,063 1,082 1,06-1 1,0E+0 1LOE+L 2,56+

Relative deviation g, in each blade frequency bin

10,00
1,00+

0,10+

Hz

0,01 R ol
1,0E+1 2,5E+1

1,0E-3

1,0E-2 1,0E-1 1,0E+0

Py= |3,256-3 mjsrms~2/HeSystem order '=/1,34  Pale fy=0,0300He  Root Fo=100,tHz  Fhlage= 1,48 He

Fig. 229: PSD e (f) of the wind computed from Fig. 220. Beyond 6 Hz,
some artifices appear due to measuring limitations.

B.3.5. Analysis of phase-to-phase voltage

PSD,,, (/) of the phase to phase high voltage is shown in
Fig. 230. The voltage during the series is quite variable for a
period of 14:37 minutes, 67,98 + 0,2 kV (extended
uncertainty). The PSD,,,”(f) corresponds to a system of order
r’ ~ 0,81, approximately. The influence of nearby generators
and loads are similar to the contribution of the analyzed
turbine, A Vys ~ (R; AP +X,; AQ) / (Vis). The individual
effect of the analyzed wind farm in the voltage is difficult to
distinguish from external influences (for example, the peak at
0,1 Hz is not related to the wind farm)
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Fig. 230: PSDy,,*(f) of the low voltage phase to phase computed from Fig.
220.

B.3.6. Bode magnitude plots

The turbine can be assumed to be a system whose primary
input is wind and its main output is real power. Even though
considering the real turbine a linear single-input single-output
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system is an obvious oversimplification, it allows to derive a
small signal model for accounting wind variations in power.

When the transfer function is above the static gain
(indicated with a horizontal red line for convenience), the
oscillations of these frequencies in the input are considered
amplified in the output. When the transfer function is below
the static gain, these frequencies are considered attenuated or
damped.

The ratio of the spectrum of real power P to the spectrum
of wind U,,,, is the frequency response of the real power
respect to the wind at the met mast in Fig. 231. Wind is
measured at the met mast with a propeller anemometer.

Fig. 231 shows that wind oscillations in the 0,004 ~ 3 Hz
range —excluding blade frequency— are damped in the real
power output, P. At frequencies higher than 6 Hz, the
measuring system introduces error in the wind measure and
the transfer function in Fig. 231 is underestimated (at f> 6
Hz, the sensitivity of P to U,;,;, may be close to the static
gain).

Near blade frequency, f ~ f,.q. » the ratio of wind to power
fluctuation presents a peak but this is due to the tower shadow
effect, which is not proportional to the fluctuation of the wind
in such range. Thus, fluctuation of power at blade frequencies
and its sub-harmonics and harmonics should be regarded as
an additive factor (almost) insensitive to wind turbulence.
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Fig. 231: Bode magnitude plot of real power P [W] respect wind U,;,; [m/s]
(beyond 6 Hz, the transfer function is underestimated due to limitations in the

wind measure).

Fig. 232 shows the bode plot of the reactive power @
respect to the spectrum of wind, U,,,,, at the met mast. Wind
oscillations in the 0,004 ~0.4 Hz range are damped in the
reactive power output, (). However, wind fluctuations in 1-
10 Hz are amplified due to rotor current dynamics. Notice
that tower shadow has a small effect on reactive power,
specially compared to real power. At f > 10, the gain is
thought to be not far from the static coefficient.

Fig. 233 shows the bode plot of the reactive power @
respect to the real power P. There is a quasi-static quadratic
relation among real and reactive power in a SCIG generator
[160] provided the voltage and the number of connected
capacitor banks are constant (see Fig. 227). Regardless the
number of capacitor banks connected, the slope of the X/Y
graphs is AQ ~ 0,164 AP. Thus, the linearized small signal
model can be valid if real power excursion is small and



168

voltage is fairly constant. According to the bode plot in Fig.
233, the dynamic gain is different to the static gain (0,164) in
the frequency range 0,03 ~7 Hz, where rotor dynamics are
significant. Notice that the reactive power gain decreases at
blade frequency and its '/; subharmonic respect to nearby
frequencies.
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Fig. 232: Bode magnitude plot of reactive power ) [VAr] respect wind
U,imq [M/s] (beyond 6 Hz, the transfer function is underestimated due to

limitations in the wind measure).
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Fig. 233: Bode magnitude plot of reactive power () [VAr] respect real power
P [W].
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Fig. 234: Bode magnitude plot of line voltage Vjs [V] respect real power P
[W].

The influences of real P and reactive () power on line
voltage (Vs are shown in Fig. 234 and Fig. 235,
respectively. Since the real and reactive powers are closely
related, both plots are cross-related. The small-signal lineal
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model for voltage is AVys ~ (Ryy AP +X,50 AQ) / (Vig),
where R and X, are the effective Thévenin resistance and

reactance seen from the voltage point of measure.
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Fig. 235: Bode magnitude plot of line voltage Vyg [V] respect reactive power
Q [VAr].

B.4. DFIG wind turbines

This subsection studies the power fluctuations of
Remolinos wind farm (Spain). Remolinos wind farm is in a
cliff top (wind regime is specially turbulent [387]) and it has
doubly fed induction generators (DFIG) from Gamesa, with
generator speed ranging from 1220 to 1620 rpm. It is
composed by 15 turbines of 648 kW (model G42 from
Gamesa with 42 m rotor diameter) and 3 turbines of 660 kW
named G47 (model G47 from Gamesa with 47 m rotor
diameter), both of them with variable pitch [52]. The
datalogger recorded signals either at a single turbine or at the
substation. In either case, wind speed from the meteorological
mast of the wind farm was also recorded.

One-second or two-second averages were customarily
stored. The low frequency spectrum band could have been
compared on the basis of these data sets at the turbine and at
the substation. The comparison of magnitudes at a single
turbine and at the wind farm can lead to experimental
estimation of the coherence of the fluctuations in the low
frequency band.

Unfortunately, waveforms at the turbine and at the
substation were only once kept stored at grid frequency.
These data, divided in two series will be analyzed and
compared between the turbine and at the substation.

B.4.1. Notes on the estimation of model
parameters

In the analyzed data, the estimated parameter f; is only 4 to
30 times the inverse 