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Resumen en español de la tesis 

Wind Power Variability In The Grid 
(Variabilidad De La Potencia 

Eólica En La Red Eléctrica) 

La presente tesis ha analizado las principales características de la variabilidad de la 
energía eólica. Esta tesis se ha centrado en proporcionar un marco teórico para el 
análisis sistemático de la variabilidad de la energía eólica en el tiempo y en el espacio. 
El enfoque es principalmente empírico, basado en el procesamiento de datos y el 
concepto de viento equivalente. Junto con los modelos, se han realizado programas para 
el tratamiento de los datos registrados –véase, por ejemplo los gráficos en los anexos–. 
El núcleo de la tesis es el análisis de datos experimentales y su modelización, con 
especial énfasis en la variabilidad de la potencia eólica generada. 

Algunos modelos de la estructura del viento en el espacio y el dominio de la frecuencia 
son extensiones de algunos modelos disponibles en la literatura. Las variaciones 
estocásticas han sido analizadas en el dominio de la frecuencia y en el dominio del 
tiempo.  

La representación de la frecuencia de las fluctuaciones del viento facilita la estimación 
de la potencia de suavizado debido a la estructura de la turbulencia y las características 
cíclicas. Por una parte, la representación ortogonal de un proceso estocástico normal es 
su transformada de Fourier. Por otra parte, el enfoque de dominio del tiempo está más 
relacionado con la integridad estructural, el sistema de control, la evolución del tiempo, 
eventos excepcionales como rachas y el error de la predicción. Cuando ha sido posible, 
se ha combinado el análisis temporal y frecuencial utilizando espectrogramas.  

El programa WINDFREDOM ha sido desarrollado para comprobar el grado de 
aproximación de algunos modelos empíricos de la variación del viento a lo largo del 
tiempo y el espacio.  

El programa EQWIGUST ha sido desarrollado para estudiar las variaciones extremas 
del viento equivalente. Puesto que las fluctuaciones del viento muestran un 
comportamiento de la multiplicación, se proporcionan dos transformaciones simples 
para compensar el comportamiento no Gaussiano del viento.  

La variabilidad de la energía generada depende principalmente de la turbulencia y la 
evolución del clima. Además de la turbulencia y de las desconexiones, las vibraciones 
mecánicas y a las oscilaciones eléctricas producen fluctuaciones rápidas de potencia. 

 Estas peculiaridades han sido caracterizadas a partir de mediciones, pero los resultados 
son específicos para el modelo de la turbina y las condiciones atmosféricas 
momentáneas. Por lo tanto, el análisis puede ser sistematizado, pero las conclusiones de 
las mediciones son difíciles de generalizar.  
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La predicción del viento y la desconexión intempestiva de la turbina son fenómenos 
muy específicos, fuera del ámbito de la tesis. Sin embargo, la distribución del error de 
predicción y la probabilidad de una desconexión de la turbina son consideradas en el 
modelo propuesto de la variabilidad de la energía eólica, basado en cadenas de Markov.  

La caracterización fundamental de la variabilidad del viento se presenta en el segundo 
capítulo. Las fluctuaciones del viento medidas con un anemómetro habitualmente se 
caracterizan por la variación en la densidad espectral del viento. La estructura espacial 
de las fluctuaciones del viento suele ser descrita por la coherencia de viento, que es el 
coeficiente de correlación en el dominio de la frecuencia espacial.  

La estructura espacial de las turbulencias afecta al par aerodinámico de torsión 
experimentado por la turbina. Las oscilaciones del par de torsión debidas a la 
turbulencia pueden estimarse a partir de la estructura espacio-temporal del viento. 
Varios modelos de fluctuaciones se han obtenido y comparado con la literatura.  

De hecho, la gran superficie barrida por las palas implica que las oscilaciones 
turbulentas muy localizadas afecten poco al par de la turbina, aunque pueden excitar 
modos de vibración de la máquina. En general, la dimensión espacial de las 
fluctuaciones del viento parece ser inversamente proporcional a su frecuencia. Por lo 
tanto, la relación entre las oscilaciones medidas con un anemómetro y las oscilaciones 
de torsión aerodinámica puede estimarse. Además, el viento equivalente se define como 
el que produce los mismos efectos que el campo vectorial de viento real. Las 
variaciones del par en función del viento se han calculado con la teoría de elementos de 
pala en el anexo C.  

La velocidad equivalente del viento contiene: una componente estocástica debido a los 
efectos de la turbulencia y una componente rotacional, debida a que las palas barren un 
viento variable con la altura y con la perturbación provocada por la presencia de la torre 
de la turbina. Según la aplicación en la que se utilice la velocidad equivalente del 
viento, puede ser necesario incluir componentes adicionales debido a las vibraciones 
mecánicas y eléctricas presentes en la turbina. 

La comparación entre las mediciones de la turbina y las simulaciones es complicada por 
la incertidumbre de la distribución del viento. Normalmente la velocidad del viento se 
mide en un solo lugar, por lo que no se puede comparar directamente las medidas y las 
simulaciones de la turbina. Sin embargo, las densidades espectrales de las varianzas del 
proceso medido y simulado sí se pueden comparar directamente porque son propiedades 
estacionarias del proceso.  

El viento equivalente puede considerarse una versión filtrada del viento medido con un 
anemómetro. El par de torsión aerodinámico real no puede ser reconstruido a partir de 
una medida de un solo punto debido a la naturaleza estocástica del viento y a las 
complejas vibraciones de la torre. Sin embargo, las principales características 
estadísticas del par -o del viento equivalente- sí se pueden predecir.  

El concepto de viento equivalente se puede extender a un parque eólico o incluso a un 
grupo de turbinas de viento. El filtrado equivalente del parque se puede definir a partir 
de las densidades espectrales de la varianza de la potencia del parque y de una turbina 
significativa. Este filtro estima el suavizado debido a la diversidad espacial de la 
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turbulencia a través de un parque eólico. El filtro equivalente de un conjunto de parques 
también se define de forma análoga al filtro de parque. 

Un concepto interesante es el viento de suavizado en un área. Si existen varios parques 
eólicos distribuidos más o menos uniformemente en una zona, el nivel de suavizado 
puede estimarse a partir de las dimensiones de la región y los parámetros de la 
turbulencia.  

Si bien las fluctuaciones lentas de la potencia generada por turbinas están 
fundamentalmente relacionadas con el viento, las fluctuaciones rápidas se deben en gran 
parte a las vibraciones de la turbina y del generador con su control electrónico.  

Dado que las vibraciones de la turbina y del equipo eléctrico varían notablemente de un 
modelo a otro, el cuarto capítulo de esta tesis propone una metodología para caracterizar 
las oscilaciones observadas experimentalmente. Los fundamentos de la metodología se 
explican en el capítulo cuatro y se dan algunos ejemplos en el anexo B. También se 
presenta una revisión de la literatura sobre la densidad espectral de potencia (PSD) y los 
periodogramas de la potencia eólica.  

Las fluctuaciones de potencia entre la frecuencia de la primera torre (por lo general 
algunas décimas de hercios) y la frecuencia de la red dependen de las características 
específicas de cada máquina. La predicción realista de estas fluctuaciones requiere un 
modelo muy completo de la turbina, que suele ser confidencial y privado. Incluso 
disponiendo de un modelo completo de la turbina, la validación de modelo con medidas 
experimentales no es trivial.  

Una contribución de este capítulo es la caracterización experimental de las fluctuaciones 
de energía de tres turbinas comerciales. Las variaciones de potencia durante la 
operación continua de las turbinas son caracterizadas experimentalmente en intervalos 
de tiempo que abarcan desde el periodo de la red hasta minutos. Se presentan algunas 
mediciones experimentales en el dominio conjunto tiempo-frecuencia para comprobar el 
modelo estocástico.  

La admitancia del parque eólico se define como el cociente de las oscilaciones de un 
parque eólico frente a las fluctuaciones de una sola turbina, suficientemente 
representativa del funcionamiento del resto del parque. Un modelo frecuencial vincula 
el comportamiento global de un gran número de turbinas a la operación de una sola 
turbina.  

La naturaleza de la turbulencia y de las vibraciones son diferentes. La turbulencia es un 
proceso estocástico de amplio espectro sin frecuencias características. El equivalente de 
las fluctuaciones del viento, debido a la turbulencia son procesos estocásticos de banda 
ancha sin frecuencias características. Sin embargo, las vibraciones y oscilaciones 
eléctricas son procesos estocásticos casi cicloestacionarios, generalmente con varias 
frecuencias características de oscilación.  

Las variaciones de potencia medida son el resultado de la turbulencia, las vibraciones 
mecánicas y las oscilaciones eléctricas, que son procesos estocásticos con propiedades 
diferentes.  
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Sin embargo, un parque eólico tiene normalmente más de cuatro turbinas y la suma de 
las potencia de más de cuatro turbinas converge aproximadamente en un proceso 
Gaussiano, a pesar de la naturaleza del proceso.  

Una demostración visual del fenómeno de cancelación parcial de oscilaciones se ha 
desarrollado, basado en la rotación de las turbinas. Se suele asumir que la presencia de 
la torre produce un descenso de par aerodinámico cuando la pala está delante de la torre. 
Este fenómeno es complejo, ya que la perturbación de la torre interacciona con las 
vibraciones de la turbina. Por conveniencia, ese déficit momentáneo de potencia se 
representa en el quinto capítulo como un pulso periódico y determinista.  

Dado que la velocidad de la turbina varía ligeramente de una a otra, las posiciones de 
las palas no se sincronizan. Como mucho, varias palas pueden pasar delante de su torre 
de forma casi simultánea de forma eventual. El paso de las palas delante de su torre se 
ha modelado como un proceso de Poisson. La probabilidad de las variaciones de 
potencias debidas a este fenómeno en un parque se deriva en el quinto capítulo.  

De hecho, las vibraciones y las oscilaciones eléctricas tienen una naturaleza casi 
cicloestacionaria, relativamente deterministas y periódicas. No obstante, la potencia 
agregada converge a un proceso de Gauss en un amplio rango de frecuencias. En un 
parque eólico típico, la densidad espectral de varianza se agrega cuadráticamente en el 
rango de un centésimo de Hertz hasta la frecuencia de la red. Por lo tanto, la amplitud 
de las oscilaciones de la potencia, relativa a la potencia media del parque, es 
inversamente proporcional al número de turbinas en esas frecuencias. 

En el rango de frecuencias muy bajas, las oscilaciones son dominadas por turbulencia 
relativamente coherente, que tiene un comportamiento fundamentalmente 
multiplicativo. Las variaciones de potencia de baja frecuencia en el parque tienen mayor 
amplitud porque estas oscilaciones presentan una menor variabilidad espacial. Además, 
las desviaciones lentas tienen una distribución aproximadamente laplaciana mientras 
que las variaciones de mayor frecuencia tienen una distribución más gaussiana. Este 
comportamiento laplaciano se representará mediante una transformación biyectiva de un 
proceso normal.  

Un modelo flickermeter aproximado en el dominio de la frecuencia se presenta también 
en el quinto capítulo para demostrar la poca relevancia de la emisión de flicker a nivel 
del parque. En las mediciones del parque, el nivel de parpadeo es muy bajo debido a la 
cancelación parcial de las oscilaciones y a la fortaleza de la red en el punto de conexión.  

La densidad espectral del viento determina el comportamiento estocástico del viento, 
siempre que se pueda considerar un proceso Gaussiano estacionario. En el sexto 
capítulo, esta densidad espectral se usará para analizar las características de las 
variaciones del viento en el dominio del tiempo y para sintetizar las muestras de viento 
equivalente.  

Los mecanismos que generan la turbulencia son analizados pues están estrechamente 
relacionados con la forma de las rachas y la distribución de las variaciones de velocidad. 
Las diferencias de viento respecto de la media tienen, aproximadamente, una 
distribución de Laplace, que indica que hay un cierto efecto multiplicativo implicado en 
las desviaciones extremas.  
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La generación estocástica de ráfagas es una valiosa herramienta para obtener muestras 
aleatorias de viento con ciertas características. El fundamento de este método es la 
simulación estocástica condicionada de los procesos, que se basa en las distribuciones 
condicionales. Una transformación biyectiva se define para obtener la distribución 
experimental. Algunas transformaciones más sofisticadas pueden ser utilizadas para 
mejorar el ajuste de la forma y la probabilidad de ocurrencia de los datos 
experimentales. Por ejemplo, en algunos estudios se ha observado que la rampa frontal 
real de la ráfaga es, en promedio, mayor que la rampa de cola. Sin embargo, las ráfaga 
predichas son simétricas cuando se visualizan hacia delante y cámara atrás.  

Las ráfagas tipo pico y tipo rampa se sintetizan en el dominio de la frecuencia utilizando 
la expansión de Karhunen-Loève y la teoría de la simulación condicional de los 
procesos normales. Un método aproximado se presenta para evitar dificultades 
numéricas que aparecen cuando se generan muestras de gran longitud.  

El concepto de la ráfaga de viento equivalente se puede extender a un área geográfica y 
puede servir para calcular la máxima variabilidad de la potencia esperada en una región.  

El programa EQWIGUST genera ráfagas de viento equivalente y estima su frecuencia 
de ocurrencia.  

La variabilidad de la velocidad del viento puede ser modelada durante intervalos cortos 
con la teoría clásica de procesos normales estacionarios, que se ha presentado en los 
capítulos anteriores. Sin embargo, el viento es un proceso no estacionario y esto es 
necesita ser considerado para horizontes más de una hora.  

Dado que las variaciones del viento muestran un comportamiento bastante 
multiplicativo, el método de Aproximación de Markov es adecuado para modelar el 
comportamiento estocástico no lineal del viento. Esta técnica es una poderosa 
herramienta para optimizar el control del sistema, especialmente si la distribución del 
error de las predicciones numéricas del tiempo están disponibles. En caso de que no se 
disponga de predicciones metereológicas, las cadenas de Markov se pueden utilizar para 
generar predicciones probabilísticas basada en el comportamiento del sistema observado 
previamente.  

Muchos dispositivos en la red son discretos y su control no puede ser linealizado porque 
su conmutación innecesaria puede producir su desgaste prematuro o perturbaciones 
evitables en la red. El diseño y el control óptimos se pueden alcanzar mediante la 
asignación de costos a la permanencia del sistema en el mismo estado y al salto a otros 
estados.  

Un procedimiento para discretizar el sistema generando un número reducido de estados 
se presenta en el capítulo 7, basado en un sistema de agrupación y clasificación de las 
observaciones.  

Una aplicación potencial de este método se encuentra en el cálculo probabilístico de 
flujo de cargas. Otra aplicación es el diseño óptimo y el control de un sistema aislado 
con generación renovable y almacenamiento.  
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Contribuciones originales de la tesis 

Algunas de las contribuciones provienen de la experiencia adquirida en el diseño, 
construcción, instalación y análisis de un registrador de datos multipropósito que, a día 
de hoy, está disponible comercialmente. El trabajo realizado en el desarrollo de este 
registrador de datos se puede ver en algunos de los artículos citados en la sección de 
publicaciones al final de la tesis. El desarrollo de un analizador de redes basado en un 
PC en el año 1998, que además almacenaba de forma sincronizada datos meteorológicos 
y de la turbina o del parque eólico, fue un logro. Aunque hoy en día el registrador de 
datos es bastante diferente del original, la experiencia adquirida con los primeros 
prototipos, desarrollados durante los primeros años de esta tesis, ha sido fundamental 
para que el registrador multifuncional AIRE estuviera disponible comercialmente.  

El tercer capítulo calcula el suavizado del viento equivalente a partir de las dimensiones 
del área considerada y de los parámetros de la turbulencia. El viento equivalente ha sido 
utilizado también en la simulación de modelos de conjuntos de parques eólicos. Sin 
embargo, la estimación del suavizado del viento equivalente de un parque eólico o de 
una zona geográfica a partir de la coherencia del viento es una contribución importante 
de esta tesis.  

Una nueva metodología para la caracterización de las oscilaciones medidas en la 
potencia de una turbina de viento o de un parque eólico ha sido propuesta en el capítulo 
cuatro.  

El quinto capítulo muestra la convergencia a un proceso gaussiano de las oscilaciones 
globales debido a las vibraciones, la turbulencia y las fluctuaciones eléctricas. Este 
modelo también muestra la poca relevancia de la emisión de flicker de los parques 
eólicos.  

Las ráfagas de viento equivalente se calculan en el sexto capítulo, y pueden servir para 
calcular la máxima variabilidad de la potencia eólica esperada en una región.  

El séptimo capítulo presenta la aplicación del método de Aproximación de Markov para 
optimizar el diseño del sistema y el control en dos casos.  

El anexo A se muestra un modelo estadístico simplificado para representar a un parque 
eólico en un estudio de flujo de cargas, teniendo en cuenta la variabilidad de la potencia 
eólica.  

El anexo B muestra algunos ejemplos de los análisis de los datos experimentales 
obtenidos con el registrador de datos multipropósito. Algunos efectos observados en los 
datos como la medición de las oscilaciones son bastante difíciles de predecir utilizando 
únicamente simulaciones.  

El anexo C presenta un modelo aerodinámico para calcular la influencia de la 
componente determinista del viento (variación del viento con la altura y la perturbación 
de la torre) utilizando el coeficiente del par y las dimensiones de la turbina.  
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La representación de un parque eólico requiere conocer la distribución de las 
velocidades del viento y de las turbulencias a lo largo de un parque eólico. El modelo 
incluido en el anexo D permite, además, probar diferentes modelos de estelas.  

Otra contribución de esta tesis es el programa que descarga, representa y analiza los 
datos de la red de estaciones meteorológicas que suelen utilizar los organismos 
meteorológicos para la predicción del tiempo.  

El manual del usuario del programa WINDFREDOM con el análisis de tres 
emplazamientos ha sido incluido para demostrar el uso potencial de este programa.  

Otra contribución de esta tesis es el programa que genera ráfagas de viento equivalente 
con ciertas características y estima su probabilidad de ocurrencia. 

En resumen, esta tesis ha intentado aportar una metodología para el estudio de las 
variaciones de potencia eólica, basándose en la distribución espacio-temporal del viento 
y en el análisis de medidas experimentales. Además, proporciona un marco para el 
diseño y control óptimo de sistemas afectados por la disponibilidad del viento. 
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1.1. Background  
he installed capacity for wind power is increasing 

substantially in response to the worldwide interest in 
low-emissions power sources and a desire to decrease 

the dependence on petroleum.  
The European Union directive 2009/28/EC [1] enforces the 

mandatory target of a 20 % share of energy from renewable 
sources in overall Community energy consumption by 2020 
and a mandatory 10 % minimum target to be achieved by all 
Member States for the share of biofuels in transport petrol 
and diesel consumption by 2020. These targets may require 
between 30 and 40 % of the electricity in the European Union 
to come from renewable energy sources by 2020. 

In the U.S., the world's top wind producer [2], wind 
currently makes up just one percent of the energy supply. 
Wind power generation share is expected to grow up to 20% 
in the USA by 2030 [3,4]. Moreover, many U.S. states have 
legislated similarly ambitious renewable energy portfolio 
standards.  

These goals were set without regard for the fact that many 
in the scientific community have concluded a theoretical wind 
penetration limit of only 20% due to the degradation of 
system reliability [5]. The Department of Energy states that 
there is no fundamental technical reason why 20 percent of 
wind energy cannot be assimilated into the grid by 2030. To 
help make its point, the agency debunks the reliability myth 
in its fact sheet on Wind Energy Myths [6]. 

According to S. Feldman [7], the renewable output could 
leap to 40 percent of the Irish electricity share; in Denmark to 
33 percent; in Portugal to 28 percent; and in Germany and 
Greece to 25 percent. After 2020, a higher proportion may be 
needed. A significant amount of this renewable electricity is 
likely to come from wind, and the variability of this power 
needs to be managed. 

With this amount of wind generation, the future electricity 
markets could be very different to those of today: instead of 
thermal power stations dominating the system, the market 
could be dominated by large amounts of price-insensitive 
nuclear and wind power, combined with highly intermittent 
output from the wind farms [8]. 

The extent of uncertainty and variability in wind generation 
makes this resource different from the traditional, 
dispatchable generation resources, with the result that wind 
power generation cannot be readily integrated into standard 
system operating procedures [9]. At relatively low levels of 
installed capacity, wind turbines and the output from large 
wind farms can essentially be absorbed into traditional system 
operations without degrading system reliability. At the 
current higher projected levels of penetration, wind power 
requires more sophisticated mechanisms to maximize its 

participation in the power system without penalizing it for the 
unavoidably intermittent nature of its resource [10]. 

In some real time markets, and at low levels of penetration, 
wind is treated as negative load [24]. But the perception of 
wind power is changing from being considered a negative 
load to a capacity resource. Wind power can be integrated 
into system and market operations as a generating resource 
that could provide not only energy but also capacity and 
ancillary services [11]. 

1.1.1. Relationship between wind power 
variability and its forecast 

Wind varies in space and in time. The forecasts try to 
predict this variation from climate dynamics and from the 
systematic behaviour of the weather. 

The inherent uncertainty and availability of the 
meteorological data decreases the accuracy of the next day’s 
wind generation forecast [12]. The issue of uncertainty in 
wind generation can be addressed by improving the accuracy 
of forecasting the wind resource. In addition, advances in 
wind forecasting and turbine controls suggest that wind 
power can participate in ancillary service markets. 

The simplest forecast of a stochastic process is the 
persistence principle: the expected value during next period 
[t, t+Δt] is the average value of the previous period [t-Δt, t]. 
The mean square error of the persistence prediction is just the 
variance of the average process during the interval [t-Δt, t].  

Thus, the ratio of the forecast root squared error to the 
standard deviation of the variable predicted is just the 
performance of the forecast relative to the persistence model. 

Usually, numerical weather prediction significantly 
outperforms persistence for horizons longer than 6 hours. For 
shorter horizons, statistical methods can be more adequate 
due to the lack of a dense network of weather sensors near the 
wind farms. In such cases, the characterization of wind power 
variability is essential. 

1.1.2. Influence of the wind variability 
on the grid 

Wind power presents the most economically viable renew-
able solution, apart from hydro power [5]. The utility system 
is designed to accommodate load fluctuations, which occur 
continuously. This feature also facilitates accommodation of 
wind plant output fluctuations when wind penetration is low.  

In order to make the long-term growth of wind generation 
possible, the variability and the intermittency of wind power 
must be managed [13]. In Denmark, Northern Germany, and 
parts of Spain, wind supplies 20% to 40% of electric loads 
without sacrificing reliability. 
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Generally, wind power forecast are targeted to optimize the 
hourly power dispatch. However, the electric system has to 
cope with instantaneous variation of load, generation and 
equipment trips. Such variations are usually unpredictable 
and they are usually considered deviations from the expected 
power tendency. 

The variability of wind power has several negative effects 
on the reliability and system operation of the electric grid as 
well as wind project economics [14]. The stability of the 
electric grid depends upon reliable and consistent power gen-
eration that is balanced to the load through unit commitment 
(interhour), economic dispatch (intrahour), and regulation 
(intraminute), and wind power is counterproductive towards 
that effort. Due to its stochastic nature, wind generation is not 
dispatchable and therefore cannot be called upon to serve 
load. As a result, the capacity credit of a wind farm is very 
small—even as low as 8% of nameplate capacity according to 
a probabilistic loss-of-load analysis [15].  

Greater reliance on wind power requires more ancillary 
services, especially responsive reserves, to match the lost 
generation and ramp rate of wind turbines when the wind dies 
down. One study of a typical wind farm indicated ramp rates 
up to 4.4% of capacity per second [16], implying a large 
burden on ancillary services. In fact, an empirical analysis of 
increasing wind penetration in the Pacific Northwest U.S. 
demonstrated that reserve requirements increased with the 
square of installed wind capacity, and the need for total 
reserve capacity doubled after just 2500 MW of installed 
wind capacity [17].  

In some applications, the estimation of wind power 
variability can be as important as its prediction. The 
forecasted values are usually the hourly wind or the hourly 
power generated by one turbine or a cluster of them. Most 
forecast models predict only the average hourly wind or wind 
power and they are intended for the requirements of the 
electricity markets. Only a few models characterize the 
uncertainty of the forecast and quantify the instantaneous 
fluctuations inside the time period. 

The main applications which benefit from variability 
assessment are: 

• The control of wind turbines and wind farms, where 
the short timescales involved makes forecasting 
unpractical. 

• Automatic generation control, automatic voltage 
control or changes in automatic taps on transformers, 
more concerned with interhourly variations, that are 
quite difficult to predict. 

• Improving the power quality, more related to voltage 
variations and hence, instantaneous power 
variations. 

• Optimum sizing of storage devices or of running 
reserves in isolated or weak systems, where 
electricity must be supplied even in the worst case 
scenario. 

• In risk assessment and the safe operation of the grid. 
The system must cope with unexpected outcomes 
when the forecast has big uncertainty. 

1.1.3. Geographic diversity on wind 
power 

Both the generated power and the forecast error decrease as 
more wind power producers are aggregated. Due to the 
geographic dispersion of wind generators, some power 
variations and prediction errors can be partially cancelled by 
other errors in other locations.  

On the one hand, the forecast errors can be very low in 
wide geographic areas. The power balance can be met 
provided the electricity transmission networks are strong 
enough to carry the undispatchable generated power from 
remote areas [18, 19]. 

On the other hand, many quality parameters of the grid 
must be met locally and the reinforcement of the electricity 
networks is costly and, sometimes, it is not feasible. In 
islands, the power balance cannot rely on geographical 
diversity and other measures are required to counteract the 
wind power variability. 

The weather conditions may remain stable for relative long 
periods among shift weather changes. Quick local turbulent 
fluctuations are tougher to predict in time and place than 
some smooth weather evolution. In fact, a good parameter of 
the accuracy of the prediction is the error relative to the 
variance of the random variable to be predicted. 

However, the wind power forecast accuracy is usually 
referred to the total installed wind power considered in the 
prediction. These figures must be considered with caution:  

• A 15% prediction error of the hourly power one day 
ahead of a single wind farm can be an accurate 
forecast [20, 21]. 

• A 15% prediction error of the hourly power one day 
ahead in a big system is a poor forecast [22]. 

The variance of the wind power decreases when increasing 
the time period of the measure or the spatial diversity of the 
wind generators. Therefore, increasing the time or space 
horizon of the predictions lowers the absolute prediction 
error. The standard deviation to mean ratio, called coefficient 
of variation (CV) [16, 23], is also sensitive to the geographic, 
the time averaging and the prediction horizon, as can be seen 
in Table 1. 

The table 1 compares output at the start and end of the 
indicated time period in terms of the percentage of total 
generation from each turbine group. Std. Dev. is the 
abbreviation for standard deviation. CV stands for coefficient 
of variation, the ratio of standard deviation respect the mean 
of wind power. 

The power spectral density identifies which frequencies of 
variation are contributing to the variance [24]. The coherence 
indicates the degree of partial cancellation of the oscillation 
among the turbines at different frequencies [38]. These two 
magnitudes can explain the effect of the geographic and time 
averaging. In the spatial domain, high frequencies smooth out 
a wind farm’s aggregate power output since the coherence of 
the turbines’ outputs is low, while low spatial frequencies 
cause a coherent variation in the farm’s turbines.  
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Table 1: Wind generation variability as a function of the number of 
generators and time interval (from “20% wind energy by 2030: Increasing 
Wind Energy” [4] 

 
14 

Turbines 
(%) 

61 
Turbines 

(%) 

138 
Turbines 

(%) 

250+ 
Turbines 

(%) 
1-Second Interval 

Average CV 0.4  0.2  0.1  0.1  

Std. Dev.  0.5  0.3  0.2  0.1  

1-Minute Interval 
Average CV 1.2  0.8  0.5  0.3  

Std. Dev.  2.1  1.3  0.8  0.6  

10-Minute Interval 
Average CV 3.1  2.1  2.2  1.5  

Std. Dev.  5.2  3.5  3.7  2.7  

1-Hour Interval 
Average CV 7.0  4.7  6.4  5.3  

Std. Dev.  10.7  7.5  9.7  7.9  

1.1.4. Demand response and wind 
variability 

To a large extent, load exhibits similar characteristics –
uncertainty and variability– to wind power [24]. Load 
patterns though, have been more extensively studied for many 
years and so are better understood and more accurately 
forecasted than the wind resource. The purpose of this effort 
in load modelling is to understand load patterns well enough 
to operate the power system through the control of individual 
generation and transmission facilities, in order to serve load 
and maintain system reliability.  

Thus, load is extensively modelled and other facilities are 
controlled to serve load, with relatively little effort made to 
control load itself. This trend is not absolute, as there are 
traditional utility mechanisms, such as interruptible contracts 
and direct load control, to reduce load at times when system 
reliability would otherwise be threatened. There is also 
persistent interest in developing mechanisms for more 
dynamic load response for both reliability and economic 
purposes.  

Recent efforts to allow load to be more responsive to 
system conditions and a more active participant in electricity 
markets arise for multiple reasons [25]. In addition to giving 
customers incentives to decrease their demand in the short run 
to improve system reliability during times of system peak, 
demand response can be used in the long term to decrease 
required capacity expansion and lower total costs. Demand 
response is also an important and essentially absent element 
in electricity markets. If it were to be more widely 
implemented, market efficiency would be likely to improve. 
Many efforts are beeing made to demonstrate the feasibility  
and the convenience of smart grids. 

1.1.5. Estimated cost of wind power 
variability 

The estimated cost of the uncontrollability of the wind 
resource has been widely researched from governmental 
policy makers to Independent System Operators [26]. An 

understanding of the impacts of the variable sources of 
renewable energy must take into account the wider issues 
associated with managing electricity systems [27].  

Modern integrated networks are designed to cope with 
‘shocks’ such as the sudden loss of large thermal power 
stations and with uncertainties in consumer demand, such as 
those caused by televised sports events. As the tools to deal 
with these are already available, the key question is the extent 
to which the introduction of large amounts of wind energy 
will increase the overall uncertainty in matching supply and 
demand. This extra uncertainty means that additional short-
term reserves are needed to guarantee the security of the 
system [28]. 

The variability of wind power also adversely affects wind 
project economics. A stochastic power source like wind is 
inherently less valuable than a deterministic source. Net 
payments to wind generators are reduced by balancing-costs 
to compensate for unfulfilled obligations to generate power 
[29].  

The study [30] determined that net payments in the USA to 
wind farms vary from $32/MWh for very small wind farms to 
less than $10/MWh for farms larger than 2000 MW.  

The report [19] states that at wind penetrations of up to 
20% of gross demand (energy), system operating cost 
increases arising from wind variability and uncertainty 
amounted to about 1~4 €/MWh. This is 10% or less of the 
wholesale value of the wind energy. 

The cost of grid reinforcements due to wind power is very 
dependent on where the wind power plants are located 
relative to load and grid infrastructure. The grid 
reinforcement costs from studies vary from 50 €/kW to 
160 €/kW in the report [19]. The costs are not continuous; 
there can be single very high cost reinforcements, and there 
can also be differences in how the costs are allocated to wind 
power. 

According to D. Milborrow [31], the extra cost in the UK 
of these reserves –with wind providing 20% of electricity 
consumption– is unlikely to be more than £1.20/MWh on 
electricity bills (a little over 1% on domestic bills). With 40% 
of electricity provided by wind, the corresponding figure 
would be £2.80/MWh. 

A second costs of wind variability is the backup cost for 
periods of very low wind resource along extensive 
geographical areas. Recharge reported in [32] that the 
calculations made by Oxford University Environmental 
Change Institute showed that between 1970-2003, low wind 
speeds all across the whole UK —those too slow to generate 
energy— occurred simultaneously in the country only one 
hour per year on average. In other words, the total wind 
power in the UK varies, but a 0% generation is quite unlikely 
event. According to D. Milborrow [31], wind energy does not 
require the introduction of special back-up provisions in the 
UK and its back-up costs are modest. Though the UK was the 
focus of the study, the results are relevant worldwide, as 
characteristics of wind are broadly similar everywhere.  

All generating plants make use of a common pool of 
backup plant that is typically around 20% of the peak demand 
on the electricity network. When wind is introduced, system 
operators do not rely on the rated power of all the installed 
wind farms being available at the times of peak demand, but a 

http://www1.eere.energy.gov/windandhydro/pdfs/41869.pdf
http://www.vtt.fi/inf/pdf/tiedotteet/2009/T2493.pdf
http://www.vtt.fi/inf/pdf/tiedotteet/2009/T2493.pdf
http://www.clubs.psu.edu/up/math/presentations/Apt-Windpower.pdf
http://www.greenpeace.org.uk/media/reports/wind-power-managing-variability
http://dx.doi.org/10.1016/j.tej.2007.08.002
https://e-reports-ext.llnl.gov/pdf/324206.pdf
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A//ieeexplore.ieee.org/iel5/5271856/5281781/05282039.pdf?arnumber=5282039&authDecision=-203
http://www.ieawind.org/AnnexXXV/PDF/erl8_2_025001.pdf
http://dx.doi.org/10.1016/j.tej.2004.04.010
http://www.greenpeace.org.uk/media/reports/wind-power-managing-variability
http://www.greenpeace.org.uk/media/reports/wind-power-managing-variability
http://www.rechargenews.com/business_area/innovation/article182891.ece
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lower amount - roughly 30% of the rated capacity at low 
penetration levels, falling to about 15% at high penetration 
levels. This lower ‘capacity credit’ gives rise to a modest 
‘backup cost’. ‘Constraint costs’ arise when the output from 
the wind turbines exceeds the demand on the electricity 
network. They are unlikely to arise until wind energy is 
contributing around 25% of electricity requirements. 

Overall, it is concluded that the additional costs associated 
with variability – with wind power providing up to about 40% 
of all electricity, are quite small. For example, if wind 
provides 22% of electricity in the UK by 2020, variability 
costs would increase the domestic electricity price by about 
2%, according to D. Milborrow [31]. Further increases in the 
level of wind penetration beyond that point are feasible and 
do not rely on the introduction of new technology. 

There are numerous technical innovations at various stages 
of development that can mitigate the costs associated with 
variability. Improved methods of wind prediction are under 
development worldwide and could potentially reduce the 
costs of additional reserve by around 30%. Most other 
mitigation measures reduce the costs of managing the 
electricity network as a whole. ‘Smart grids’, for example, 
cover a range of technologies that may reduce the costs of 
short-term reserves; additional interconnections with 
continental Europe, including ‘Supergrids’ also deliver 
system-wide benefits and aid the assimilation of variable 
renewables.  

Electric cars hold out the prospect of reduced emissions for 
the transport network as a whole and could act as a form of 
storage for the electricity network –for which the electricity 
generator would not have to pay. 

With current technology, wind power plants can be 
designed to meet industry expectations such as riding through 
voltage dips, supplying reactive power to the system, 
controlling terminal voltage, and participating in system 
operation with output and ramp rate control. 

Although some aspects of the management of wind 
variability can be controversial and costly, many utilities 
agree that there is no insuperable technical reason why high 
proportions of wind energy cannot be assimilated into the 
system [33]. There is a large body of literature on the topic 
[34] and the steady growth of wind power, worldwide, 
indicates that it is seen as a robust choice for reducing 
greenhouse gas emissions. 

1.2. Scope and Aims 
The aim of this thesis is to contribute with a framework for 

the systematic analysis of the wind power variability in time 
and in space. The time scope ranges from seconds to days and 
the geographic scope ranges from a wind farm to regions a 
hundred of kilometres away. 

Numeric weather predictions are usually based on public 
models and they are usually run by governmental 
organizations. However, most studies on wind power 
variability are based on confidential or not publicly accessible 
data even for non-profit research [24]. Even if weather 
behaviour could be predicted very accurately, a model output 
statistics would be required to transform into generated wind 
power. The models are adjusted from experimental data and 

many of them do not have a straightforward interpretation. 
Thus, it is difficult to generalize from these results. 

One of the objectives of this thesis is to obtain a general 
variability model able to explain qualitatively the wind power 
variability. The model for large distances and hourly/daily 
variations is based on data available in the web from national 
meteorological institutions [54]. For short intervals and inside 
a wind farm, the model is based on the experience with a 
logger system designed and installed in four wind farms [35, 
36], the wind coherence model of W. Schlez and D. Infield 
[37], and the general coherence function derived by Risø 
Institute in Horns Rev wind farm [38, 39]. 

The complexities inherent to this mathematical model are 
partially circumvented presenting some case studies with 
meaningful graphs and using the classical tools of signal 
processing and time series analysis when possible. 

The application of the classical theory of stochastic 
processes is widespread in telecommunications, radar 
detection, audio and other fields, but it is less usual in wind 
power. The classical stochastic framework brings the research 
made in other fields of knowledge into wind power. Other 
benefit of the classic theory is the more straightforward 
interpretation of the obtained results. 

The classical signal analysis of data from the 
meteorological weather stations in the time-frequency domain 
is a contribution of this thesis in the form of a freely available 
program. Special efforts have been done to design a user 
friendly interface, an intuitive operation and meaningful 
graphics. 

To account the non-linear behaviour of the wind, the 
Markov Chain Approximation Method is employed as a tool 
to discretize the stochastic differential equations involved in 
the wind power dynamics. This framework makes possible 
the utilization of the dynamic optimization of wind power 
using Markov Decision Processes [40, 41]. These techniques 
have been customarily used in other fields, but they are quite 
novel in wind power. 

One of the advantages of using Markov Chains is that the 
wind power dynamics can be characterized through a matrix 
and its stochastic interpretation is straightforward. The 
discretization of a stochastic system into Markov Chains is 
easy to interpret. Moreover, the Markov Chain 
Approximation can be used to optimize the system operation 
using deterministic tools when the uncertainty of the forecast 
can be estimated. Markov Chain Approximation and Monte 
Carlo Analysis of dynamic systems are closely related. 

Considering the thesis scope, its aims have been achieved 
through the following items: 

• Characterization of the variability in the time domain 
of the wind measured with an anemometer through 
its power spectral density (PSD). 

• Estimation of the spatial variability in the swept area 
using the potential flow theory, wind shear and 
turbulence. 

• Estimation of the aerodynamic torque of the turbine 
accounting the spatial diversity of the wind. 

• Estimation of the equivalent wind defined as the 
wind that produces the same turbine or farm output 

http://www.clubs.psu.edu/up/math/presentations/Apt-Windpower.pdf
http://www.greenpeace.org.uk/media/reports/wind-power-managing-variability
http://www.nationalgrid.com/uk/Electricity/Operating+in+2020/2020+Consultation.htm
http://www.ieawind.org/AnnualReports_PDF/2006%20AR%20IEA%20Wind/2006%20IEAWind%20AR.indd.pdf
http://www.windygrid.org/IMTC2000_IM5194.pdf
http://www.windygrid.org/SpectralDensityOfWindFarmPowerOutput.pdf
http://www.springerlink.com/content/j432n7711k8l71h7/
http://wenku.baidu.com/view/cd2ae993daef5ef7ba0d3cdc.html
http://onlinelibrary.wiley.com/doi/10.1002/we.246/pdf
http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5pwphKy9JBiFR4uPF-he-PHyQ&sig2=xFokWMG0bRds48rstDv25w&cad=rja
http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBkQFjAA&url=http%3A//risk2.ewi.tudelft.nl/research-and-publications/doc_download/197-phdpapaefthymioupdf&rct=j&q=%22Integration%20of%20Stochastic%20Generation%20in%20Power%20Systems%22&ei=WVqoTbL6MZCzhAfe0fTXCQ&usg=AFQjCNGMWCle4nn_cmW_BL4Ti37GrDJKXA&sig2=yKMvCjuWpKM6ELdw7OpaWg&cad=rja
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as the real wind field using the simplified formula of 
the torque or power coefficient. 

• Creation of an interactive computer program to 
estimate the coherence of the wind measured at two 
weather stations as the experimental time and 
frequency variability of the wind. This program also 
clasiffy the system composed of two sites into states 
and computes the Markov transmission matrix 
among the states. 

• Creation of an interactive computer program to 
estimate gusts of equivalent wind for a turbine or for 
a cluster of turbines. 

• Derivation of a simplified statistical model of the 
electric grid of a wind farm. 

• Creation of an interactive computer program to 
estimate the wakes in an offshore wind farm. 

• Characterization of the non-linear dynamics of wind 
power experimentally using the Markov Chain Ap-
proximation Method in a small demonstrative case. 

1.3. Thesis Outline 
This thesis is structured into eight chapters and six 

annexes. It is also accompanied by several interactive pro-
grams to demonstrate some applications of this thesis. Since 
some sections are indeed quite dense, the author recommends 
trying the accompanying programs (their manuals are at the 
end of this thesis) before revising the main body of this thesis. 

Many programs have been developed during the realization 
of this thesis, some of them for developing a multipurpose 
datalogger and others for data processing. In fact, only the 
more versatile and illustrative programs have been included, 
those that can be run in a standard PC with freely available 
data and without requiring buying licenses. 

The first chapter consists in this introduction. The funda-
mentals of the wind variability are introduced in the second 
chapter. The computation of the turbine torque and the 
concept of equivalent wind are derived in the third chapter. 
The characterization of the variability of the wind power in 
the frequency domain is presented in the forth chapter. The 
fifth chapter deals about almost periodic fluctuations in the 
time domain. The sixth chapter is devoted to gust models. 
The seventh chapter characterizes the wind power variability 
in the time domain using the Markov Chain Approximation 
Method and it proposes the Markov Decision Processes for 
optimizing dynamically controllers and policies. The last 
chapter contains the closure with the main contributions of 
this thesis. 

Chapter 2: Variability of Wind in the Frequency 
Domain 

Chapter 2 introduces the basic concepts and features 
concerning the variation of the wind. The concept of 
spectrum of wind is presented, which is a common way to 
characterize the frequency content of the turbulence present 
in the wind. The spectra of wind more often used in wind 
power are compared.  

The Taylor hypothesis of turbulence, a simple model that 
relates about spatial variations and temporal variations of the 
wind, is discussed. This hypothesis can be used to reconstruct 

the approximate spatial structure of wind from measurements 
with an anemometer fixed at a point in space. A more 
advanced concept is the spatial and temporal coherence of the 
wind, which statistically quantifies the variations of wind in 
different points in space or in separate moments of time.  

Chapter 3: The turbine torque and the equivalent wind 
Chapter 3 introduces the simplified calculation of the 

aerodynamic torque coefficient based on the torque of the 
turbine, which assumes that the wind is uniform in the area 
swept by the turbine. From this formula, a simplified small 
signal model is derived to estimate the torque when the wind 
conditions in the swept area are not uniform 

Based on this approximation, the equivalent wind is 
defined as the one that produce the same effects that the non-
uniform real wind field. This simplification implies that the 
effects of the wind field, which cannot be measured directly, 
can be estimated from an equivalent wind, usually estimated 
from the measurements of an anemometer.  

Thus, the aerodynamic torque can be computed 
approximately with a simple formula from the torque 
coefficient and from the equivalent wind, derived from the 
measured wind.  

The equivalent wind speed contains a stochastic 
component due to the effects of turbulence, a rotational 
component due to the wind shear and the tower shadow and 
the average value of the wind in the swept area, considered 
constant in short intervals. The fluctuations in the 
aerodynamic torque due to the real wind field along the swept 
rotor area are introduced in the equivalent wind modifying its 
spectra. This simplification works relatively well since the 
vibrational turbine dynamics randomize the real dependence 
of the generator torque with the rotor angle. 

The combination of the small signal model and the wind 
coherence permits to derive the spatial averaging of random 
wind variations. A stochastic model that links the overall 
behaviour of a large number of turbines is derived from the 
behaviour of a single turbine. 

The power spectral density of the equivalent wind of a 
cluster of turbines is estimated from parameters of an isolated 
turbine, lateral and longitudinal dimensions of the cluster 
region and the decay factor of the spatial coherence.  

Although the proposed model is an oversimplification of 
the actual behaviour of a group of turbines scattered across 
the area, this model quantifies the influence of the spatial 
distribution of the turbines in the smoothing and in the 
frequency content of the aggregated power. This stochastic 
model is in agreement with the experimental observation that 
slow changes are highly correlated among a turbine cluster 
while fast changes are poorly correlated. 

Chapter 4: Variability of power in the frequency 
domain 

In the previous chapters, the wind has been analyzed to 
estimate the variations of aerodynamic torque. However, the 
aerodynamic torque interacts with the structural and drive-
train vibrations. Consequently, the power injected in the grid 
has a stochastic nature even in total absence of turbulence. 
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There are many specific characteristics that impact notably 
in the power fluctuations between the first tower frequency 
(usually some tenths of Hertzs) and the grid frequency. The 
realistic reproduction of power fluctuations needs a 
comprehensive model of each turbine, which is usually 
confidential and private. 

One contribution of this chapter is the experimental char-
acterization of the power fluctuations of three commercial 
turbines, whose data is shown in annex B. The variations of 
power during the continuous operation of turbines are meas-
ured and experimentally characterized for timescales in the 
range of minutes to the grid period. Some experimental 
measurements in the joint time-frequency domain are 
presented to test the mathematical model of the fluctuations. 

The admittance of the wind farm is defined as the ratio of 
the oscillations from a wind farm compared to the fluctua-
tions from a single turbine, representative of the operation of 
the turbines in the farm. The partial cancellation of power 
fluctuations in a wind farm are estimated from the ratio of the 
farm fluctuation relative to the fluctuation of one representa-
tive turbine. Some stochastic models are derived in the fre-
quency domain to link the overall behaviour of a large num-
ber of wind turbines from the operation of a single turbine. 

A literature review on Power Spectral Densities (PSD) and 
periodograms (averaged spectrum) of wind power are pre-
sented. The variability of PSD is also studied, a step ahead 
from the literature, in the joint time-frequency domain 
through spectrograms. 

Chapter 5: Almost Periodic Fluctuations in the time 
domain 

Chapter 5 analyzes from a phenomenological point of view 
the aggregation of unsynchronized almost periodic fluctua-
tions from the turbines in the time domain, assuming a char-
acteristic behaviour at each turbine. This almost determinist 
behaviour does not represent the real stochastic nature of the 
power injected by the turbines. However, this assumption 
illustrates that the output of a wind farm is stochastic even if 
each turbine power has non-synchronized periodic fluctua-
tions. 

In the first part of this chapter, the statistical distribution of 
turbine blade positions along a wind farm is derived in an 
unsynchronized wind farm. The blade crossing in front of its 
turbine tower is modelled as a Poisson Process. The variabil-
ity of the wind farm power output due to tower shadow and 
the probability of extreme conditions (such as simultaneous 
tower shadow events at all turbines of a wind farm) are esti-
mated in the time domain. 

In the second part of this chapter, the flicker emission of a 
turbine cluster is derived from the output of a representative 
turbine of the cluster. Flicker emission of a wind farm during 
continuous operation has three main sources: wind 
turbulence, tower shadow and generator or power converter 
oscillations. Flicker emission of a wind farm during 
continuous operation is derived from the output of a single 
wind turbine since fast fluctuations are low correlated among 
turbines. A stochastic model of the power output PSD is 
parameterized and a simple formula is derived to estimate 
flicker level from PSD and network parameters. This simple 

formula assesses the individual influence in flicker level of 
wind turbulence, tower shadow and generator/converter.  

The flicker model has been tested with data from several 
wind farms. In wind farms with induction generators and 
squirrel cage or variable resistance rotor, wind turbulence was 
the main flicker source since the turbine coupling was soft 
enough to damper generator oscillations and torque variations 
related to rotor angle. In wind farms with doubly fed induc-
tion generators, the main flicker source was the induced noise 
at frequencies around maximum flicker sensitivity by the 
power converter. In the cases analyzed, the flicker level was 
very low due to the strength of the network at the point of 
common coupling.  

Some experimental measurements are presented to test the 
mathematical model of the fluctuations. 

Chapter 6: Characterization of wind gusts in the time 
domain 

The previous chapters have introduced the wind spectral 
density as the feature that summarizes the stochastic behav-
iour of the wind. In this chapter we will use this spectral 
density to analyze the characteristics of wind variations in the 
time domain and to synthesize samples of equivalent wind 
with some features. 

The mechanisms that generate turbulent wind changes are 
analyzed, since they are closely related to the shape of the 
bursts and the distribution of velocity variations. Experimen-
tal wind variations fit approximately a Laplacian distribution, 
indicating some unknown multiplicative effect involved in the 
extreme deviations. A bijective transformation is defined to 
obtain the target distribution. 

The average shape of the peak gust and the ramp gust are 
defined and their probabilities are estimated from the theory 
of conditional generation of samples. The peak gust is char-
acterized by the wind speed deviation ΔUwind respect the aver-
age. The ramp gust is characterized by the variation of wind 
ΔUwind between two instants separated by a time Δt (this 
parameterization specifies both the average gradient and the 
duration of the ramp). The properties of a normal process led 
to significant conclusions about the behaviour of the equiva-
lent wind. 

The peak and ramp gusts are synthesized in the frequency 
domain using the Karhunen-Loève expansion and the theory 
of conditional simulation of normal processes. An 
approximate method to avoid numerical difficulties that arise 
generating very long samples. 

The concept of the equivalent wind gust can be extended to 
a geographic area and it can serve to compute the maximum 
variability of the power expected in a region. 

Chapter 7: Variability of wind power in the time 
domain 

The variability of wind speed can be modelled during short 
intervals with the classical theory of stationary normal proc-
esses, which has been presented in the previous chapters. 
However, the weather is a non-stationary process and this 
cannot be neglected for horizons longer than some hours. The 
evolution of wind power can be described in the time domain 
by stochastic differential equations. Numerical Weather Pre-
diction (NWP) models the physics of meteorological dynam-
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ics. Wind speed is customarily transformed into generated 
power with a power curve or or with a model output statistics 
(MOS).  

Since the wind variations show a fairly multiplicative 
behaviour, the Markov Approximation Method is suitable for 
modelling the non-linear stochastic behaviour of the wind. 
This technique is analogous to the finite difference approxi-
mation in deterministic differential equations and it is a pow-
erful tool to optimally control the system, especially if 
numerical weather predictions are available.  

Indeed, if numerical weather predictions are unattainable, 
the Markov chain can be used for generate basic probabilistic 
forecasts based on the system behaviour previously observed. 
The transmission matrix among the Markov states models the 
non-statiorarity of wind, present in long time spans.  

The optimal control of a Markov system is called a Markov 
decision process and they can be expressed as a policy, which 
gives the best action to take for a given wind farm state, 
regardless of the prior history. Once a Markov decision 
process is combined with a policy, this fixes the action of the 
control for each state and the resulting combination behaves 
indeed like a Markov chain.  

The classic control theory of linear and time-invariant 
systems is well established. However, many devices in the 
grid are discrete and their control can not be linearlized 
because their unnecessary switching can produce grid distur-
bances or excessive device wear.  

Markov chains can model switching or jump events such 
the probability of wind farm trips and the connection or 
disconnection of devices such as reactors or capacitors. Some 
events such as extreme wind variations or generator discon-
nections due to severe grid conditions can eventually jeop-
ardize the grid. Thus, the stochastic control is better suited to 
manage these events than the classical control of linear and 
time invariant systems. The optimum design and the optimum 
control can be achieved assigning costs to staying in the same 
system state or jumping to other states. Thus, the Markov 
decision processes can be used to optimize the design and 
control of many devices which should encompass the non-
linear and time-dependent variability of the wind power. 

Usually, Markov chains have been utilized as Monte Carlo 
random generators in stochastic power flows due to the high 
dimension of their state space. To reduce the state space, a 
discretization methodology is presented where the number of 
states is remarkably reduced through careful system model-
ling and clustering. This makes the optimal control tractable 
through Markov decision processes. 

The classification of states can be based on power output, 
equivalent wind speed or wind speed prediction, depending 
on the available data and the aim of the wind farm model. The 
performance matrix in Standard IEC 61400-12-3 can be used 
as emission matrix to relate wind and power in a wind farm 
using a Hidden Markov Model. The wind farm model can be 
used also as time interpolation or to guess if there is an outlier 
in the state (a switching event). 

One application example is a probabilistic power flow. A 
methodology to optimize the power flow based on Markov 
processes is presented. Load, generation and network topol-
ogy is classified into a small set of cases represented by the 
centroids of the fuzzy clusters. Afterwards, regular determi-

nistic power flow is run for each pattern centroid and the 
statistics and the system stochastic dynamics are derived from 
the transition matrix of the embedded Markov Process. 
Finally, the optimal control of generation, network topology 
and discrete elements such as switches and transformer tap 
changers can be computed conveniently by Markov Decision 
Processes. This approach is advantageous for loads highly or 
barely interrelated and for non-controllable generators such as 
wind and solar. Other possible application is the design and 
control of reactors and capacitors in a wind farm to maximize 
the profit due to reactive power control. In that case, a 
simplified, quadratic model of the wind farm in the steady 
state can be used to estimate the maximum absorption and 
injection of reactive power at different points of the farm. 

Other application is the optimal design and control of the 
load consumption of an isolate system with renewable 
generation and storage. The optimal design minimize the cost 
of the system infrastructure with the expected cost of mainte-
nance, energy losses, load deferring and not supplying regular 
and critical loads. The control of the optimal design manages 
the loads for optimize the expected profit. 

Chapter 8: Conclusions and Future work 
In this chapter, the general conclusions of this thesis will 

be presented, emphasizing its scientific contributions. Future 
work lines will be also outlined. 

Annex A: Simplified electrical model of the wind farm 
This annex presents a simplified statistical model to repre-

sent a wind farm in a power flow study. This model has been 
developed taking into account the variability in the generated 
power from windmills and its normal operation. Its main 
advantages are its simplicity and the possibility of calculating 
the voltage in the park’s network without having to run a 
power flow program. Another advantage of the proposed 
method is that it is based in the fourth-pole theory, widely 
used in electrical engineering. Finally, the uncertainty of the 
model is assessed.    

One possible application is to study the influence of nearby 
wind farms. Other possible application of this model is to 
study the management of reactive power in wind farms. The 
reactive power strategies for wind turbines and wind farms 
are analyzed as an application example.  

Previous Spanish regulation stated unity power factor 
(P.F.) as target. New regulation introduced in the Royal 
Decrees 436/2004 and 661/2007 rewarded up to 8% with P.F. 
< 0,95 inductive (on low-load hours) and P.F. < 0,95 capaci-
tive (on peak hours).  

A better utilization of the infrastructure can be attained 
considering the reactive power generation availability even in 
calm periods –depending on the reactive power compensation 
scheme implemented in the wind farm-. This can lead to a 
voltage support strategy in a nearby node, especially if the 
voltage at that node can be estimated despite tap changing 
transformers. 

The effect of some control strategies in nearby nodes are 
quantified statistically regarding the stochastic nature of wind 
power. 
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Annex B: Analysis of wind power variability from 
measured data 

The models developed in this thesis are based in the per-
sonal experience gained designing, installing and analyzing 
the records of a multipurpose data logger for wind turbines 
and wind farms. The first prototypes have been developed 
further and now it is commercially available under the name 
AIRE (Analizador Integral de Recursos Energéticos). 

This annex shows some examples of data analysis. The 
contributions of these examples are the analysis methodology 
and the conclusions gained from the analysis of the measure-
ments shown in the annex. In fact, some effects observed in 
the data such the measured oscillations are quite difficult to 
obtain from simulations. 

The measurement system was installed in several wind 
farms between 1998 and 2000 owned by CEASA (now NEO 
Energía) and TAIM-NEG-MICON (now VESTAS). 

Borja wind farm had 27 Vestas’ turbines with variable 
pitch and wound rotor induction generators with a variable re-
sistor connected to their rotor, VRIG (generator speed vary 
from 1500 to 1560 rpm).  

Remolinos wind farm is in a cliff top and it has doubly fed 
induction generators (DFIG) from Gamesa, with generator 
speed ranging from 1220 to 1620 rpm. There are 15 x G42 
wind turbines of 648 kW (42 m rotor diameter) and 3 turbines  
G47 of 660 kW (47 m rotor diameter), both of them with 
variable pitch.  

It was also installed in Valdecuadros, a wind farm with two 
600 kW wind turbines and one 750 kW turbine and with fixed 
pitch (stall control). The utilized generators are squirrel cage 
induction generators (SCIG), fixed speed, directly connected 
to the network. The 600 kW WT has a solo generator, with 
one fixed speed (1500 to 1514 rpm). The 750 kW wind 
turbine has a secondary 200 kW generator to increase pro-
duction at low wind by reducing rotor speed (1000-1006 rpm 
versus 1500-1510 rpm). 

Annex C: Torque estimation from blade element theory 
This annex introduces an aerodynamic model to estimate 

the influence of deterministic wind component (wind shear 
and tower shadow) from the torque coefficient and the main 
properties geometry of the turbine. The model is derived 
using blade element theory, potential flow upstream the tower 
and uniform blade loading. 

The aim of this model is to compute the aerodynamic 
torque at the low-speed shaft, simply enough to be included in 
the generator control or for simulating a cluster of turbines, 
and requiring only basic features such as the aerodynamic 
torque coefficient and the main constructive parameters of the 
turbine. This model can also be used to study the effect of 
mismatches in the blades (pitch errors in each blade) and 
errors in orientation of the turbine. 

Besides its computational efficiency, another advantage of 
this method is that only requires the torque coefficient and the 
main dimensions of the turbine (it does not need to know the 
airfoil section along blades). 

The model presented in this chapter is based on blade 
element theory with constant tangent force distribution, also 
known as uniform blade loading. The tangential force 

distribution is approximately constant in the main body of the 
blade when the turbine operates at partial load (maximum 
turbine efficiency), but may introduce errors when the tip of 
the blades stalls. However, the starting of the blade stall is 
intricate and a more complex model is needed to take into 
account the hysteresis of the separation of the boundary layer 
in the blades. Since pitch controlled turbine is unusually 
operating with attached flux and the proposed method is valid 
for pitch controlled turbines. 

Annex D: Wake estimation in an offshore wind farm 
The distribution of wind speeds and turbulences along a 

wind farm is required to achieve a fair representation of a 
wind farm. 

For simplicity, this model is targeted to offshore wind 
farms, where there is no influence of land topography. The 
wake is estimated in this annex using a kinematic model.   

One of the contributions of this model is the simplicity of 
testing different wakes models. 

Annex E: Manual of the program WINDFREDOM  
One contribution of this thesis is the program that 

downloads, represents and analyzes the data from the network 
of meteorological weather stations, typically used by 
meteorological organizations for weather prediction. 

An user manual of the program WINDFREDOM with 
three case studies has been included to show the potential use 
of this program. 

Annex F: Manual of the program EQWIGUST  
Another contribution of this thesis is the program that 

generates gust or random samples with certain features of 
equivalent wind. 

This program estimates the average shape of gusts of the 
equivalent wind with some features from the characteristics 
of the wind and the turbine. 

An user manual of the program EQWIGUST with two 
three random samples has been included to show the potential 
use of this program. 
 
 

 
 



2.1. Introduction 
ind oscillations due to momentary wind speed varia-
tions can be classified according to their rate and their 
spatial extent. Slow fluctuations (in the range of tens of 

minutes and hours) are mainly due to meteorological dynam-
ics and they are highly correlated among near wind farms.  

Fast fluctuations have lower spatial correlation [42, 43] and 
wind gust and turbulence effects are smoothed in the output 
of the wind farm. A swift gust arriving simultaneously to all 
turbines dispersed in an area of kilometres is also very 
uncommon. The correlated component of wind is estimated in 
[44] from the Davenport type and Schlez and Infield’s decay 
factors [45], showing that coherence for distances greater than 
100 m is bellow 10-20 at tower shadow frequencies (between 
0.5 Hz and 2 Hz). In fact, the coherence for the usual dimen-
sion of a wind farm is low for oscillations quicker than 
0,001 Hz [46]. Thus, the fluctuations quicker than 10 minutes 
are low correlated among the turbines a wind farm. 

Fluctuations of power output can be divided into cyclic and 
acyclic components. Cyclic components are due to tower 
shadow, wind shear, modal vibrations, etc. Acyclic compo-
nents are due to turbulence, weather dynamics and events 
(turbine connection or disconnection, change in generator 
configuration, etc.). Oscillations from a few minutes up to a 
grid cycle are mainly linearly uncorrelated and their sum 
across a wind farm can be estimated using stochastic analysis 
commonly applied in other areas such as multipath fading in 
communication channels, clutter and target cross section in 
radars, interference in communication systems, etc. However, 
this approach is novel in wind energy.  

In [47], a transfer function of the wind farm power output 
of N turbines respect the output of a single turbine is esti-
mated with gain N at low frequencies (f < 0.03 Hz) and gain 
√N  at high frequencies (f > 0.09 Hz). Micro-meteorological 
and dynamic fluid models can predict the correlated fluctua-
tions which predominate at the very low frequencies. Fully 
correlated fluctuations scales proportional to the number of 
turbines N whereas linearly uncorrelated fluctuations cancel 
partially among turbines and they scale up typically in a 
factor √N, according to the central limit theorem. 

The influence of blade position in a single turbine power 
output has been widely analyzed in the literature [48, 49, 50]. 
The aerodynamic coupling among the turbines in a wind farm 
is negligible due to the turbulent flow mixing. According to 
[51], a very weak electrical network and a very low turbu-
lence is necessary for synchronization to happen driven by 
voltage drops. Since these conditions are not realistic, the 
rotor position has random angles and the crossing of a blade 

in front of the turbine tower is a random event with constant 
probability rate. 

Experimental measurements [52] have corroborated that 
the synchronization of blades is unusual. It has also been 
observed that the cuasi-periodic aerodynamic torque oscilla-
tions are transformed into stochastic oscillation of electric 
power due to the complex wind turbine dynamics. The power 
oscillations of frequency bellow 0,03 Hz are greatly reduced 
at the farm output and the main source of variability in the 
wind power injected in the grid is the meteorological 
dynamics. 

To sum up, this chapter focuses on the spatial and temporal 
variability of the wind for short horizons. Fast fluctuations of 
wind power during continuous operation of wind turbine are 
not an issue for utilities. Only in isolated or in weak networks, 
or in the simultaneous tripping event of big amounts of wind 
power they are an issue. 

These results can be extended to several wind farms since 
the uncorrelated components increases when the distances 
among turbines become bigger. 

The models developed in this thesis are based in the 
personal experience gained designing, installing and 
analyzing the records of a custom data logger for wind 
turbines and wind farms [53]. The main system was 
composed by a PC computer, a DAQ (Digital Acquisition 
Board), signal conditioning modules and LabVIEW software 
for logging and analyzing the measurements. It could be 
placed in the low voltage side of a WT or connected to the 
measuring transformers of the wind farm substation. 

The first prototypes have been developped further and now 
they are commercially available under the name AIRE 
(Analizador Integral de Recursos Energéticos). 

The measurement system was installed in several wind 
farms between 1998 and 2000 owned by CEASA (now NEO 
Energía) and TAIM-NEG-MICON (now VESTAS). 

Borja wind farm had at that time 27 Vestas’ turbines with 
variable pitch and wound rotor induction generators with a 
variable resistor connected to their rotor, VRIG (generator 
speed vary from 1500 to 1560 rpm).  

Remolinos wind farm is in a cliff top and it has doubly fed 
induction generators (DFIG) from Gamesa, with generator 
speed ranging from 1220 to 1620 rpm. There are 15 x G42 
wind turbines of 648 kW (42 m rotor diameter) and 3 turbines  
G47 of 660 kW (47 m rotor diameter), both of them with 
variable pitch.  

Valdecuadros is an experimental wind farm with two 
600 kW wind turbines and one 750 kW turbine and with fixed 
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pitch (stall control). The utilized generators are squirrel cage 
induction generators (SCIG), fixed speed, directly connected 
to the network. The 600 kW WT has an unique generator, 
with one fixed speed (1500 to 1514 rpm). The 750 kW wind 
turbine has a secondary 200 kW generator to increase 
production at low wind by reducing rotor speed (1000-1006 
rpm versus 1500-1510 rpm). 

The model of geographic variation of wind has been tested 
with data from the World Meteorological Organization 
(WMO). Even though these stations are not so exposed to the 
wind, the measured wind speed can be scaled up to the typical 
levels in a wind farm and interesting conclusions can be 
drawn from the vast network of weather stations available. 

A program called WINDFREDOM [54] has been 
developped for retrieving the weather data from the servers of 
Wolfram Research Inc. and computes the coherence from 
nearby weather stations. This program can be run freely with 
the Mathematica Player and it will be accessible in 
http://www.windygrid.org/software under the GNU General 
Program License after the public defence of this thesis. A 
brief manual of this program is included in the axxes of this 
thesis and a copy of the software is attached in the CDROM. 

2.2. Characterization of the turbulence 
At a very basic level, a turbulence flow can be interpreted 

as a population of many eddies (vortices), of different sizes 
and strengths, embedded in another and forever changing, 
giving a random appearance to the flow (Fig. 1). Two 
variables then play a fundamental role: d, the characteristic 
diameter of the eddies, and û, their characteristic orbital 
velocity.  

Since the turbulent flow consist in many eddies, of varying 
sizes and speeds, û and d do not assume each of a single 
value but vary within a certain range. In stationary, 
homogeneous and isotropic turbulence, that is, a turbulent 
flow that statistically appears unchanging in time, uniform in 
space and without preferential direction, all eddies of a given 
size (same d) behave more or less in the same way and can be 
thought of sharing the same characteristic velocity û. In other 
words, we make the assumption that û is a function of d (Fig. 
2) [55]. 

 
Fig. 1: Drawing of a turbulent flow by Leonardo da Vinci (1452–1519), who 
recognized that turbulence involves a multitude of eddies at various scales. 
Taken from Benoit Cushman-Roisin [55]. 
 

 
Fig. 2: Eddy orbital velocity versus eddy length scale in homogeneous 
turbulence. The largest eddies spin the fastest. Taken from “Environmental 
Fluid Mechanics” of Benoit Cushman-Roisin [55] and modified from Simon 
Watson [56]. 

 
Fig. 3: Schematic of eddies as a function of height at atmospheric boundary 
layer. Taken from Simon Watson  [56]. 

2.2.1. Energy cascade in eddies 

In the view of Kolmogorov [57], turbulent motions span a 
wide range of scales ranging from a meteorological 
macroscale at which the energy is supplied, to a microscale at 
which energy is dissipated by viscosity. The interaction 
among the eddies of various scales passes energy sequentially 
from the larger eddies gradually to the smaller ones (Fig. 3). 
This process is known as the turbulent energy cascade (Fig. 
4). 

 
Fig. 4: The turbulent energy cascade. According to this theory, the energy fed 
by external forces excites the largest possible eddies and is gradually passed 
to ever smaller eddies, all the way to a minimum scale where this energy is 
ultimately dissipated by viscosity. Taken from Benoit Cushman-Roisin [55]. 
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If the state of turbulence is statistically steady (statistically 
unchanging turbulence intensity), then the rate of energy 
transfer from one scale to the next must be the same for all 
scales, so that no group of eddies sharing the same scale sees 
its total energy level increase or decrease over time. It follows 
that the rate at which energy is supplied at the largest possible 
scale (dmax) is equal to that dissipated at the shortest scale 
(dmin). Let us denote by ε this rate of energy 
supply/dissipation, per unit mass of fluid: 

ε = energy supplied to fluid per unit mass and time = power 
cascading from scale to scale, per unit mass = energy 
dissipated by viscosity, per unit mass and time. 

With Kolmogorov, we further assume that the 
characteristics of the turbulent eddies of scale d depend solely 
on d itself and on the energy cascade rate ε. This is to mean 
that the eddies know how big they are, at which power 
density is supplied to them and at which rate they must supply 
it to the next smaller eddies in the cascade. Mathematically, û 
depends only on d and ε. The dimensional analysis of the 
magnitudes, [û] = LT−1, [d] = L and [ε] = L2T−3; the only 
dimensionally acceptable possibility is û = A(ε d)1/3, in which 
A is a dimensionless constant on the order of unity. This 
relation implies that the smaller d, the weaker û. Thus, the 
larger ε, the larger û. This makes sense, for a greater energy 
supply to the system generates stronger eddies. This could not 
have been anticipated and must be accepted as a result of the 
theory. The implication is that the smallest eddies have the 
lowest speeds, while the largest ones have the highest speeds 
and thus contain the bulk of the kinetic energy. 

2.2.2. Largest and shortest length scales 

Typically, the largest possible eddies in the turbulent flow 
are those that extend across the entire system, from boundary 
to opposite boundary, and therefore dmax  = L, where L is the 
geometrical dimension of the system (such as the width of the 
domain or the cubic root of its volume). In the atmosphere, 
the height has a short vertical extent and a comparatively long 
horizontal extent (distance, length) of the system. 

Therefore, the eddies that rotate in the vertical plane (about 
a horizontal axis, as shown in Fig. 3) have significant 
characteristics from those that rotate horizontally (about a 
vertical axis). 

The shortest eddy scale is set by viscosity, because the 
shorter the eddy scale, the stronger the velocity shear and the 
more important the effect of viscosity. Consequently, the 
shortest eddy scale can be defined as the length scale at which 
viscosity becomes dominant. The ambient air kinematic 
viscosity is νair= 1,51×10-5 m2/s. 

If we assume that dmin depends only on ε, the rate at which 
energy is supplied to that scale, and on νair, because those 
eddies sense viscosity, then the only dimensionally acceptable 
relation is dmin ~ νair

3/4 ε −1/4. Therefore, dmin depends on the 
energy level of the turbulence. The stronger the turbulence 
(the bigger ε), the shorter the minimum length scale at which 
it is capable of stirring. The quantity νair ¾ ε −1/4, called the 
Kolmogorov scale, is typically on the order of a few 
millimetres or shorter. 

The span of length scales in a turbulent flow is related to its 
Reynolds number. Indeed, in terms of the largest velocity 
scale, which is the orbital velocity of the largest eddies, ûmax = 

û(dmax) = A(ε L)1/3, the energy supply/dissipation rate is ε = 
(ûmax/A)3L-1 ~ ûmax

3/L and the length scale ratio can be 
expressed as L/dmin~ L/ (νair ¾ ε −1/4) ~ Re3/4, where Re = 
ûmaxL/νair is the Reynolds number of the flow. As we could 
have expected, a flow with a higher Reynolds number 
contains a broader range of eddies. 

The atmospheric boundary layer spans up to a height of 
about 1000 m above the ground. Since wind speeds are in the 
range of 10 m/s, then the Reynolds number can be estimated 
as Re =ûmaxL/νair= 10 m/s ·1000 m / 1,51×10−5 m2/s  = 
6,6×108, which yields Re3/4 = 4,1×106 and dmin ~ L/Re3/4 = 
2,4×10−4 m or about 0,24 mm. 

The power mass density supply/dissipation is estimated to 
be around ε ~ ûmax

3/L = (10 m/s)3/(1000 m) = 1 m2/s3 or 1 
Watt per kilogram of air. 

2.2.3. Taylor’s Hypothesis of “frozen 
turbulence” 

Turbulent flow can be viewed as a collection of eddies that 
evolve in time and space as they float along in the mean flow 
(Reynolds decomposition). The structure, size and 
distribution of these eddies determine the mixing efficiency 
of turbulence and thus the importance of turbulent transport. 
The  distribution of eddies is very irregular in space and in 
time and it is subject to ongoing change.  

The question is: how then can we begin to measure the size 
and distribution of these eddies that define turbulence? It is 
impractical (or even impossible) to have such high instrument 
density that every eddy is covered all the time. Even spatial 
“snapshots” are difficult and expensive. 

Under certain conditions (homogeneous and stationary 
process) an average over a time-series of observations in one 
place is an adequate representation of the ensemble average 
(incorporating all possible eddies). 

However, a time series essentially samples only those 
eddies that happen to float past a given sensor. If we can 
determine the average of all eddies that way, can we also 
determine their size? 

One difficulty is that such observations are not a pure time-
series: Because the eddies evolve in time (change shape, fall 
apart etc.), we sample a mixture of a time series and a spatial 
transect through the flow. 

A practical suggestion for an escape from this dilemma 
came 1938 from Geoffrey I. Taylor: in certain circumstances, 
turbulence can be considered as “frozen”, as it passes by a 
sensor. This suggestion became known as Taylor’s Hypothe-
sis and assumes that the rate of change of an eddy is small 
compared to the velocity of the mean flow, so that it changes 
only negligibly over the time it takes to float by the sensor. 

Fig. 5 shows an example of the Taylor’s Hypothesis of the 
“frozen turbulence”. An idealized eddy of 100 m horizontal 
dimension contains a wind difference of ±1 m/s from one end 
to the other. At this point, the sensor measures a speed of 
9 m/s . The same eddy has now floated past the sensor with a 
mean wind velocity of 10 m/s. The sensor now measures 
11 m/s, assuming the structure of the eddy has not changed.  

Of course, turbulence always evolves and is in reality never 
frozen. However Taylor’s Hypothesis assumes that the time it 
takes the eddy to float past (Δt = 10 s in this case) is too 
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small for the eddy to change noticeably. In other words: it 
appears to be frozen. 

 
ΔU=+1 m/s

ΔU=–1 m/s

100 m a) t0 = 0 

10 m/s 

b) t1 = 100 m 10 s
10 m/s

=  

10 m/s 

u Ulongitudinal 

w
 

U
ve

rt
ic

al
 

 
ΔU=+1 m/s 

ΔU=–1 m/s 

 
Fig. 5: Example of a idealized eddy of 100 m (represented by a cloud) 
passing through a meteorological mast according to Taylor’s Hypothesis of 
“frozen turbulence”. 

2.3. Wind spectra 
The fluctuations in the wind can be thought of as resulting 

from a composite of sinusoidally varying winds imposed on 
the mean steady wind. These sinusoidal variations will have a 
variety of frequencies and amplitudes. The term ‘spectrum’ is 
used to describe functions of frequency. Thus the function 
that characterizes turbulence as a function of frequency is 
known as a ‘spectral density’ function. Since the average 
value of any sinusoid is zero, the amplitudes are characterized 
in terms of their mean square values. This type of analysis 
originated in electric power applications, where the square of 
the voltage or current is proportional to the power. The 
complete name for the function describing the relation 
between frequency and amplitudes of sinusoidally varying 
waves making up the fluctuating wind speed is therefore 
‘power spectral density’ or PSD for short. 

There are three points of particular importance to note 
regarding PSD’s. 

• The wind variance due to fluctuations within a 
frequency range may be found by integrating the 

( )UwindPSD f+  in that range. 
• The integral of ( )UwindPSD f+  over all frequencies is 

equal to the total wind variance. 
• If two-sided PSD(f) are used instead of PSD+(f), 

the variance is twice the PSD(f) if only positive 
frequencies are used in the integration domain. 

Therefore, PSD is the variance spectral density of a signal, 
irrespective of the signal nature (voltage, wind speed or the 
power from a wind farm). However, the term “Power Spectral 
Density” is in widespread use for referring to the spectral 
density of the variance of a signal. Thus, that usual 
convention will be used in this work. 

The spectral density of the wind variance is often used in 
dynamic analyses. The variations of wind in the stream 
direction of the flow are usually characterized through the 
PSD of the longitudinal component of the instantaneous 
speed. A number of power spectral density functions are used 
as models in wind energy engineering when representative 
turbulence power spectral densities are unavailable for a 
given site. The mathematical forms for along-wind velocity 
spectra which are currently used in major current, or recent, 
wind codes and standards [58] are due to von Karman, 
Kaimal and Davenport. 

2.3.1. Properties of spectra 

The spectral representation theorem (Karhunen–Loève 
theorem) states that any real valued, covariance stationary 
process, such as the wind or the power from the wind farm 
turbines, can be represented as the weighted sum of 
orthogonal periodic components. The benefit of applying a 
spectral approach to the analysis is that it allows for the 
decomposition of these moments into constituent frequency 
components —providing a richer representation of dynamic 
interactions. 

Specifically, the longitudinal component of wind can be 
expressed in frequency components using phasors. The 
stochastic spectral phasor density of the longitudinal wind in 
a time series of duration T  are: 
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Alternatively, the stochastic spectral phasor density can be 
expressed from the cosine ( )a f  and sine ( )b f  Fourier 
coefficients of the time series considered as a period as 

1
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JG
 for f > 0. 

The longitudinal wind in the time domain can be retrieved 
from the spectral phasor density through the scaled inverse 
transform: 
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where e is the base of the natural logarithm, j is the imaginary 
unit, Re states for the real part of a complex number and * 
stands for complex conjugate. 

The wind is usually assumed to be a stochastic process 
characterized by its two-sided power spectral density 

( )UwindPSD f , corresponding to the average squared modulus 
of the stochastic spectral phasor 2 ( )windU f . 

In the meteorological literature, it is more common to use 
the dimensionless unilateral power spectral density, 

2( )/ UwindUwindf PSD f σ+  (excluding the DC term at f =0). It 
represents the frequency distribution of the turbulence when 
plotted in a semi logarithmic graph, see (10) for details.  

The integral of ( )UwindPSD f+  for positive frequencies is the 
variance of the instantaneous wind, 2

Uwindσ  (Parseval’s 
theorem). 
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The probability density function of the wind speed 
provides a measure of the likelihood of particular values of 
wind speed. It provides no information, however, about what 
the speed is likely to be, given what it has been. A measure of 
that tendency is provided by the autocorrelation function. 
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The autocorrelation function can be used to determine the 
integral time scale of turbulence. The normalized auto 
correlation function is: 
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where the asterisk * denotes complex conjugation and it can 
be omitted since wind is a real value.  

Alternatively, the normalized autocorrelation ( )UwindACF τ  
can be computed as the inverse Fourier Transform of 

( )UwindPSD f  divided by 2
Uwindσ  according to the Wiener–

Khinchin theorem.  
The ( )UwindPSD f  at very low frequencies would represent 

the very slow weather dynamics but the wind is not stationary 
at very low frequencies since it shows intermittency between 
stable meteorological situations. Since frequency 
representation of wind is based on the theory of stationary 
signals, ( )UwindPSD f  must be considered with prudence at 
low frequencies. 

The low frequency asymptotic trend (5) can be derived 
from the Wiener–Khinchin theorem: 
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where UwindA  is the integral length scale to be defined later. 
However, (5) has relatively small relevance and, in fact, some 
popular models of wind spectra do not obey this relationship.  

2.3.2. Integral length scale 

The autocorrelation function ( )UwindACF τ  will, if any 
trends are removed before starting the process, decay from a 
value of 1.0 at τ =0 to the first zero crossing at the lag noted 
τfzc, and then ( )UwindACF τ  tends to take on small positive or 
negative values as the lag increases τ. A measure of the 
average time over which wind speed fluctuations are 
correlated with each other is found by integrating the 
autocorrelation (usually from zero lag to the first zero 
crossing, τfzc for better numerical stability). The single 
resulting value is known as the integral time scale of the 
turbulence, TUwind.  

 
0 0

= ( ) ( )
fzc

Uwind Uwind UwindT ACF d ACF d
τ

τ τ τ τ
∞

≈∫ ∫  (6) 

One problem of the infinite integral is the influence of the 
subtraction of the estimated mean [59] or a trend correction 
[60]. Due to these difficulties, the integral time scale is 
estimated, as aforementioned, using the truncated 
autocorrelation function ( )UwindACF τ  up to the first zero 
crossing τfzc, or, equivalently, the windowed periodogram or 
smoothed Fast Fourier Transform (FFT) [61]. The smoothing 
is arbitrary and therefore estimation of UwindT  via FFT is 
subjective [62]. Alternatively, a spectral model can be 
adjusted and the time scale can be derived from its fit.  

While typical values of UwindT  are less than 10 seconds, 
the integral time scale is a function of the site, atmospheric 
stability, and other factors and may be significantly greater 
than 10 seconds. Gusts are relatively coherent (well 
correlated) rises and falls in the wind, and have characteristic 
times on the same order as the integral time scale. Moreover, 

the aerodynamic filter, which relates actual and equivalent 
wind speed, has characteristic times of the same order for 
multi-megawatt turbines. 

Multiplying the integral time scale by the mean wind 
velocity gives the integral length scale. The integral length 
scale tends to be more constant over a range of wind speeds 
than is the integral time scale, and thus is somewhat more 
representative of a site. 

The integral length scale of the turbulence, AUwind, is defined 
as the integral time scale TUwind times the wind speed average, 

windU . 
 Uwind wind UwindU T=A  (7) 

and the dimensionless frequency is fdl = Uwindf T = Uwind

wind
f

U
A . 

The length scale is dependent on the surface roughness, z0, 
as well as the height above ground, z. Standards used for 
wind turbine loading calculations specify different turbulence 
spectra and/or different length scales to be used in different 
test conditions. The length scale dependence on the height 
above ground can be simplified until a constant as is done in 
the Danish standard DS472 or in the IEC standard 61400-1. 

The turbulence intensity is the standard deviation 
normalized by the average wind speed (8): 

 IUwind = σUwind /〈Uwind〉  (8) 

Other normalizations are possible, especially for wind 
turbine design calculations [90]. The standard deviation σUwind 
of the wind speed longitudinal component varies depending 
on the stability regime of the boundary layer. The standard 
IEC 61400-1 assumes an average value of the standard 
deviation 〈σUwind〉 = Iref (0,75Uwind+3,8) with a variance 
Var (σUwind) = ( 1,44Iref )2 in S.I. units. 

Experimental measurements in the inertial subrange and 
dimensional analysis have shown the following tendency at 
high frequencies, with A = 0.10 ~ 0.15: 
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2.3.3. Classic description of turbulence 
in the frequency domain 

The turbulent variations of the wind speed are typically 
expressed in terms of the standard deviation, σUwind, of 
velocity fluctuations measured over 10 to 60 minutes, 
normalized by the friction velocity u* or by the mean wind 
speed 〈Uwind〉. The variation in these ratios is caused by a large 
natural variability, but also to some extent because they are 
sensitive to the averaging time and the frequency response of 
the sensor used. In horizontally homogeneous terrain, the 
turbulence intensity, IUwind = σUwind /〈Uwind〉, is a function of 
height and roughness length in addition to stability, whereas 
σUwind divided by the friction speed u*  may be considered a 
function only of stability near the ground. A typical value for 
neutral conditions is σUwind /u* = 2,5 for homogeneous flat 
terrain, often larger for inhomogeneous terrain, but with very 
large local variations. 

The turbulence intensity is a widely used measure, and for 
neutral conditions with a logarithmic wind profile over flat 
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terrain, we find IUwind ≈ 1/Ln(z – z0). Typical values of IUwind 
for neutral conditions in different terrains are [63]: 

Sea: 8%  
Flat open grassland: 13%  
Complex terrain: 20% or more 

The variations with stability can also be considerable, 
especially at low to moderate wind speeds, with smaller 
resulting turbulent intensities in stable conditions and larger 
values in unstable conditions; values of 25% are not unusual 
in flat open grassland for moderately unstable conditions. The 
variances are quite sensitive to the averaging time because 
much of the turbulent kinetic energy appears at quite low 
frequencies, in both unstable and particularly in stable 
conditions. In the latter case, the variance can be completely 
dominated by large-scale slow variations in wind speed and 
direction overlaid with very little turbulence [64]. 

In wakes we see increased turbulence levels together with 
decreased mean wind speeds, leading to significantly larger 
turbulence intensities than for the free flow [102]. 

The turbulent velocity fluctuations can be described as a 
result of stochastic broadband processes. We see variations in 
velocity in a broad range of frequencies and scales, and 
numerous models have been used to describe the distribution 
of energy over different scales as a function of stability and 
height (see Fig. 6). These models can be subdivided into two 
‘families’: the so-called Kaimal-spectra and their 
generalizations [70], providing good empirical descriptions of 
observed spectra in the atmosphere, and the von Kármán 
spectra, which may provide a good description of turbulence 
in tube-flows and wind tunnels [63]. The popularity of the 
latter can be attributed mainly to the fact that they feature 
simple analytical expressions for the correlations and follows 
the Wiener-Khintchine relation between autocorrelation and 
spectral density, PSDUwind(f=0) = 4σUwind 2 AUwind /〈Uwind〉, 
where AUwind is the integral scale (i.e., the mean wind speed 
times the area under the normalized auto correlation function 
of the wind).  

Usually, the PSD is represented in a way that the total area 
below the graph is the variance of velocity fluctuations, 
σUwind

2 and the height of the curve indicates the relative 
content of the signal at such frequency. Since only positive 
frequencies are plotted, PSD+ is one-sided (one-sided PSD+ 
is the double of two-sided power spectral density PSD). To 
increase the dynamic range of the plot, the logarithmic scale 
is used for frequency in the horizontal axis. Using the 
Riemann–Stieltjes integral, it is straightforward that the 
vertical axis must be the wind spectra times the frequency in 
linear axis (see the Van der Hoven spectra in Fig. 8 or Fig. 6) 
for the underlying area being σUwind

2. 
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If the logarithmic scale is used both for frequency and for 
PSD, then the dynamic range of the spectra is increased, the 

order of the system is easier determined and the peaks of 
semi-log and bi-logarithmic graphs coincide since the 
logarithmic mapping is a monotone increasing function. 
However the area below the bi-logarithmic graph of 
f·PSD+(f) does neither represent the wind speed variance nor 
the height of the graph is proportional to the frequency 
content of the signal. Hence, if a bi-logarithmic scale is used, 
then it is recommended to plot PSD+(f) instead of f·PSD+(f). 

 
Fig. 6: Model spectra of the streamwise velocity component 50 m above 
ground level in flat terrain for neutral (L infinite), stable (L = 30 m) and 
unstable (L = -30 m) conditions, where L is the Monin-Obukhov length. The 
areas under the curves are proportional to the variances. Taken from “Wind 
Power Meteorology” by Risø National Laboratory [63]. 

Typical spectra, (at near neutral, and not too close to the 
ground) are dominated by broad maxima and falling towards 
high frequencies as f-5/3. Note the quite large differences in 
the variances for different stabilities in Fig. 6 (area bellow the 
plots). The large variances correspond to unstable boundary 
layer and much smaller variances happen with stable bound-
ary layer. The peak of f·PSD+(f) is lower in unstable atmos-
phere than in stable atmosphere. The characteristic period of 
the turbulent oscillations in unstable boundary layer is τpeak, 

unstable = 1/fpeak, unstable ~ 1/0,004 Hz = 250 s. In stable boundary 
layer, the characteristic period is much smaller, τpeak stable = 
1/fpeak, stable ~ 1/0,07 Hz = 14 s and the oscillations have 
smaller amplitude due to the reduced variance. The neutral 
atmosphere behaviour is between stable and unstable 
behaviour. 

The very low frequency behaviour is typically 
characterized by a large amount of variation and statistical 
uncertainty. In fact, frequency analysis of stochastic signals is 
based on linear, time-invariant system behaviour (i.e., system 
characteristics do not vary significantly inside the time of 
study). The very low frequencies are related to long time 
spans, where the atmospheric characteristics do vary 
significantly. This is the reason why numeric weather models 
or Markov chains are more suitable than frequency models 
for analyzing very long time spans (very low frequencies). 

The traditional way of relating length and time scales in 
turbulence is through the so-called Taylor ‘frozen turbulence’ 
approximation, i.e. the turbulence statistics can be regarded as 
a result of a frozen picture of turbulence advected past the 
observer by the mean wind, such that λ= 〈Uwind〉/f, where λ is 
a length scale and f  the corresponding frequency observed in 
a fixed frame of reference. In the simple Kaimal formulation 
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for neutral conditions, approached from stable conditions, 
spectra close to the ground have a dominating length scale of 
about 22 times the height above the ground. This is a fair 
approximation at low heights and moderate wind speeds, but 
above 30-40 m and for high wind speeds [65] the length scale 
approaches a constant value, typically 500-1500 m. There-
fore, significant power fluctuations are due to eddies with 
length scales of a bigger magnitude than the rotor radius R.  

Terrain inhomogeneities may locally give rise to very large 
changes in the spectra. In flow over hills, the pressure field 
perturbations induced on the flow by the presence of the hill 
lead to an (almost) instantaneous redistribution of energy 
from the stream wise component of the wind to the vertical 
component by rapid distortion [66, 67]. In situations with 
changing roughness, the turbulence changes gradually 
downstream,  first at small scales (high frequencies), and later 
also at larger scales. Because it can take considerable 
amounts of time (tens of minutes to hours) to change the 
large, energy-containing eddies, the turbulence of the flow 
“remembers” the upstream conditions far downstream [103]. 
The general effect of inhomogeneous terrain is to increase 
turbulence, typically at length scales comparable in size to the 
characteristic terrain features [41]. In this way, the shape of 
the spectrum approaches that of the unstable spectrum, where 
typical length scales of the energy-containing range are of the 
order of several kilometres.  

Neutral conditions are very rare events, typically occurring 
only as transitions between stable and unstable conditions. 
However, near-neutral conditions occur also during overcast 
skies and moderate to high wind speeds. This variation in 
stability means that at a particular site, a wide range of 
dominating length scales are seen: from tens of meters to 
several kilometres, the distribution of which depends very 
much on the local stability climatology.  

The probability distribution of length scales at a coastal site 
is shown in Fig. 7. Here, the length scale was defined instead 
of the length scale corresponding to the peak of the semi 
logarithmic plot of f·PSDwind(f), as the scale for which half of 
the variance of the stream wise component is distributed on 
larger scales and the other half on smaller scales –i.e., the 
scale corresponding to the turbulence median in a semi 
logarithmic plot of f·PSDwind(f)–. This length scale does not 
coincide exactly with the peak of the power spectrum –the 
difference being < 10% for a typical spectrum– but the length 
scale defined in this way is much easier to measure reliably.  

In Fig. 7, the most common length scale is 500–600 m, but 
the distribution is skewed (almost symmetric in the logarith-
mic representation) and the average length scale is about 1000 
m. Length scale distributions are presented also for other 
heights in [68]; from 15 m and above these are very similar 
(for the 7-m level the scales were found to be significantly 
smaller) with a slight tendency towards smaller scales closer 
to land. Also, it has been observed at the offshore location, 2 
km from the coast, that the scales are smaller for offshore 
flow and larger for onshore flow. 

Wind spectra from von Karman, Davenport, Kaimal, etc. 
can be thought as the squared transfer functions fed with 
white noise. Such filters can be applied to white noise to 
generate random wind with the same spectral properties as the 
real wind [42, 153, 176, 177]. The wind cut-off frequency 
depends on the turbulence length scale and and the average 

wind speed. If turbulence intensity is constant, then wind 
spectrum is proportional to the standard deviation of wind.  

 
Fig. 7: Probability distribution of length scales from the Vindeby site at 
heights of 48 m. Length scales were derived by the “half variance” method. 
Taken from “Wind Power Meteorology” by Risø National Laboratory [63]. 

2.3.4. Kaimal wind spectrum 

The Kaimal power spectra pattern was fitted based on 
several experimental data collected with neutral atmosphere 
over flat homogeneous terrain in Kansas as explained in [70]. 
This spectrum implies a relatively low terrain roughness. 
Furthermore, the model applies for neutral conditions only 
(strong winds), as convection is not accounted for. However, 
these conditions are met in a large number of applications like 
off-shore wind farms. Also, because of its simple expression, 
the Kaimal spectrum is widely used. The selection of this 
spectrum is discussed in [69]. 

The Kaimal spectrum model is, like other ones, usually 
presented under a PSD function. For the longitudinal wind 
speed component, the model defined by Kaimal relates 
frequency, length scale and average wind speed, [70]: 
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where ( )KaimalPSD f+  is the one-sided auto-spectral density 
function of the wind, f is the frequency in Hertzs, σ is the 
standard deviation of wind, UwindA  is the integral length scale 
(proposed maximum 600 m) and windU  is the average 
wind speed at the hub height, all in the upwind direction. The 
wind spectra at high and low frequencies is tuned with the 
parameter a: a =1,7 in the draft Eurocode ENV 1991-2-4 and 
thus, the inertial subrange constant in (9) is A = 0.14. 

The Kaimal power spectra is similar to a low-pass filter of 
cut-off frequency fcut-off = 〈Uwind〉/(6a UwindA ) of order r =5/6. 
In other words, the Fourier transform of wind is 
approximately constant up to fcut-off and then decays in a factor 
105/6 each decade (the PSD decays with the squared factor). 
In a double logarithmic plot, the slope of the Fourier 
transform of wind is 20·(5/6) dB/decade or  105/6 per decade if 
regular scale is used. 

http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBkQFjAA&url=http%3A//risk2.ewi.tudelft.nl/research-and-publications/doc_download/197-phdpapaefthymioupdf&rct=j&q=%22Integration%20of%20Stochastic%20Generation%20in%20Power%20Systems%22&ei=WVqoTbL6MZCzhAfe0f
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2.3.5. Davenport wind spectrum 

This spectrum is based on the average of measurements 
obtained at various heights above the ground [71]. 

 
24

6
2 4/32

( ) ( / )

1 ( / )

Dav windDavenport

Uwind Dav wind

f PSD f fL U

fL Uσ

+

=
⎡ ⎤+⎢ ⎥⎣ ⎦

 (12) 

where DavL  is a turbulence length scale different from UwindA  
and usually chosen as 1200 m. Assuming 

11,9Dav UwindL ∼ A , the inertial subrange constant in (9) is 
A = 0.13.  

2.3.6. Harris wind spectrum 

The Harris wind spectrum is nearly identical to the von 
Karman form if LHarris is taken as 11,9 UwindA . 
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where LHarris is a turbulence length scale different from 
UwindA , usually chosen as 1800 m. Equation (5) holds neither 

for Davenport nor for Harris spectrum. 

2.3.7. Von Karman wind spectrum 

Von Karman proposed a PSD for wind speeds in 1948 
[72]. The von Karman spectrum is also suitable for the 
structure of the turbulence experienced by wind turbines, 
particularly in complex terrain, [73, 74]. Its power spectral 
density is: 
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The inertial subrange constant in (9) is A = 0.12. Several 
experimental works demonstrated that the von Karman model 
and the Kaimal model have the following main differences: 

• The Kaimal spectral expressions for the three spatial 
wind components describe adequately the 
experimental data as to the shape and peak 
frequencies but not as to the power levels; 

• The von Karman model seems to fit the 3D 
experimental data better than the Kaimal with 
respect to the power levels. In the longitudinal 
component, a power deficit at low frequencies is 
observed. 

2.3.8. IEC 61400-1 spectrum 

The international standard IEC 61400-1 [97] for design 
requirements for wind turbines specifies a Kaimal type PSD 
function (11) with factor a = ½, which can be used in wind 
turbine design. The length scale is UwindA  = 5,67z, where z is 
the height above ground, i.e. the hub height in our case. For 
heights above z ≥ 60 m, the value of UwindA  takes the 
maximum length scale, 340,2 m. 

Inside a wind farm, IEC 61400-1 recommends to apply the 
model proposed by Frandsen [75] to include the added 
turbulence generated by upwind turbines in the structural 

design of wind turbines. Frandsen proposes to calculate the 
turbulence σwf  according to: 
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where σUwind is the turbulence in the ambient flow. The 
separations between rows and columns in the farm, 
normalised by the wind turbine rotor diameter, are s1 and s2 
respectively. CT is the wind turbine thrust coefficient. 

The wind turbines in the front with expected free inflow 
have a standard deviation of the longitudinal component of 
the wind equal to σ = σUwind, and the remaining wind turbines 
inside the wind farm are assumed to have a standard deviation 
equal to σ = σwf . 

2.3.9. Slettringen spectrum 
recommended by the Norwegian 
Petroleum Directorate 

The Norwegian Petroleum Directorate (NPD) published in 
1992 a different spectrum based on extensive wind 
measurements off the coast of mid-Norway and it is 
henceforth referred to as the “NPD spectrum” [76, 77]. Its 
power spectral density is: 
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 (16) 

where n = 0.468 is a constant, z denotes the height above sea 
level in meters and windU  is the 1 hr mean wind speed at a 
reference height 10 m above sea level.  

The NDP spectrum is intended for describing gust and 
mean wind speeds above 10 m/s. The NDP spectrum deviates 
significantly from the other two in that it contains 
considerably more power at low frequencies. The reason for 
this is that the other spectra are based on observations of wind 
over land while the NPD spectrum is fitted to measurements 
of wind over sea, where the thermal structure is different.  

The Højstrup spectra is sometimes used because it includes 
more power than the Kaimal spectrum at the low frequencies, 
and this has shown to agree better in a number of cases [153]. 

2.3.10. Van der Hoven’s wind spectra 

The Van der Hoven’s wind spectrum [78] differs from the 
previous spectra that has a very wide dynamical range, from 
seconds to several days. It shows a gap between 3 
minutes/cycle and 5 hours/cycle that separates fast 
fluctuations from slow fluctuations. Other works also 
reported a gap between mesoscale and microscale wind at the 
free atmosphere [79]. Nevertheless, this gap has been not 
found at some locations [80, 81, 82]. In [83], the 5 h gap were 
not found in the meteorological records measured at an 
experimental field site near Oak Ridge, Tennessee, USA 
during the years 1995 to 1998. Other measurements carried 
out in wind farms indicate that the presence of the gap is 
dependent on the location. 
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Fig. 8: Van der Hoven’s spectral model (from [78]). 

2.3.11. Horns Rev wind spectra 

According to e.g. [84] there is a significant variability of 
the wind speed at lower frequencies, which is not included in 
the Kaimal spectrum. The Kaimal type PSD functions are 
valid only for shorter time scales, corresponding to what is 
normally considered in mechanical design of wind turbines, 
i.e. from 0.02 sec to 600 sec. For simulations of wind farm 
power fluctuations, the PSD functions are required on a 
longer time scale (up to several hours).  

According to Sørensen et Al. [85], the Høvsøre measure-
ments have been applied to fit the PSD

LF
(f) for low frequen-

cies, and the fit is expressed as:  

 

2

5/3

( )
( )

  
1 100

LF wind LF
wind

LF

wind wind

z
U

U
PSD f

z f z f
U U

α β+
=

⎛ ⎞ ⎡ ⎛ ⎞⎤⎟ ⎟⎜ ⎜+⎢ ⎥⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (17) 

In Høvsøre, the coefficients estimated from measurements 
are αLF = 0,0046 and βLF = 0. Thus, the total spectrum is 
composed of low and high frequency contributions:  

Høvsøre( ) ( ) ( )Kaimal LFPSD f PSD f PSD f= +  (18) 

2.3.12. Coherence models 

IEC 61400-1 [97] specifies the coherence function (in 
absolute value) ( )IEC fγ  for two points r and c separated a 
distance drc in the rotor plane according to: 

 
2 2·

( ) exp 0,12rc rc
IEC

wind Uwind

d f d
f A

U
γ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎟ ⎟⎜ ⎜= − +⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦A
 (19) 

IEC 61400-1 recommends A ≈ 12; Frandsen [86] recom-
mends A ≈ 5 and Saranyasoontorn [82] recommends A 
≈ 9,7. Note that this expression is intended for points in the 
area swept by the blades. Therefore, it is not intended for 
estimating the wind coherence at different turbines. 

Schlez and Infield [45] derived an empirical model, based 
mainly on measurements with 18 m high masts with distances 
up to 102 m in the Rutherford Appleton Laboratory, UK. 
According to them, the coherence decreases exponentially at 
a site-specific rate respect wind travel time. The decay 
constants for lateral and longitudinal directions are, Along and 
Alat, respectively. Along is the decay factor when the flow is 
longitudinal (αrc= 0). Alat is the decay factor when the flow is 
lateral, i.e. when the wind direction is perpendicular to the 
line between points r and c (αrc= π/2 rad). 

Thus, a compound decay constant Arc can be estimated 
according to (20) for any arbitrary disposition of points r and 
c (see Fig. 9). 
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Fig. 9: Definition of distance drc and angle αrc between the points r and c. 

Schlez and Infield [45] recommended for the Rutherford 
Appleton Laboratory Along ≈ (15±5) σUwind / windU  and Alat 

≈ (17,5±5)(m/s)-1σUwind, where σUwind is the standard devia-
tion of the wind speed in m/s. 

Saranyasoontorn et Al. adjusted a coherence model from 
experimental data in LIST Test site at Bushland, Texas. The 
statistical properties of the estimation can be reviewed in [87] 
and a comparison of standard coherence models form inflow 
turbulence with estimates from field measurements is 
presented in [82].  

Sørensen et Al. [85] fitted the lateral and longitudinal 
decay factors, Along = 4 and Alat= windU /(2 m/s), 
respectively, from measurements at 80 m height with up to 
1.2 km distances in Høvsøre, Denmark. With these 
parameters, Sørensen et Al. used a complex rooth coherence 

( )rc fγ
G  (adding an average phase delay to the absolute 

squared coherence 2 ( )rc fγ
G

 proposed by Schlez and Infield 
[45]). Since complex coherence is used, the phase of the 
coherence indicates the average delay between wind 
fluctuations at different points. Sørensen et Al. used the 
Taylor’s “frozen turbulence” model in [191] to compute the 
average time delay rcτ  as the time difference between the 
arrival to the points r and c of a flat wind wave front 
travelling at average wind speed. 
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where rcd  is the distance between points r and c (see Fig. 9). 
Finally, the expression of the complex rooth coherence 
( )rc fγ

G  for Høvsøre is: 
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It can be derived that at low frequencies ( )rc fγ
G  tends to 

unity with zero phase (fully positive correlated fluctuations) 
and at high frequencies ( )rc fγ

G  tends to zero with random 
phase (uncorrelated fluctuations). 

2.4. Spectrum and coherence estimated 
from the weather station network 

The network of weather stations provides a wide coverage 
of slow variations of wind. Many stations provide hourly or 
half-hourly data. These data is used in the program 
WINDFREDOM [54] to compute the wind spectra and the 
coherences between nearby locations. 

http://www.springerlink.com/content/j432n7711k8l71h7/
http://www.springerlink.com/content/j432n7711k8l71h7/
http://www.springerlink.com/content/j432n7711k8l71h7/
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Quick fluctuations of wind are more related to the turbine 
integrity, structural forces and control issues. But they are 
quite local, and they cancels partially among clusters of wind 
farm. The slower fluctuations are more cumbersome from the 
grid point of view, since they have bigger coherences with 
small phase delays. 

2.4.1. Coherence between Logroño and 
Zaragoza airports (Spain, 140,5 km 
apart) 

This example analyzes the coherence and the spectrum of 
wind speed oscillations up to 12 days, at the airports of the 
Spanish cities of Logroño and Zaragoza. Both cities are 
located in the Ebro River and share a similar wind regime. 
The weather stations are 140,5 km apart (see Fig. 10) and the 
analysis is based on one year data, from October 2008 to 
October 2009. 

 
Fig. 10: Map from WINDFREDOM program [54] with the location of 
Zaragoza and Logroño in the Iberian Peninsula. 

The spectrograms in Fig. 11 and Fig. 12 show the evolution 
of the power spectrum of the signal, computed from 
consecutive signal portions of 12 days. The details of the 
estimation procedure can be found in the annexes of this 
thesis. 

Wind spectra and coherence has been computed from the 
periodogram, and the spectrograms of the signals are also 
shown to inform of the variability of the frequency content. 
The quartiles and the 5% and 95% quantiles of the wind 
speed are also shown in the lower portions of in Fig. 11 and 
Fig. 12. The unavailable data have been interpolated between 
the nearest available points. Some measurements are outliers, 
as it can be noticed from the 5% quantiles in Fig. 11 and Fig. 
12, but they have not been corrected due to the lack of further 
information.  

The diurnal and semi-diurnal variation peaks can be 
recognized in clearly in the periodograms of Fig. 11 and Fig. 
12 (gray graph on the left) or as dark-bluish horizontal lines 
in the spectrogram (color image on the right). The oscillation 
magnitude is not constant along one year because the 
horizontal lines get lighter or darker along the time. 

 
Fig. 11: Periodogram and spectrogram of Zaragoza airport (Spain) estimated 
with WINDFREDOM program [54]. 

 
Fig. 12: Periodogram and spectrogram of Logroño airport (Spain) estimated 
with WINDFREDOM program [54]. 

Outliers 

Outliers 

Diurnal 
variations

Semi-diurnal 
variations 
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The ratio between the periodograms and spectrograms of 
Fig. 11 and Fig. 12 is shown in Fig. 13. The wind in Zaragoza 
airport meteorological station (LEZG for short) is the double 
in average than in the weather station of Logroño airport 
(LELO for sort). The average ratio is about 0,4~0,6, indicat-
ing that the ratio of oscillation amplitudes are around 
√0,4~√0,6. The coefficient of variation (standard deviation 
divided by the mean) is 87% in Logroño and 70% in 
Zaragoza. 

The quartiles of the time series at Logroño and Zaragoza 
(lower graph in Fig. 13) show significant differences. The red 
shadow indicates the interquartile range of Zaragoza and the 
thick red line is its median (the blue colours correspond to 
Zaragoza). The wind in Logroño (in blue) is about half the 
wind in Zaragoza in average.  

The wind variations in each station show different features 
eventually. Some variations are replicated on the other station 
but with some non-systematic delay and with different 
magnitude. These features are the reason of the relatively 
small coherence of the two stations. 

 
Fig. 13: Periodogram and spectrogram of Logroño airport divided by the 
ones of Zaragoza airport (estimated by WINDFREDOM program [54]). 

In practice, the oscillations observed in one station are 
seen, in some extent, in other station with some delay or in 
advance. The coherence #1,#2γ

G  is a complex magnitude with 
modulus between 0 and 1 and a phase, which represent the 
delay (positive angles) or the advance (negative angles) of the 
oscillations in the second weather station respect the first one 
(considered the reference). Since the spectrum of a signal is 
complex, the argument of the coherence ( )rc fγ

G  is the 
average phase difference of the fluctuations. 

The coherence ( )rc fγ
G  indicates the correlation degree and 

the time pattern of the fluctuations. The modulus is analogous 
to the correlation coefficient of the spectrum lines from both 
locations. If the ratio among complex power spectrums shown 
in Fig. 13 is constant (in modulo and in phase), then the 
coherence is the unity and its argument is the average phase 
difference. If the complex ratio is random (in modulo or in 
phase, then the coherence is null. 

However, the wind direction is not considered in this esti-
mation, but it has a great impact on the coherence estimate. 
The time delay between oscillations τ depends greatly on the 
wind direction. Thus, the phase difference of the fluctuations, 
ϕ = 2πf τ, can change notably and this would lead to very low 
coherences. If there are several preferential wind directions, 
the phase difference can experience great variability. In such 
cases, a more detailed model –maybe using Markov states 
indicating prevailing wind directions– is needed. 

The red/purple colours in Fig. 13 indicate that phase differ-
ence is near 0 up to 0,5 cycles/day (small delay of fluctua-
tions). However, the phase difference at frequencies above 2 
cycles/day is quite big, indicating that the timing sequence of 
the fluctuations has varied along the study period (one year). 

 
Fig. 14: Phase difference between the periodogram and spectrogram of 
Zaragoza airport respect the ones of Logroño airport (estimated by WIND-
FREDOM program [54]). 

Generally, the time delay between fluctuations of a given 
frequency, rcτ  = ϕ /(2πf)  is more informative than the phase 
difference ϕ because the time delay of the arrival of events is 
constant under the Taylor hypothesis of frozen turbulence. 
According to it, the time lag is the travel time of the perturba-
tion from one station to the other (see Fig. 5).  
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Thus, the time lag is the distance divided by the displace-
ment speed of the perturbation, projected in the line joining 
the two weather stations. It can be computed through formula 
(21), where rcτ  is the observed time lag, rcd  is the distance 
between the weather stations and windU  and rcα  must be 
interpreted as the perturbation travel speed and direction (see 
Fig. 9). For far away stations, this speed can differ notably 
from the wind speed and direction due to the differences 
between the boundary layer and the free atmosphere.  

If time lags present characteristic values, this can be due to 
different wind directions at higher levels of the atmosphere. 
In the Fig. 15, the commonest lags are -4,4 days (white in the 
picture) and +3,0 days (indigo in the picture). This bimodal 
behaviour might match the wind regime in the Ebro River, 
dominated by the “Cierzo” and “Bochorno” winds, with 
contrary directions.  

Since the distance between the stations is 140,5 km, the 
displacement speed of the perturbation, projected in the line 
joining the two weather stations, is -2,25 km/h to +2,0 km/h. 
This speed seems to be very small to correspond to the real 
displacement of the weather features and further research 
should be done to obtain conclusions.  

The bigger variability of the time delay is observed at 
fluctuations quicker than four hours (upper part of the picture 
in Fig. 15, with yellow, pink and cyan colours) and at fluctua-
tions of three to five days hours (lower part of the picture). 

 
Fig. 15: Time lag of the oscillations of Zaragoza airport respect the ones of 
Logroño airport (estimated by WINDFREDOM program [54]). 

The variability of time lag in fluctuations quicker than four 
hours can be a symptom that the weather perturbations evolve 
as they extent geographically (see Fig. 16). The high 
variability of the fluctuation delay of three to five days can be 

due to different wind regimes (commonest wind storms occur 
each 5 days on average in Zaragoza). 

 
Fig. 16: Quantiles 5%, 25%, 50% and 95% of the estimated time delay (in 
days) between the fluctuations in Zaragoza airport respect the fluctuations of 
Logroño airport of the same frequency (estimated by WINDFREDOM 
program [54]). 

It should be noted the phase unwrapping can have notori-
ous influence on the time lag estimation. One reason that 
increases the variability of the time lags is the fact that there 
are different mechanisms involved in slow, daily and intra-
day oscillations. Since the spectrum phase difference ϕ’ is 
wrapped in [-π, +π] radians, it is not easy to guess the actual 
time delay rcτ = (ϕ’ + 2πk) /(2πf). 

The phase unwrapping applied in WINDFREDOM pro-
gram [54] detects 2π radians jumps in the cross power 
spectrum density of the stochastic time series. Actual phase 
unwrapping considers that there is no phase wrap at lowest 
frequencies (flowest = 1/12 cycles/day for 48 samples a day and 
512 samples in the Short Time Fourier Transform, STFT).  

The time delay at lowest frequencies has a standard devia-
tion of about 3 days (one forth of the period length considered 
in the STFT or π/2 radians). At high frequencies, the standard 
deviation reduces to about half day. The weather dynamics 
imposes a great variability on the time delay of slow 
oscillations.  

In Fig. 16, the median delay is usually below half a day, 
but the variability is very big. The oscillations during 5 days 
happen, on median, two days first in Logroño than in 
Zaragoza. However, the great variability of the time delay 
indicates that the behaviour of slow weather oscillations 
behaviour is not systematic and weather dynamics must be 
taken into account to explain low frequency wind dynamics. 
This high variability of the time delay decreases the 
coherence module at low frequencies. 

Diurnal and semi-diurnal variations (f = 1 and 2 cycles/day, 
respectively) present a much smaller dispersion, with an 
interquartile range of about 2 days in Fig. 16. Diurnal and 
semi-diurnal oscillations are related mainly to wind dynamics 
due to the sun heating, and thus, the time lag at such 
frequencies is primarily not related to travel time. 

The coherence module of fluctuations lasting one day or 
more is about 30% ~ 50%, as can be seen in Fig. 17. It has 
aforementioned that this is due to the changing time delay of 
fluctuations.  
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The interquartile range shown in Fig. 16 tends to 1 day at 
intraday oscillations, with 2 days of 90% range. However, 
intraday oscillations last less than its interquartile range and 
the coherence module at such frequencies is decreases up to 
5% in Fig. 17. Hence, intraday oscillations can be considered 
mainly statistically independent. 

The image in Fig. 17 shows that the relative oscillation 
module is quite close to unity (indigo color) in general. But 
since the phase difference varies noticeably, the modulus of 
the average of the complex coherence is below unity (graph 
on the left). 

 
Fig. 17: Coherence of Zaragoza and Logroño airport winds (estimated by 
WINDFREDOM program [54]). 

Fractional, power law and exponential models of the 
coherence module are shown in Fig. 18. The coherence does 
not follow a clear tendency, and the peaks of the 
characteristic frequencies f = 1/3, 0,8, 1 and 3 cycles/day are 
not reproduced by the models. 

The model that performs better in this particular case is the 
exponential model (thin, dashed green line in Fig. 18) and it is 
obtained adjusting two parameters. The fractional model and 
the exponential model are obtained adjusting only two 
parameters.  

The power law model is quite informative because it 
indicates the slope and the level of the coherence in a double 
logarithm plot, even though it overestimates the coherence at 
low frequencies. The fractional model is included because it 
is analogous to many wind spectra models found in the 
literature. For instance, the exponent 0.4573 in the fractional 
model is about one half of the 5/6 power law of Karman and 
Kaimal wind spectra. 

 
Fig. 18: Comparisons of several coherence models Time lag of oscillations of 
Zaragoza airport respect the ones of Logroño airport (estimated by 
WINDFREDOM program [54]). 

However, more meteorological parameters than the single 
speed modulo at the Zaragoza and Logroño airports is 
required to explain the variability of the time delays between 
the fluctuations. Without further information, it should be 
noticed that the average coherence for oscillations slower 
than a day is between 30% and 50% and a small time delay in 
average. This low coherence implies a low correlation of the 
power injected by wind farms close to the stations considered. 
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2.4.2. Coherence between Pamplona and 
Zaragoza airports (Spain, 133,6 km 
apart) 

The second example has been chosen because the distance 
of Pamplona and Logroño from Zaragoza is comparable and 
both are quite aligned with the prevailing wind direction in 
the Ebro River. Pamplona is on the north of the Ebro river 
valley and closer to the Pyrenees Mountains than Zaragoza 
and Logroño. However, the coherence between Pamplona and 
Zaragoza is significantly higher than between Logroño and 
Zaragoza (see Fig. 19). 

 
Fig. 19: Map from WINDFREDOM program [54] with the location of 
Zaragoza and Pamplona in the North of the Iberian Peninsula. 

However, the average wind measured at Pamplona is 
higher than in Logroño. There is no further information on the 
weather station and the higher wind can be due to the 
surroundings of the weather stations. The coefficient of 
variation (standard deviation divided by the mean) is 89% in 
Pamplona, 87 in Logroño and 70% in Zaragoza. 

The periodogram and spectrogram of Pamplona is similar 
to the one of Logroño. The diurnal variations are more 
noticeable in Pamplona than in Logroño and in Zaragoza, 
possibly by the closer presence of the mountains. In contrast, 
the fluctuations of 3 to 5 days prevail in Zaragoza.  

The semi-diurnal pattern clearly seen in Logroño (and in 
Zaragoza in a lesser extent) but is almost missed in Fig. 20. 

The ratio between the periodograms and spectrograms of 
Fig. 11 and Fig. 20 is shown in Fig. 30. The ratio of 
oscillations of 3 to 5 days of duration is below the unity in 
Fig. 30, indicating that they are more noticeable in Zaragoza 
than in Pamplona. However, the amplitude of the daily 
fluctuations in Pamplona are almost twice the ones in 
Zaragoza (the periodogram ratios is a bit lower than 4). 

The quartiles of the time series at Pamplona and Zaragoza 
(lower graph in Fig. 30) show a similar behaviour. The blue 
shadow indicates the interquartile range of Pamplona and the 
thick blue line is its median (the red colours correspond to 
Zaragoza). Even though the median of the wind in Pamplona 
is 30% ~ 40% smaller than the wind in Zaragoza, the 
variations match significantly better than between Logroño 
and Zaragoza. Hence, the coherence between Zaragoza and 

Pamplona is significantly bigger than between Zaragoza and 
Logroño. 

 
Fig. 20: Periodogram and spectrogram of Logroño airport (Spain) estimated 
with WINDFREDOM program [54]. 

 
Fig. 21: Periodogram and spectrogram of Pamplona airport divided by the 
periodogram and spectrogram of Zaragoza airport (estimated by 
WINDFREDOM program [54]). 
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In practice, the oscillations observed in one station are 
seen, in some extent, in other station with some delay or in 
advance. The time delay between fluctuations of a given 
frequency is rcτ  = ϕ /(2πf), where ϕ is the phase difference 
between the spectrums of the two stations. 

According to Fig. 22 and Fig. 23, the fluctuations of 5 days 
(f = 0,2 cycles/day) are seen, in median, half day before in 
Pamplona than in Zaragoza. But the daily fluctuations (f = 
1 cycles/day) are seen about 19 hours before in Zaragoza than 
in Pamplona. This is due to the different mechanisms 
involved in slow and daily oscillations. The actual time lags 
show big variability (see Fig. 22) except at daily fluctuations. 
The interquartil range is significantly smaller than the one of 
Zaragoza and Logroño. 

 
Fig. 22: Quantiles 5%, 25%, 50% and 95% of the estimated time delay (in 
days) between the fluctuations in Zaragoza airport respect the fluctuations of 
Pamplona airport of the same frequency. 

 
Fig. 23: Time lag of the oscillations of Zaragoza airport respect the ones of 
Pamplona airport. 

The picture in Fig. 23 shows that the commonest delays of 
the slower fluctuations (0,1 < f < 0,5 cycles/day) is -2 days 
(white colour) or +2 days (indigo colour). The variability 
decreases at bigger frequencies and the most common colours 
are cyan (about 0 delay), green (+1/2 day) or pink (-1/2 day). 

Fractional, power law and exponential models of the 
coherence module are shown in Fig. 24. The coherence does 
not follow a clear tendency, and the peaks of the 
characteristic frequencies f = 1/3, 0,8, 1 and 3 cycles/day are 
not reproduced by the models. 

The model that performs better in this particular case is the 
exponential model (thin, dashed green line in Fig. 24) and it is 
obtained adjusting two parameters. The fractional model and 
the exponential model are obtained adjusting only two 
parameters. The power law model is quite informative 
because it indicates the slope and the level of the coherence in 
a double logarithm plot, even though it overestimates the 
coherence at low frequencies. The fractional model is 
included because it is analogous to many wind spectra models 
found in the literature. For instance, the exponent 0.8978 in 
the fractional model is comparable to the 5/6 power law of 
Karman and Kaimal wind spectra. 

2.4.3. Coherence between Pamplona and 
Logroño airports 

At low frequencies, the coherence of Zaragoza and Pam-
plona airports almost doubles the coherence of Zaragoza and 
Logroño. However, Pamplona and Logroño are in the 
prevailing wind direction at Zaragoza (North-West) and at 
similar distances. Furthermore, Fig. 26 shows the low coher-
ence between Logroño and Pamplona airports, only 66,6 km 
apart. This fact is an example of the complex wind regimes 
and the value of data measured at weather stations. 

Conclusions 
This chapter has introduced the concepts relative to wind 

variation. The most popular characterization of wind 
turbulence at a point is through the turbulence intensity and 
the wind spectra. 

The Taylor hypothesis of “frozen turbulence”, a simple 
model that relates about spatial variations and temporal 
variations of the wind, is discussed. This hypothesis can be 
used to reconstruct the approximate spatial structure of wind 
from measurements with an anemometer in a meteorolical 
mast. The accuracy of the Taylor hypothesis of has been 
tested for long periods and long distances with the program 
WINDFREDOM. This hypothesis is an approximated model 
which allows to obtain the qualitative behaviour of the wind. 
However, the perturbations evolve along its travel and the 
time delay between the observations of the events at different 
locations varies greatly due to different travel speeds (in 
module and direction) of the weather perturbations.  

A more advanced concept is the spatial and temporal 
coherence of the wind, which statistically quantifies the 
variations of wind in different points in space or in separate 
moments of time. 

The coherence of the wind quantifies the spatial and 
temporal variability of the wind. The coherence characterizes 
stochastically the differences of the wind field at different 
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points or at different instants. The computer program 
WINDFREDOM retrieves data from the network of 
institutional meteorological stations and it is able to estimate 
the coherence of slow wind oscillations (lasting more than an 
hour) for distances above 30 km. This program is a 
contribution of this thesis, since the great variety of wind 
dynamics requires the use of real data to quantify the actual 
variability of the power generated in a region. 

 
Fig. 24: Comparison of several coherence models Time lag of oscillations of 
Zaragoza airport respect the ones of Pamplona airport. 

 
Fig. 25: Coherence of Zaragoza and Pamplona airport winds. 

 

 
Fig. 26: Coherence of Logroño and Pamplona airport winds. 

 



3.1. Wind turbine torque 
The aim of this work is the characterization and estimation 

of power output fluctuations. In fact, power oscillations are 
the ultimate response of generators to torque fluctuations due 
to spatial and temporal wind variations. 

The turbine torque can be estimated from blade theory. 
Since either the blade section, neither the relative speed nor 
the angle of attack is constant along the blade from the root to 
the tip, torque must be integrated along the blade elements. 
The lift and drag coefficients for the whole blade can be 
parameterized for blade tip conditions.  

 
Fig. 27: Effect of an uneven wind-speed distribution over the swept rotor area 
on the upwind velocity of the rotating rotor blades. The lagrangian motion 
coordinates are added assuming the turbine is aligned with the wind. Taken 
from “Dynamic wind turbine models in power system simulation tool 
DIgSILENT” by Risø National Laboratory [88]. 

A further simplification is to consider a torque coefficient 
( , )qC λ θ  depending only on the pitch angle θ and on tip speed 

ratio λ. In this work, the tip speed ratio is referred to an 

equivalent wind speed since the wind conditions vary along 
the swept area: 

 λ  = R Ωrotor/Ueq, (23) 
where R is the rotor radius, Ωrotor is the rotor angular speed 
and Ueq is the equivalent wind speed. In a first approximation, 
Ueq is the longitudinal wind speed component averaged along 
the swept area provided the shaft is aligned with the wind [88, 
89]. 
 Thus, the turbine torque is:  

 3 21
2

( , )rotor air eq qT R U Cρ π λ θ=  (24) 

where airρ  is the air density. 
In a second approximation, Ueq is defined as the wind 

speed applied to (23) and (24) which produces the same 
aerodynamic torque rotorT  than the real wind field. 

A typical curve or rotor torque coefficient can be seen in 
Fig. 29. Alternatively, the torque coefficient can be computed 
as the power coefficient (see Fig. 28) divided by the tip speed 
ratio, ( , )qC λ θ  = ( , )/PC λ θ λ . 

3.2. Definition of the equivalent wind, 
equivalent turbulence and effective 

quadratic turbulence 
3.2.1. Equivalent wind 

The equivalent wind Ueq is an artifice defined as the 
uniform wind which would produce the same torque as the 
real wind field. According to (24), it can be computed from 
real torque as (25): 

 
3

2 

( , )
rotor

eq
air q

T
U

R Cρ π λ θ
=  (25) 

Since the wind varies along the swept area (wind distribu-
tion is irregular), the tip speed ratio λ must be computed also 
from (23). Therefore, the equivalent wind Ueq is defined as 
the wind resulting from solving the following equation:  

 2
3

2 
,rotor rotor

q eq
eq air

R T
C U

U R
θ

ρ π

⎛ ⎞Ω ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (26) 

where ( , )qC λ θ  is the turbine torque coefficient, rotorT  is the 
torque in the low speed shaft of the wind turbine, R is the 
rotor radius, Ωrotor is the rotor angular speed and airρ  is the 
air density. 

The simplification of using an equivalent wind is huge 
since the non-stationary three-dimensional wind field is 
approximated by a signal which produces the same torque. 
Apart form accelerating notably the simulations, Ueq describes 
in only one signal the effect of the turbulent flow in the drive 
train. 

Chapter 3: The turbine torque and the 

equivalent wind 
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Fig. 28: Rotor power coefficient ( , )pC λ θ  for a variable-pitch turbine. 
 

 
Fig. 29: Rotor torque coefficient ( , )qC λ θ  for a variable-pitch turbine. 

The actual wind speed windU  is measured at a point by an 
anemometer whereas the equivalent wind speed eqU  is 
referred to the rotor surface (or more precisely, to the turbine 
torque). Since the Taylor’s hypothesis of “frozen turbulence” 
is usually applicable, the spatial diversity of wind can be 
approximated to the point wise time variation of wind times 
its mean value, windU , and hence eqU  can be considered a 
low-pass filtered version of windU  (plus the rotational sam-
pling effect due to wind shear and tower shadow effect).  

On the one hand, the meteorological science refers to the 
actual wind speed windU  since the equivalent wind eqU  is, in 
fact, a mathematical artifice. On the other hand, turbine 
torque or power is customarily referred to the equivalent wind 

eqU  instead of the 3-D wind field for convenience. 

A good introduction about the equivalent wind can be 
found in [177]. The complete characteristics of the wind that 
the turbine will face during operation can be found in [90].  

The equivalent wind speed signal, Ueq(t), just describes a 
smoothed wind speed time series at the swept area. For 
calculating the influence of wind turbulence into the turbine 
mechanical torque, it has to be considered the wind distribu-
tion along the swept area by a vector field [91]. Blade itera-
tion techniques can be applied for a detailed analysis of 
torques and forces in the rotor [92]. Thus, the wind shear and 
tower shadow can be accounted including the rotor position 
as a parameter in the torque coefficient. Hence, the definition 
of the equivalent wind accounting the former effects is: 

 2
3
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q eq
eq air

R T
C U

U R
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where ϕ  is the rotor angle (in the following chapter, a 
method will be derived to assess the influence of rotor angle 
in the torque coefficient). 

The anemometer dynamic response to fast changes in wind 
also influences measured wind [93]. Most measurements are 
taken with cup anemometers, which have a response lengths 
between 10 and 20 m, corresponding to a frequency cut-off 
between fc = (10 m/s)/10 m = 1 Hz and fc = (10 m/s)/20 m = 
0,5 Hz for 10 m/s average speed.  

Apart from metrological issues, the spatial diversity of 
turbulent wind field reduces its impact in rotor torque. 
Complete and proved three dimensional wind models are 
available for estimating aerodynamic behaviour of turbines 
[82, 94, 95]. Turbulent models are typically used in blade 
fatigue load.  

From the grid point of view, the main effect of spatial di-
versity is the torque modulation due to wind shear and tower 
shadow [48]. Vertical wind profile also influences energy 
yield and it is considered in wind power resource assessment 
[95]. 

3.2.2. Equivalent turbulence 

Accordingly, the equivalent turbulence ΔUeq is the differ-
ence between instantaneous value of Ueq and its average, 〈Ueq〉 
(see Fig. 27).  

 ΔUeq = Ueq– 〈Ueq〉 (28) 

Since wind is not a stationary process due to weather evo-
lution, the wind average depends on the averaging time 〈Ueq〉. 
In general, 〈Ueq〉 can be considered the running average of Ueq 
(or alternatively, a smoothed value of Ueq). The influence of 
the constant time in the estimation of 〈Ueq〉 will be considered 
in subsequent sections of this chapter (some usual values are 
1, 10, 15 or 60 minutes, depending on the time span of the 
analysis). 

3.2.3. Effective quadratic turbulence 

Since aerodynamic torque is a quadratic function of wind, 
the deviation of the equivalent wind speed squared (29) is 
more directly related to power output. The effective quadratic 
turbulence 2( )eqUΔ   is defined as follows: 
 2 2 2( )eq eq eqU U UΔ = −  (29) 
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For relatively small variations of wind, the effective quad-
ratic turbulence 2( )eqUΔ  could be approximated by a normal 
process (with an almost cyclostationary process superimposed 
due to the sampling of the quasi-deterministic wind field 
distribution along the rotor area, see Fig. 27).  

Gust dynamics are complex and measured data indicates 
that small fluctuations are correctly assessed but blasts of air 
are underestimated with the normal process approximation 
(independence of wind influences) [214]. During gusts, 
moment contributions are correlated resulting in a bigger 
overall wind deviation. Thus, the normal model will be 
analyzed and modified in the chapter devoted to gusts to fit 
experimental data of extreme gust. 

3.2.4. Linearization of quadratic 
turbulence 

When the wind turbines are generating, a small-signal 
model based on equivalent wind speed deviations ΔUeq can be 
obtained since eq eqU UΔ� ,:  

22 2 2

2 2 2

2 ( )

2 ( ) 2
eq eq eq eq eq eq eq

eq eq eq eq eq eq eq

U U U U U U U

U U U U U U U

⎡ ⎤= 〈 〉+Δ =〈 〉 + 〈 〉Δ + Δ ≈⎢ ⎥⎣ ⎦
≈〈 〉 + 〈 〉Δ +〈Δ 〉=〈 〉+ 〈 〉Δ

 (30) 

For relatively small variations of wind, the following first-
order approximation is valid: 

 
2( ) 2eq eq eqU U UΔ ≈ 〈 〉Δ

 (31) 
Therefore, the relation between the power spectral densities 

of the equivalent speed and the quadratic turbulence are: 

 ( )2

2

( )
( ) 2 ( ) 0

eq eq
eqU U

PSD f U PSD f fΔ Δ≈ 〈 〉 ∀ ≠  (32) 

3.3. Effect of transversal components of 
wind 

The rotor area filters small scale eddies, and thus the 
relevant eddies for wind turbine power fluctuations are those 
of larger scales. 

The lateral and vertical components of wind affect relative 
direction and velocity of the air in the blade reference and 
thus, turbine torque. However, the overall effect of transversal 
fluctuations to the rotor plane can be neglected in the first 
instance since the stream wise speed component is 
significantly bigger than the span wise fluctuations 
( 2 2

lateral longitudinalU U�  and 2 2
vertical longitudinalU U� ) [97].  

2
windU
G

= 2 2 2 2
longitudinal vertical lateral longitudinalU U U U+ + ≈  (33) 

Moreover, vertical and lateral turbulence have shorter 
length scales than the longitudinal component, producing a 
lower net effect in turbine overall torque. For convenience, 
only the longitudinal component of the turbulence averaged 
across the turbine rotor will be considered relevant for power 
output variations (structural stresses are not studied in this 
work). 
 2 2( ) ( )eq longitudinal rotor area

U t U t≈  (34) 

Nevertheless, the influence of small lateral and vertical 
components can became eventually important at some pitch 

angles where the torque is quite sensitive to changes in attack 
angle. 

3.4. Wind smoothing from turbine rotor 
and equivalent wind 

3.4.1. Fundaments of spatial filtering in 
rotor 

On the one hand, the spatial and temporal variations of the 
wind are related to the turbulence structure. On the other 
hand, the equivalent wind –applied to a simplified 
aerodynamic model– produces the same torque on the turbine 
shaft than the real wind distribution across the rotor. The 
equivalent wind filter models the smoothing of the equivalent 
wind speed respect the actual measure of an anemometer 
placed upstream the turbine hub. This filter models the spatial 
diversity in the area swept by the turbine blades. 

The input of this filter is the wind Uwind which would be 
measured at an anemometer installed at the hub height and 
the output is the estimated equivalent wind, Ueq1.  

Neglecting the cuasi-periodic components in the torque, the 
equivalent wind smoothing can be expressed as a wind 
turbine admittance function defined as: 

 
1

2
1

( )
( )

( )
Uwind

Ueq

PSD f
H f

PSD f
=  (35) 

where ( )UwindPSD f is the power spectral density of the wind 
measured at a point and 

1
( )UeqPSD f  is the power spectral 

density of the equivalent wind (without the perdiodic 
components due to the cuasi-deterministic variation of torque 
with rotor angle).  

The wind spectrum ( )UwindPSD f  is equivalent to a low-
pass filter with an order around r’ = 5/6, applied to white 
noise. In other words, the spectrum decays a bit slower than 
white noise filtered with a first-order low-pass filter.  

The turbine power decreases quicker than the pointwise 
wind at f > 0.01 Hz [52] and this is partially due to the spatial 
distribution of turbulence, the high rotor inertia and the 
viscous-elastic coupling between the turbine blades and the 
generator [96]. In fixed speed, stall regulated turbines, the 
drivetrain dynamics influences notably the power output. But 
in variable speed turbines, a simple model with two coupled 
mass (equivalent to a second-order system) can be precise 
enough to model the drivetrain since generator control usually 
damps resonance modes of blades, gearbox and tower. 

The ratio os the PSD is the square modulus of the filter, 
which can be computed from the filter Laplace transform 

'
1( )H s : 

 2
1( )H f = ' ' *

1 1( 2 )[ ( 2 )]H j f H j fπ π  (36) 

The phase of the filter indicates the lag between the wind at 
the anemometer and the turbine torque. The phase of the filter 
does not affect 

1
( )UeqPSD f  provided the wind could be 

considered stationary and, accordingly, the phase its spectrum 
would be arbitrary. The lag difference of equivalent wind 
among turbines at points r and c will be considered through 
complex coherence ( )rc fγ

G , irrespective of the argument of 
1( )H f . 
The frequencies of interest for flicker and blade fatigue are 

in the range of tenths of hertz to 35 Hz. These frequencies 
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correspond to sub-sound and sound (inertial subrange) and 
they have wavelengths comparable to the rotor diameter. The 
assumption that such fluctuations correspond to plane waves 
travelling in the longitudinal direction and arriving 
simultaneously at the rotor plane is not realistic. Therefore, 
quick fluctuations do not reach the rotor disk simultaneously 
and fluctuations are partially attenuated by spatial diversity. 
In brief, '

1( )H s  is a low-pass filter with meaningless phase. 
The smoothing due to the spatial diversity in the rotor area 

is usually accounted as an aerodynamic filter, basically as a 
first order low-pass filter of cut-off frequency 
~0,1224〈Uwind〉/R respect an ideal and unperturbed 
anemometer measure [44]. For multimegawatt turbines, the 
rotor filters significantly fluctuations shorter than one minute 
(cut-off frequency in the order of 1/60 Hz). 

The presence of the ground surface hinders vertical 
development in larger eddies. The lateral turbulence 
component is responsible for turbulence driven wind direction 
changes, but it is a secondary factor in turbine torque 
fluctuations. Moreover, according IEC 61400-1 [97], vertical 
and transversal turbulence has a significantly smaller length 
scale and lower magnitude. Thus, the vertical and lateral 
component of turbulence averaged along the turbine rotor can 
be neglected in turbine torque in the first instance. 

3.4.2. Turbulence models for estimating 
smoothing of equivalent wind 

The spectral coherence of the wind at positions x and y, 
Coh(f) or 2 ( )xy fγ

G
, is a normalized measure of the 

correlation between the fluctuations of frequency f on both 
locations. Note however that the integral of ( )xy fγ

G
 over all 

frequencies is different from the correlation coefficient of the 
wind between both locations.  

The coherence is an important quantity when translating 
Eulerian spectra into spectra in a rotating frame of reference, 
such as that ‘seen’ at a fixed position on a rotating wind 
turbine blade [98]. It is quite difficult to measure coherences 
with sufficient statistical significance and consequently there 
is a lot of scatter in measured values. Traditionally, very 
simple exponential models have been used to describe the 
coherence functions [99]. The coherence for separations 
perpendicular to the mean wind in neutral conditions, is 
described reasonably well by the following model, even in 
wake situations [100] 

 2 ( , ) =Exp - i
xy

a f s
f s

U
γ

Δ⎛ ⎞⎟⎜Δ ⎟⎜ ⎟⎜⎝ ⎠
G  (37) 

where Δs is the longitudinal separation and ai depend on the 
velocity component and the direction of separation (vertical 
or lateral).  

The decay constants for the longitudinal wind component 
are: 

• ai = 12+11Δz/zavg (for vertical separation Δz) and  
• ai = 12+11Δy/z (for lateral separation Δy)  

where Δz is the height difference, zavg is the average of the 
two heights, and Δy is the lateral separation at the same 
height z [63]. In the literature, several other models of varying 
degrees of sophistication can be found [101]. 

The coherences also depend on stability: the decay constant 
ai increases significantly in stable conditions, and decreases 
slowly with increasing instability.  

In strongly stable conditions, the picture is somewhat 
blurred by the fact that the low-intensity, small-scale 
turbulent fluctuations are masked by the presence of slow, 
large-scale, highly coherent, two-dimensional structures. 
Except for minor differences in average stability (slightly 
more stable over the sea) there is no reason to believe that the 
coherences should behave differently over the sea. In 
complex terrain, however, where we typically see excess 
turbulence at large scales, one might expect that, like for 
unstable conditions, the coherences will increase somewhat. 

The presence of operating wind turbines in the flow have a 
significant impact on the flow properties close to the rotor 
(within 10 diameters), see [102, 103]: 

• The wind speed is decreased inside the wake, giving 
rise to large shear at the top of the wake. 

• Turbulence levels are increased inside the wake and, 
since the mean wind speed is decreased, there is a 
considerable increase in turbulence intensity. 

• The length scale of turbulence is decreased inside 
the wake because the turbulence produced by the 
shear layers in the wake is created at length scales of 
the same magnitude as the cross-wind dimensions of 
the wake which are typically an order of magnitude 
smaller than the length scale of the turbulence in the 
free flow. 

• Because of the wake-imposed length scale, 
turbulence length scales in the wake for the different 
components of wind speed approach each other. 

• In general, second-order statistics are quite perturbed 
inside the wake. The variances are quite different in 
the non-equilibrium turbulence and in the usual 
boundary-layer approximations. 

• Spectral coherence in the wake seems to be well 
described by the usual models except for the near 
wake (distances ≤ 5D), see [100]. 

A) Spatial filter from Sørensen (IEC 61400-1) 
For power quality analysis, the equivalent wind speed 

method described in [153] provides a very good compromise 
between accuracy and calculation time.  

In fact, IEC 61400-1 [97] defines the following coherence 
function of the wind in the rotor area ( )IEC fγ : (38) 

22
0,12

( , ) exp rcd
IEC rc rc

wind Uwind

f
f d d A e

U
βγ −

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎟⎟ ⎜⎜ ⎟⎟⎢ ⎥⎜⎜= − + =⎟⎟ ⎜⎜ ⎟⎟⎢ ⎥⎜⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
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where 
2 20,12

wind Uwind

f
A

U
β

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠A
 (39) 

A is a decay constant and drc is the distance between the 
points r and c. IEC 61400-1 recommends A ≈ 12; Frandsen 
et al. [104] recommends A ≈ 5 and Saranyasoontorn et Al. 
[82] recommends A ≈ 9,7 from experimental data in LIST 
Test site at Bushland, Texas. 

The average fluctuation of frequency f at the rotor area 
(relative to the wind measured at hub nose) is the area integral 

http://www.risoe.dk/rispubl/VEA/veapdf/ris-r-1408.pdf


 Ch. 3: The turbine torque and the equivalent wind 29 

of the coherence assuming that point r is the hub nose and 
point c is in the differential area. Fig. 30 shows the limits for 
the area integral of the coherence. The fluctuation is assumed 
to arrive at all the points in the rotor plane at the same time in 
average or with a random lag and hence ( )IEC fγ  has null 
argument.  

2
'
1 0 0 0
( ) ( , ) ( , )2

R R

IEC IECH f f r rdr d f r rdr
π

γ ϕ γ π= = =∫ ∫ ∫  

 20

2
2 1 ( 1)

R
r Re rdr R eβ βπ

π β
β

− −⎡ ⎤= = + −⎣ ⎦∫  (40) 

Finally, the transfer function is normalized to have unity 
gain at very low frequencies (very slow fluctuations affect 
equally all the rotor area): (41) 

( ) ( )
2

'
1

1 ' 0,12
1 0,121 10,12

( ) 1 ( 1)1
( )

(0)
1 Uwind

Uwind

wind
Uwind

R

ARf AR
U

H f R e
H f

H
e

ββ −

−
+ −

+ −
= =

+ A
A

A

 

rdrdϕ
 drc=r 

ϕ 

 
Fig. 30: Differential sector area to compute the average fluctuation along the 
rotor area. 

2π
rdr

 drc=r 

 
Fig. 31: Differential annular area assuming rotational symmetry. 

The admittance function has been solved numerically by 
Sørensen in [105] for different coherence functions and wind 
speed weightings in the rotor plane. Calculating the 
admittance function numerically with the coherence function 
(38), this admittance function is fitted to the analytical 
expression 
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2 1

1
0

( ) 1
f f

H f
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−⎡ ⎤⎛ ⎞+ ⎟⎢ ⎥⎜ ⎟= + ⎜⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
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 0 1
2

, 0,12wind wind

Uwind

U U
f f

A R
= =

A
 (43) 

where R is the radius of the wind turbine rotor disk and A is 
the coherence decay factor, i.e. A ≈ 12 using the coherence 
function ( )IEC fγ .  

The cut-off frequency of this filter is obtained solving 
2

1( ) 1/2cutH f = : (44) 
2 2

2 2
0 1 2

0,4502 0,9 0.0144wind
cut

Uwind

U A R
f f f

A R
= − = −

A
  

The application of the first filter to the wind produces the 
following PSD:   

 
1

2
1( ) ( ) ( )Ueq UwindPSD f PSD f H f=  (45) 

where ( )UwindPSD f is the power spectral density of the wind 
measured at a point and 

1
( )UeqPSD f  is the power spectral 

density of the equivalent wind (without the periodic 
components due to the cuasi-deterministic variation of torque 
with rotor angle). 

B) Spatial filter from Wilkie, Leithead and Anderson 
Wilkie, Leithead and Anderson proposed in [106] an 

alternative approach with aerodynamic filters. Since long 
wind records at hub height and high sampling rate are not 
usually available, they are randomly generated from a suitable 
wind model.  In the first step, a wind time series at the hub is 
synthesized with the required properties (i.e., average wind 
speed, spectrum parameters and turbulence intensity). This 
signal is the input to the aerodynamic filters, and the output 
signal is the equivalent wind speed representing the wind 
field impact in the whole rotor area. 

The spatial filter of the rotor disk has the following Laplace 
transfer function in (46): 

 '
1

2 ·
( )

( 2 · )(1 · / )
b s

H s
b s a b s a

+
=

+ +
 (46) 

where a = 0,55, b = γR/〈Uwind〉, R is the turbine radius, Uwind 
is the average wind speed at the hub height, and γ is the decay 
factor over the disc (γ=1.3) [44]. 

The square modulus of the filter is: 

 
( )22

1 2 2

1 2 · ·
( )

1+(2 · · ) / 1+2 ( · · )

b f
H f

b f a a b f

π

π π

+
=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (47) 

This filter is almost equivalent to a first-order low pass 
filter with cut-off frequency fcut = (2πb)-1 = 0,1224 〈Uwind〉/R 
(compare solid and dot-dashed lines in Fig. 32). 

 2
1 2

1
( )

1 66,72( / )wind
H f

f R U
≈

+
 (48) 

Notice that for multi-megawatt turbines, the cut-off 
frequency fcut is a few cents of Hertz, filtering wind 
oscillations of tens of seconds. However, the filter order is 
only one and the transition droop is mild. Therefore, the 
frequency content of the equivalent wind can be noticeable 
even one decade bellow the cut-off frequency fcut. However, 
the effect of the turbulence in the torque is negligible at 
frequencies f 2 0,2 Hz compared to the drivetrain oscillations 
due to tower oscillation, wind shear, rotor revolution and 
tower shadow. 

 

http://www.risoe.dk/rispubl/VEA/veapdf/ris-r-1408.pdf
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Fig. 32: Comparision of aerodynamic filters (42) –dashed purple line–, (47) –
solid blue line– and (48) –dot-dashed brownish line– for a rotor of radius 
R = 50 m,  average wind speed 〈Uwind〉 = 10 m/s and integral turbulence 
length AUwind = 1000 m (fcut = 0,0245 Hz approximately). 

Fig. 32 shows that the three filters show good agreement. 
For very short integral turbulence lengths AUwind, the filter 
from Sørensen (42) introduces a non-unity gain at very low 
frequencies, which is not very reasonable. However, the 
Sørensen filter is more precise than (46) or (48) because the 
transition is a bit softer and the cut-off frequency depends 
explicitly of the ratio between the turbulence length scale and 
the turbine radius.  

In short, taking into account the uncertainties in the 
coherence in the rotor area, the rotor spatial diversity is 
similar to a first order filter of fcut ≈ A 〈Uwind〉/(100R), where 
the coherence decay factor A is between 5 (high spatial 
coherence typical of a stochastic parameter between gusts) 
and 12 (standard spatial coherence). 

C) Spatial average vs. time average 
The Taylor’s hypothesis of frozen turbulence implies that 

the spatial averaging along the rotor area is similar to time 
average during some ΔT interval. In fact, most data loggers 
record running averages computed during the interval ΔT.  

The transfer function of a running average is similar to a 
second-order filter: 

 
2

sin 2

sin (2 /2) 0, 443
( ) ,

(2 /2)c cut

f T
H f f

Tf T

π

π

Δ
= ≈

ΔΔ
 (49) 

and its cut-off frequency is fcut ≈ 0,443/ΔT, a bit lower than 
the Nyquist frequency of the data sampled at ΔT.  

Equating the cut-off frequencies of the aerodynamic filter 
and the running average, A 〈Uwind〉/(100R) ≈ 0,443/ΔT, the 
characteristic time of the rotor is ΔT ≈ 44,3R/(A〈Uwind〉). 
The gust quicker than ΔT are significantly attenuated by the 
rotor. 

For a rotor of radius R = 50 m at an average wind speed 
〈Uwind〉 = 10 m/s and A ≈ 12, the characteristic time is ΔT ≈ 
18 s. This implies that gust of a few seconds are notably 
filtered at the low speed rotor shaft of a multimegawatt 
turbine. 

3.4.3. Average rotor wind speed vs. wind 
speed at hub height 

Wind speed generally increases with height and this 
variation is termed wind shear. Torque pulsations, and 
therefore power pulsations, are observed due to the periodic 

variations of wind speed seen at different heights. Power and 
torque oscillate due to the different wind conditions 
encountered by each blade as it rotates through a complete 
cycle. For instance, a blade pointing upwards would 
encounter wind speeds greater than a blade pointing 
downwards. During each rotation, the torque oscillates three 
times (in a three bladed turbine) because of each blade 
passing through minimum and maximum wind. It is therefore 
important to model these wind shear induced 3p torque 
pulsations when studying a wind turbine system. 

If the blades of a rotor have different pitch angles or small 
differences in their shape or if the rotor mass is unbalanced, 
then a pulsation at the revolution frequency is also observed 
in the torque.  

The turbulent mixing in the atmosphere may be considered 
in a similar way to molecular mixing (this is called K theory). 
Assuming the phenomenon is dominated by mechanical 
mixing due to shear forces, the following relationship of wind 
speed with height is derived: 

 *

0
wind

u z D
U Ln

k z

⎛ ⎞− ⎟⎜ ⎟≈ ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (50) 

where the friction velocity is u*, k is the von Karman constant 
(generally taken as 0.4), z0 is the roughness length and D is 
the displacement heigh.  

The roughness length z0 is related to the vegetation cover 
of the area and tables of roughness length are available from 
several sources [107], ranging from z0= 0.0002 m (sea and 
lakes) to z0= 0.4 (urban districts, forests, and farm land with 
many windbreak). In general, wind vertical profile is heavy 
dependent on meteorological condidions, specially on stable, 
unstable and neutral atmosphere (for instance, see Tambke  
[108]). 

The displacement height D is the height above the 
roughness elements where the flow is free. For most 
vegetation it is small and is generally treated as zero. For 
large roughness elements like trees and buildings in towns it 
is not negligible and is of the order of the average height of 
the elements (the log law may only be used for heights above 
D). Turbines are usually sited in isolated places and D is 
usually taken as zero. 

The wind speed at any height z can then be computed 
provided that the wind speed at a height H is known: 

 
( )
( )

0

0

/( )

( ) /

wind

wind

Ln z zU z

U H Ln H z
=  (51) 

If the wind speed at hub height H is measured, ( )windU H , 
the wind speed at other elevations above ground z can be 
estimated with (51), without considering the local variations 
due to turbulence. 

The increase in wind speed with height is easier to evaluate 
of it is described as a power law. A common wind shear 
model, shown as (52), is taken directly from the literature on 
wind turbine dynamics [109]. 

 ( ) ( )
z

wind wind
z

U z U H
H

α⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 (52) 

where αz is an empirical wind shear exponent, which depends 
on meteorological conditions and site characteristics. 
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The power law exponent αz can be estimated from the 
roughness length z0 applying logarithms to (51):  
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 (53) 

 

 
Fig. 33: Shear exponent αz as a function of roughness length and elevation, 
relative to hub height from eq. (53). 

Fig. 33 indicates that the shear exponent only varies 
slightly with height (i.e., the contour lines are almost vertical 
except near the surface). Therefore, the power law and the 
logarithmic law are similar for points near the rotor hub 
(z ~H). Taking into account that 1( )Ln x− ≈ 1( 1/ )x −−½ , 
the following approximations are valid: 
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∼
∼  (54) 

The power law exponent αz typically varies between 0.1 
and 0.4 depending upon the landscape type. According to 
[110], the wind shear exponent is often assigned a value of 
0.143, known as the 1/7th power law, to predict wind profiles 
in a well-mixed atmosphere over flat, open terrain. However, 
higher exponent values are normally observed over vegetated 
surfaces and when wind speeds are light to moderate (i.e., 
under 7 m/s). For example, Eggers et al. [111] reported 
exponents up to 0.75 based on wind speed measurements for 
a considerable period of time in the Midwest and Southwest 
regions of the United States. It has been reported [112] that 
findings made at a Colorado wind site indicate shear 
exponents as high as 1.25 eventually occur at tall tower 
heights for significant periods of time (up to two hours) at 
night. 

A relationship between wind speed averaged along the 
rotor disk, wind rotorU , and the hub height wind speed 

( )windU H  is required such that tower shadow and wind shear 
formulas can be combined with only one wind speed term.  
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where the spatial variation due to the turbulence estructure is 
not considered 

Area 2 22 ( )R H z dz= − −  
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Fig. 34: Differential area assuming dependence only with height. 

To calculate spatial average wind speed wind rotorU , the 
varying wind speed from wind shear is integrated over rotor 
area and divided by total rotor area (for integration details, 
see Dolan and Lehn [50]). The ratio of the spatially averaged 
wind to the hub height wind is: 
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 ( 1)
1

( ) 8
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wind

U R
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U H H

α α⎡ ⎤⎛ ⎞−⎢ ⎥⎟⎜= = + ⎟⎜⎢ ⎥⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
 (56) 

The simplification that  wind rotor areaU  ≈ ( )windU H  is 
reasonable since 0.98 < wind rotorU / ( )windU H ≤ 1, (assuming 
R/H < 0.76 and 0.1 < α ≤ 1). For more accuracy, (56) can be 
used (see Fig. 35).  

 
Fig. 35: Ratio m = wind rotorU / ( )windU H  with shear exponent 0< αz < 1 
for different tower heights.  
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Notice that the mean squared wind is proportional to rotor 
torque. The ratio of squared winds is analogue to (56), but 
changing αz by 2αz. 
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 (57) 

At partial load, the mean of the wind cubed is proportional 
to power. The ratio of cubed winds is analogue to (56), but 
changing αz by 3αz.  
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The uncertainty in the turbine power curve introduced 
considering hub wind instead of (cubed) wind speed averaged 
along the rotor can eventually exceed 5% according to 
Rehman and Al-Abbadi [113]. The average wind speed 

 wind rotor areaU〈 〉  is bigger than hub wind speed ( )windU H  if 
αz> 1. Average squared wind speed 2

 wind rotor areaU〈 〉  is bigger 
than squared hub wind speed for 2 ( )windU H  for αz> ½. 
Average cubic wind speed 3

 wind rotor areaU〈 〉  is bigger than 
3 ( )windU H  for αz> 1/3. Therefore, the power curve of a turbine 

can vary significantly depending on the shear exponent αz. 

3.5. Calculation of aerodynamic filter 
based on 3D wind waves 

In the previous subsection, the turbulence structure along 
the rotor disk has been neglected. The equivalent wind has a 
determinist oscillation due to wind shear and tower shadow 
and a random oscillation due to turbulence. But even the 
determinist oscillation can turn into a random oscillation if 
the blades start vibrating if they have enough flexibility and 
inertia. Thus, the determinist variation of the real wind along 
the swept area can introduce random oscillations in the torque 
and thus, in the equivalent wind. 

A naïf approach to estimate the smoothing –due to the 
spatial variation of turbulence– of the equivalent wind respect 
the wind measured with an anemometer will be developed in 
this subsection, just as an illustrative example.  

3.5.1. Comparison of 3D wind waves 
with frozen turbulence 

Under the Taylor’s assumption of frozen turbulence, the 
perturbation travels at average wind speed vturb ≈ windU . 
Thus, the perturbations seen at a fixed point fluctuating with 
frequency f, have a wavelength λlong = vturb/f ≈ windU /f  
related to the spatial escale in the longitudinal direction 

UwindA . Using the turbulence structure in the standard IEC-
61400-1, the cut-off frequency of the equivalent turbulence 
fcut ≈ A 〈Uwind〉/(100R).  

However, the wavelenghts in the lateral and vertical 
directions are smaller due to the surface and the boundary 
layer presence. For simplicity, we assume a transversal 

wavelength λtransv = k transv λlong for the lateral and vertical 
directions, slightly smaller than in the longitudinal direction 
(0 < k transv 1 1). Using a sinusoidal perturbation pattern with 
transversal wavelength λtransv (see Fig. 37), the cut-off 
frecuency in the rotor disk average wind is fcut ≈ 
ktransv windU /(6R) –this formula will be derived in the next 
subsection. Equating both estimations, the ratio between the 
transversal and longitudinal wavelengths can be estimated as 
ktransv ≈ 0,06A. 

Since the coherence decay factor A is a stochastic 
parameter between 5 (high spatial coherence typical of gusts) 
and 12 (standard spatial coherence), the ratio between the 
transversal and longitudinal wavelengths is vturb/〈Uwind〉 ≈ 
0,3~0,72. This factor is bellow unity, indicating that the 
spatial variation of the 3D wind field is bigger in the lateral 
and vertical directions than in the longitudinal direction. 

Thus, the results from Taylor’s Hypothesis and from the 
wind perturbation treated as a wave match. This fact is 
surprising, especially taking into account the chaotic 
behaviour of the turbulent flow and the oversimplification of 
the frozen turbulence hypothesis or the wavelength approach. 

3.5.2. Model of 3D wind waves 

In a gas, a perturbation generates a pressure wave that 
transmits in all directions at sound speed. Since macroscopic 
turbulence implies vortices, that are quite stable flow 
structures, it is reasonable that they pass floating the turbine. 
Due to the stability of eddies, their speed of translation is the 
average flow speed windU  instead of at sound speed (vsound= 
343 m/s at standard conditions).  

In this sub-section, the source of perturbation will be con-
sidered far and the air viscosity (i.e., the attenuation of air 
waves) will be neglected. With the former simplifications, the 
longitudinal compontent of the wind of fluctuating frequency 
f at the anemometer will have a spatial periodic pattern of 
wavelength λtransv = k transv windU /f in the rotor disk (see Fig. 
37) travelling in the longitudinal direction at speed vturb 
≈ windU . 

 
Fig. 36: Plot of the longitudinal wind component corresponding to a 3D wave 
which at an anemometer appears as a fluctuation of frequency f = 5 Hz and a 
turbine rotor of radius R = 50 m. 

The longitudinal wind component at frequency f in rectan-
gular coordinates y, z is assumed to be:  (59) 
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where ( )2 2, +IEC f y zγ  is the amplitude of wind oscillation 
and t0, y0 and z0 are random values.  

 
Fig. 37: Flow curls due to the eddies and the corresponding modulation of the 
longitudinal wind component. 

Assuming that initial angle of the first blade is ϕ = ϕ0 at 
t = 0, then the angular position at any time is ϕ = Ωrotort+ϕ0, 
where Ωrotor is the rotor angular speed –for a three bladed 
turbine, fblade = 3Ωrotor/(2π).  

Therefore, the wind field in the blade axis at a distance ρ of 
the rotor centre is, in polar coordinates: 

( )0 0

'( , , , )

Cos( ), Sin( ), ,
l

l rotor rotor

w f t

w t t f t

ρ ϕ

ρ ϕ ρ ϕ

=

= Ω + Ω +
 (60) 

If the aerodynamics can be considered linear enough for 
neglecting small perturbations and the blade aeroelastics, only 
a sensitivity coefficient of wind in torque or in power needs to 
be considered. Moreover, the turbine torque would show the 
same cut-off frequency than the average wind and the 
equivalent wind. 

3.5.3. Spatial turbulence averaged along 
the blades 

Since rotor solidity in a three bladed turbine is low, the 
equivalent wind can be estimated averaging the wind only 
along each blade axis, provided the blade is narrow and it is 
not influenced by the nearby flow. 
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Solving the integral for β≈0, this approximation leads to a 
first-order low-pass filter of the same cut-off frequency fcutoff 

= vturb/(6R) ≈ windU /(6R). Therefore, averaging along the 
blades instead of along the rotor disk area produces a slower 
decay (this is sensible since the blade area is is smaller than 
the rotor disk area).  

In the one hand, the blade average corresponds to the order 
r = 1 of the aerodynamic filters proposed by Sørensen [105] 
and Wilkie, Leithead and Anderson [106].  
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Fig. 38: Averaged wind fluctuation along the blades of a rotor of radius 
R = 50 m, vturb ≈ vsound and the asymptotic approximation to a system of 
order r =1. 

In the other hand, the cut-off frequency fcut is a few cents of 
Hertz in multi-megawatt turbines, filtering wind oscillations 
of tens of seconds. Experimental measurements have shown 
that the equivalent wind has approximately the same PSD as 
the wind measured at a point and filtered with a second order 
filter in a multi-megawatt turbine. Since the blades sweep the 
turbulence many times in the characteristic times corre-
sponding to such low frequencies, it is more sensible to 
represent the turbine as a disk actuator than only considering 
the averaging along the blade axis.  

3.5.4. Spatial turbulence averaged across 
the rotor disk area 

The cut-off frequency of the rotor filter is very low, typi-
cally 0,033 Hz for a megawatt turbine. Such low frequency 
imply that the fluctuations that happen quicker than 30 s are 
filtered by the rotor. During such times, the blades sweep 
many times the wind field perturbation and the rotor can be 
considered a disk actuator. Thus, the turbulence impact on the 
equivalent wind is more accurately accounted if the local 
wind is averaged across the rotor disk area than along the 
blade axis, assuming a fairly constant blade loading between 
Rmin and Rmax. 

The component of mean wind in the rotor area at frequency 
f gives an idea of the attenuation respect the fluctuation 
measured with an anemometer due to the averaging of speed 
in the swept area.  
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Fig. 39 shows that the averaging is equivalent to a low pass 
filter. The asymptotic function min{1, fcutoff/f 3/2} corre-
sponding to a low-pass filter of order r =3/2 and characteristic 
frequency fcutoff = vturb/(6R) ≈ windU /(6R) has been added to 
the plot in Fig. 39 to contrast the system behaviour. 
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For β≈0, the cut-off frequency due to the rotor averaging is 
fcut-off = vturb/(6 R) ≈ windU /(6 R) and its order is r =3/2 (see 
Fig. 39). For a turbine of radius R= 50 m and an average 
wind speed windU ≈ 10 m/s, the cut-off frequency is about 
fcut-off  ~ 1/(30 s) = 0,033 Hz. In fact, the order r of the filter is 
bigger than 3/2 because β > 0, and the actual filter order 
estimated from experimental measurements is around r ~ 2. 
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Fig. 39: Averaged wind fluctuation in the area of the rotor disk radius 
R = 50 m, vturb ≈ vsound and the asymptotic approximation to a system of 
order r =3/2. 

In sum, the equivalent wind is similar to the wind meas-
ured at the rotor hub filtered with a second-order low-pass 
filter with cut-off frequency fcut. The effect of the turbulence 
in the torque is negligible at frequencies f 2 0,2 Hz compared 
to the drivetrain oscillations due to tower oscillation, wind 
shear, rotor revolution and tower shadow. 

3.6. Torque dependence on rotor 
position 

The analysis of experimental data shows that the turbine 
torque exhibit cuasi-periodic power fluctuations as well as 
stochastic power pulsations caused by the variations of the 
wind speed –see Fig. 183 to Fig. 186. The most common are 
power pulsations at the frequency of the blades passing in 
front of the tower. These pulsations are caused by the torque 
modulation due to wind shear and aerodynamic effects as the 
blades pass in front of the tower.  

Wind turbulence induces random changes in wind speed in 
a very broad frequency range and with high variance. In 
contrast, torque modulation is an almost systematic torque 
perturbation but it turns out into a random behaviour due to 
the interaction with the vibration modes of the blades and 
drivetrain. 

Since the modulation of the torque is almost systematic 
with a characteristic time-varying frequency and its 
harmonics, the turbine can be designed and controlled to 
minimize its effects.  

In a variable speed wind turbine (e.g. equipped with a 
double-output asynchronous generator) the influence of rotor 
angle in output power is smaller than in a fixed speed turbine. 
Fast variations in torque and thus power that affect the turbine 
blades then will result in momentary variations in the turbine 
speed, momentarily storing real power. Due to the same 
reason, the variations in power decrease when the induction 
generator slip is increased, by controlling the power flow in 
the rotor circuit. Thus, the tower shadow effect and the wind 

shear or wind speed gradient usually have a small and 
deterministic contribution to the observed output power 
variations ([114] and [186]). 

Even though rotational effects concern, first and foremost, 
the turbine structural integrity and its control, it should be 
included in the equivalent wind to have a realistic 
representation of low speed shaft torque. 

3.6.1. Cascade rotational sampling filter 
from Petru and Thiringer 

Since wind depends on height due to wind shear, the 
equivalent wind has a component dependent on rotor angle 
and hence, at frequency fblade and its harmonics. Near the 
tower crossing, the air flux is influenced by the presence of 
the tower, resulting in a small decrease of torque. Thus, the 
equivalent wind shows amplitude-varying oscillations at the 
frequency of a blade crossing the tower, fblade, due to spatial 
sampling at blade positions. The amplitude-varying 
oscillations can be mathematically decomposed in pulsations 
of frequency fblade±f(t), where the carrier frequency is fblade 
and f(t) is the modulating frequency, much lower than fblade. 

Despite torque varies sharply depending on tower position 
–see Fig. 311–, this spiky variation is smoothed through the 
dynamic train flexibility and generator dynamics. Thus final 
power variations can be characterized primarily through the 
fundamental sinusoidal fluctuations –see Fig. 190 to Fig. 202. 

Petru and Thiringer represented the rotational sampling as 
a cascade filter applied to the wind spectra. The application of 
the first and second filter to the wind produces an equivalent 
wind with the following PSD: 
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where ( )UeqPSD f is the equivalent wind, including the 
rotational sampling effects.  
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Fig. 40: Block diagram of the cascade model in [43] for off-line equivalent 
wind time series generation (actual rotor angle ϕ and pitch angle θ are not 
considered). 

The second filter represents the wind rotational sampling 
by the turbine rotor and is called the rotational sampling filter, 
with the general expression (64) taken from [43]: 
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where the blade frequency is fblade = 3Ωrotor/(2π) in a three 
bladed turbine and gd is the rotor amplification factor at f 
=fblade respect H1(s). This filter amplifies the variations at a 
frequency region around the blade passing frequency. In other 
regions, this filter has a gain of nearly one. Fig. 41 shows a 
typical power spectral density for U =12 m/s, before and after 
the application of the aerodynamic filters (46) and (64). 

http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5
http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5


 Ch. 3: The turbine torque and the equivalent wind 35 

Since signal phase is uniformly distributed, it doesn’t affect 
equivalent wind distribution. The squared modulus of the 
rotational filter sampling is: 
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⎡ ⎤
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Recall that gd = 2πfblade/d is used instead of the original 
formula in [43] to obtain simpler expressions related to the 
equivalent wind. This filter amplifies the equivalent wind 
variations around the blade passing frequency in an 
approximate factor gd. The bandwidth of the filter is BW≈ 
fblade/gd approximately and it increases the variance of 
equivalent wind Ueq2(f) in a factor σblade

2 ≈ π fblade gd 
PSDH1(fblade). 

 
Fig. 41: Wind speed power spectral density before and after the application 
of aerodynamic filters and a system of fractional order r = 1.6947. (Other 
conditions: von Karman, U = 10 m/s, L2 = 150/2,329 m, I=0.10, fblade =1,0 
Hz, R=50 m, gd =2πfblade /15).  

This rotational sampling filter can be roughly 
approximated to an ideal narrowband equalizer of unity gain 
except at fblade, where the gain is approximately π fblade gd δ(f–
fblade) / PSDUeq1(fblade). 
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 (66) 

Put into words, rotational sampling is modelled in (66) as a 
deterministic pure tone oscillation. The gain gd has been 
deduced equating the variance of the equivalent wind 
computed with (65) or (66). Notice also that comparing (186) 
and (66), then the amplitude of the ideal narrowband 
fundamental component is g1 ≈ π fblade gd . 

A) Estimation of gd, σblade and the bandwidth of the 
rotational sampling filter 

The blade frequency fblade is 3 Ωrotor /2π in a three bladed 
turbine. The average amplitude of the fluctuations due to 
rotational sampling can be determined from recorded signals 
or from the model presented in the next section.  

The value of gd can be estimated as gd ≈ σblade
2/[π fblade 

PSDH1(fblade)], where all the parameters are easily estimated. 
The bandwidth BW in the filter (64)is fblade/gd (it cannot be 
adjusted) but the bandwidth can be adjusted in the alternative 
filter (70) to take into account the variability of fblade and some 
mechanical vibrations induced by the rotational sampling. 

The parameter σblade is the RMS value of the torque modu-
lation generated by the filter. In order to preserve the ampli-
tude of the torque modulation, σblade. can be estimated alter-

natively as the equivalent wind dip when a blade is crossing 
the tower divided by 2 2  and a tiny bandwidth BW.  

However, this criteria overestimates the RMS modulation 
since the loss of torque is very brief (see Fig. 311). If only the 
fundamental component of the fluctuations are considered, 
then σblade ~ Amplitude / 2  but considering the real shape, 
Amplitude /σblade � 2 due to the presence of harmonics in 
the torque signal. 

Since wind is variable, operational conditions vary and 
consequently the torque signal is not truly stationary. The 
frequency bandwidth of the oscillations, BW, can be esti-
mated from rotor speed (or fblade) excursions for some given 
operational conditions and it is a quite small fraction of fblade. 
The bandwidth BW increases when it is estimated from long 
records of real data since wind is not really stochastically 
stationary (fblade varies more in long periods). The bandwidth 
is an outcome of the interaction of wind turbulence with 
complex turbine dynamics. In contrast, fblade and σblade are less 
affected by estimation method. 

If the aerodynamic torque considering tower shadow and 
wind shear is measured or estimated, σblade,(1) is just the RMS 
value of the bandpass-filtered equivalent wind signal (see Fig. 
42). 
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Fig. 42: Estimation of σblade,(1)  from the rotor aerodynamic torque. 

Analogously to Fig. 42, σ’blade is the RMS value of the 
bandpass-filtered equivalent wind computed from the aerody-
namic torque without considering the tower shadow and wind 
shear. σ’blade can be regarded as the background fluctuation at 
fblade due exclusively to wind turbulence (σblade,(1)�σ’blade). 

Since rotational sampling and wind turbulence are different 
processes, the fluctuations induced by them can be considered 
stochastically independent. Therefore, the sole contribution of 
rotational sampling is σblade

2 ≈ σblade,(1)
2–σ’blade

2. 

B) Rotational effects as a randomly modulated 
component of carrier frequency fblade 

In time domain, the rotor introduces in the equivalent wind 
a sinusoidal component with approximately Rayleigh-
distributed amplitude of parameter σblade ≈ [π fblade gd 
PSDH1(fblade)]-1/2, random phase and approximate frequency 
fblade. The bandwidth of the filter is related to the modulating 
frequency of the signal (a rough estimation of the modulating 
frequency is just the bandwidth, fmod≈BW). Thus, the 
rotational sampling can be described by the additional term in 
the temporal signal: 
 2 1 2( ) cos(2 )cos(2 )blade modH t A f t f tπ ϕ π ϕ≈ + +  (67) 

where ϕ1 and ϕ1 are random phases uniformly distributed in 
[-π, +π] and A is the amplitude, distributed as a Rayleigh 
random variable of parameter σblade. This behaviour has been 
observed in power output of wind turbines, indicating that the 
assumed approximations are valid (see, for example, Fig. 200 
to Fig. 203). 

The former expression is suitable for the generation of 
equivalent wind in time domain simulations, where the 
rotational speed and fblade can vary depending on the wind and 
turbine control. If fblade varies in time, (67) transforms into:  
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 2 1 0 2( ) cos( 2 )cos(2 )t
blade modH t A f dt f tϕ π π ϕ≈ + ∫ +  (68) 

C) Additional filters to increase accuracy 
Other filter types can be applied in order to adjust the high 

frequency components. The induction lag filter is one of 
them, resulting from the induction lag that occurs when the 
blades react to a change in wind speed and hence to a 
changing angle of attack. This change can be modelled as a 
lag filter with a frequency response represented by (9): 
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where ai  > 1 for amplifying certain mid-range frequencies. 
The time constant, τi, and the empirical parameter ai  must be 
obtained through an identification method. According to 
Petru and Thiringer, omitting the induction lag filter has no 
detectable impact on the power quality predictions [43]. This 
can be due to the fact that high frequencies present in rotor 
torque are highly attenuated by turbine dynamics. 

3.6.2. Proposed rotational sampling 
model  

In this, a rotational sampling model is proposed to 
overcome the limitations of the cascade filters: 

• The estimation of the parameters of the rotational 
sampling filter (64) and its additional filters (69) is 
intricate. Typically, they are derived from 
experimental measurements or complex 
aerodynamic simulations. 

• The additional filters introduce harmonic 
components of random phase, unable to reproduce 
the shape of the real angular modulation. With 
several additional filters, a signal with the same 
frequency content can be obtained, but without its 
characteristic shape.  

• On the one hand,
1
( )Ueq bladePSD f  depends strongly 

on wind speed, turbulence length and wind spectra 
type. On the other hand, the torque modulation 
depends on rotor angle, average wind speed, pitch 
angle and shear exponent. The use of cascade filters 
imply considering rotational components 
proportional to 

1
( )Ueq bladePSD f  and it is not 

advisable. 
• The essence of the rotational effect is the torque 

dependence on rotor angle, average wind speed, 
pitch and speed profile. Therefore, the torque 
modulation is represented more accurately by an 

function dependent on rotor angle, average wind 
speed, pitch angle and shear exponent. 

• The wind field can excite aeroelastic modes of 
blades, introducing complex behaviour. This 
behaviour is typically analyzed by specialized 
programs such as Bladed, Adams, Fast… and it can 
be introduced either as deterministic or as stochastic 
terms in the equivalent wind. 

Therefore, the rotational sampling will be characterized 
later in (752) as an angle-dependent torque modulation 
fpulse(ϕ) whose characteristic shape depends on turbine 
characteristics and operational conditions (see Fig. 45). The 
torque modulation fpulse(ϕ) is composed by a sinusoidal 
oscillation at blade frequency due to wind shear plus a narrow 
torque dip during the crossing of the blade through the tower 
(see Fig. 311). 

Since rotational sampling produces an angular modulation 
in torque, an equivalent wind modulation can be defined 
based on (24). The modulation of equivalent wind speed can 
be estimated through a small signal model –see (73) to (94) 
for details on a small-signal model. 

Thus, the rotational effects can be accounted as a 
modulation of equivalent wind speed with approximate shape 
fpulse(ϕ) and amplitude α. 

A) Feedback of actual rotor speed Ωrotor, rotor angle ϕ 
and pitch angle θ for better accuracy 

Provided Uwind and fblade can be considered constant, time 
series of equivalent wind can be roughly generated regardless 
of wind turbine dynamics. However, variable speed turbines 
with blade pitch or active stall regulation or time series with 
significant wind speed variations requires feedbacking the 
actual rotor speed Ωrotor, the rotor angle ϕ and the pitch angle 
θ to the operating conditions. This is naturally accomplished 
in the time domain. 

Fig. 43 shows a diagram where the mean wind speed 
〈Uwind〉 and the turbulence averaged along the rotor Ueq1(t) is 
computed in the time domain without including rotational 
effects. In fact, the rotational effects are computed from the 
pitch θ and the effective tip speed ratio 〈λ’〉 –angle brackets 
indicates that the aerodynamic parameters are averaged along 
all the blades of the rotor. This approach increases the 
accuracy on the estimation of aerodynamic behaviour of the 
rotor without requiring detailed knowledge of rotor details –
only torque or power coefficients are needed to compute 
aerodynamic torque. The use of an effective tip speed ratio 
〈λ’〉 have been not found in the literature and it is an original 
contribution of this work. 〈λ’〉 will be derived from blade 
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Fig. 43: Diagram of the proposed retrofitted rotational sampling model for the on-line estimation of aerodynamic rotor torque in the time domain 
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element theory in the next subsection 3.7. 
In case the blades experience noticeable aeroelastic twist 

induced by aerodynamic loads, an equivalent pitch angle 〈θ’〉 
can be defined analogously. 

Fig. 44 shows the simplified diagram of the farm wind 
model with the interaction between the generated single point 
wind speed time series, usp, and the turbine rotational speed. 

 
 
Fig. 44: Diagram of the generation in the time domain of the equivalent wind 
in a farm.  

B) Rotational sampling in the frequency domain 
The former methodology can reproduce the sape of the 

angular dependence of equivalent wind. This methodology is 
suitable for simulations in the time domain, where turbine 
parameters evolve. 

The studies in the frequency domain usually assume a 
steady system operation. If fblade and pulse shape is 
approximately constant, the time model in Fig. 43 transforms 
into the frequency model in Fig. 45. The frequency model 
retains the shape of the torque modulation (the phase of 
Ueq2(f) is synthesized) but it does not account for changes in 
rotor speed, pitch and wind along the simulation. 
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Fig. 45: Diagram of the proposed additive rotational sampling model for the 
off-line estimation of the equivalent wind in the frequency domain.  

Due to the elasticity of the drivetrain and the high inertias 
in the turbine, the shape of the torque dip at the rotor due to 
tower shadow is heavily smoothed at the output of the 
drivetrain. Thus, the main effect of torque modulation –apart 
from the fatigue on the blades and on the drivetrain– is the 
excitation of vibration modes of the blades, drivetrain and 
generator.  

Many frequencies of vibration are not harmonic, resulting 
into stochastic processes characterized primarily by their 
PSD. In such cases, the phase difference between vibrations 
is random and the original shape of the torque modulation is 
meaningless (in a linear system, vibration modes are fed by 
the frequency content of the torque, irrespectively of its 
original shape). 

C) Narrowband filter for coarse simulations 
On some studies, higher frequency rotor dynamics can be 

neglected. In such studies the rotational effects are only 
represented by its fundamental component. 

In such cases, the rotational sampling can be characterized 
with a narrowband filter around the blade frequency (see Fig. 
46) and this approach is comparable to Petru and Thiringer 
method [43].  
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Fig. 46: Simplified block scheme for off-line equivalent wind time series 
generation (actual rotor angle ϕ and pitch angle θ are not considered).  

A simple second-order bandpass filter can be used. In such 
case, an extra parameter, the passband bandwidth BW, is 
used to model how much the rotor speed (and hence, the 
blade frequency fblade) varies.  
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In time domain simulations, the full rotational model of 
Fig. 43  and Fig. 44 is recommended for its low footprint and 
its high accuracy. The model of Fig. 45 is suitable for 
frequency domain simulations where the operational 
conditions of the turbine are known.  

When a very simple model of equivalent wind modulation 
is required, the model of Fig. 46 can be useful. On some 
circumstances, several band pass filters can be connected in 
parallel to represent the torque harmonics. 
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3.7. Small signal model of aerodynamic 
torque 

3.7.1. Derivation of the small signal 
model 

A small signal model can be computed using a first-order 
approximation based on total derivatives of torque rotorT  
respect squared equivalent wind 2

eqU : 

 2
2 ( )

( )
rotor

rotor rotor rotor eq
eq

dT
T T T U

d U
Δ = − ≈ Δ  (73) 

where 2 2 2( )eq eq eqU U UΔ = −  is the effective quadratic 
turbulence defined in (29) and ΔTrotor is the turbine torque 
deviation from its mean, excluding periodic deviations due to 
rotational sampling (these fluctuations are not related to 
variations of equivalent wind speed). 

Taking into account the torque in function of equivalent 
wind speed (24) and considering the air density airρ  constant, 
the total derivative can be computed as:  

 3 21
22 2 2

( , )
( ) ( ) ( )

rotor rotor
air eq q

eq eq eq

T dT d
R U C

U dU dU
ρ π λ θ

Δ
⎡ ⎤≈ = ⎢ ⎥⎣ ⎦Δ

 (74) 

where the chain rule can be applied. 
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( , ) ( , )

( ) ( )

q
eq q q eq

eq eq

dCd
U C C U

dU dU

λ θ
λ θ λ θ⎡ ⎤ = +⎢ ⎥⎣ ⎦  (75) 

Based on (74) and (75), the small signal on torque is: 

 3 21
22 2

( , )
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eq eq

dCdT
R C U

d U d U

λ θ
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 (76) 

The aeroelasticity and the turbine control introduces non-
obvious interactions between wind speed through tip speed 
ratio λ and blade angle θ.  
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Torque fluctuations depend primarily on effective 
quadratic turbulence. But they depend secondarily on turbine 
control since the turbine controls θ and Ωrotor.  

Tip speed ratio λ and rotor speed Ωrotor are related 
according to (23). Thus, the first order approximation of 
aerodynamic torque at the turbine is, in general form:  (78) 
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The control influence will be estimated in the following 
subsections for very slow ( 5t sΔ � for a megawatt turbine) 
or very fast ( 5t sΔ �  for a megawatt turbine) wind 
fluctuations. 

3.7.2. Classification of turbines 
according their controllable parameters  

A) Speed and blade controlled wind turbine 
Controlled turbines can adjust the parameters λ and θ 

according to the control law. Two main control policies exists 

during continuous operation: maximize power output if wind 
is bellow rated value and limit power output when wind 
surpasses rated value. Sometimes, saturable integrators are 
included in the control scheme to switch smoothly between 
policies. 

B) Fixed speed wind turbine 
Squirrel cage induction generators are very reliable, robust, 

compact and low-cost machines. They have been utilized 
widespread in wind turbines, directly connected through a 
soft-starter and sometimes in arrangements which allowed 
operation at two fixed speeds. 

The main drawbacks of fixed speed wind turbines are: 
• They operate at low slip (very close to nominal 

speed). Rotor speed cannot vary significantly to 
dampen torque oscillations or to optimize 
aerodynamic efficiency. 

• They consume reactive power almost quadratically 
with load factor, with a significant idle reactive 
requirement. Capacitor banks are customarily 
installed in parallel to the generator to control the 
required power factor. 

• They cannot satisfy fault ride-through reactive 
requirements of most grid codes unless an external 
system is installed. 

Nowadays, the multimegawat turbines require alleviating 
structural loads and being able to comply with grid codes. 
Therefore, fixed speed turbines are less suitable for present 
turbines and advanced systems allowing bigger speed excur-
sion such as VRIG, DFIG or induction generators connected 
through power converters are becoming usual (for example, 
see Hier [115], Sallán-Arasanz [116] or Sanz-Osorio [117]). 

In fixed speed turbines, the parameter λ varies inversely 
proportional to equivalent wind speed and it cannot be 
controlled.  

C) Stall controlled wind turbine 
In turbines with variable blade angle θ, it is controlled to 

achieve maximum power at partial load and limit power at 
full load. In stall controlled turbines, the blades are designed 
so that they gradually start stalling their tips at high winds, 
limiting the power. This concept is robust and reliable but the 
aerodynamic design is complex, especially in multi-megawatt 
turbines due to blade fatigue. The stall process is dependent 
on flow regime and blades are designed so that this process 
occurs gradually from the tip of the blade. The process of air 
boundary layer separation present hysteresis and can be 
characterized through the use of dynamical power or torque 
coefficients and a state variable (portion of detached flux) to 
account flow regime. 

Stall control of turbines has been widespread in the past 
and it continues being used in small turbines. However, the 
need of additional aerodynamic features to stop the turbines 
has made turbines with variable blade angle θ flavoured by 
manufactures. Notwithstanding these facts, the control of the 
turbines decreasing θ at high winds (active stall or stall-
induced control) is used by many manufacturers since they 
present better stability during gusts than conventional pitch 
control (increasing θ at high winds). 
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3.7.3. Analysis of fluctuations at 
characteristic operational points 

A) Fast fluctuations at partial generation: 
( , )PC maximumλ θ ≈  

When the wind Ueq  increases, the rotor accelerates slowly 
due to rotor inertia and the tip speed ratio λ = R Ωrotor/Ueq 
changes gradually. 

If the turbine is maximizing power output, 
( , )/ 0PC λ θ λ∂ ∂ ≈  and ( , )/ 0PC λ θ θ∂ ∂ ≈  since ( , )PC λ θ  is 

maximum. Since the torque coefficient is the power 
coefficient divided by the tip speed ratio, ( , )qC λ θ  = 

( , )/PC λ θ λ , then the following relations holds at maximum 
( , )PC λ θ : 
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 (81) 

Now, the influence of effective quadratic turbulence on 
torque can be estimated using the chain rule: 

 
2

31
22 2

1
( , ) 1

2( ) ( )

rotor eq rotor
air q

eq rotor eq

T U d
R C

U dU
ρ π λ θ

⎛ ⎞Δ ⎟Ω⎜ ⎟⎜ ⎟≈ + −⎜ ⎟⎜ ⎟⎜Δ Ω ⎟⎝ ⎠
 (82) 

Thus, a first-order small-signal model can be estimated 
from 2/ ( )rotor eqdT dU in (82), assuming operation at maximum 
turbine efficiency ( ( , )PC λ θ ≈ constant at wind lower than 
rated speed): 

2
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 (83) 

(assuming turbine operation at maximum efficiency) 

For constant speed turbines and for variable speed turbines 
operating around maximum or minimum rotor speed, 

2 2/ ( ) /rotor eq rotor eqd dU UΩ Ω�  and hence: 
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q q

eq eq

dC C

dU U

λ θ λ θ
≈  (84) 

Finally, the small signal model (85) has been estimated 
from (82) assuming ( , )PC θ λ  and Ωrotor fairly constant. Thus, 
fast fluctuations of 2( )eqUΔ  are reflected in turbine tower 
almost proportionally: 

 3 23
4

( , ) ( )rotor air q eqT R C Uρ π λ θΔ ≈ Δ  (85) 

(assuming turbine operation at maximum efficiency and 
at constant speed) 

In other words, the torque variation is approximately 
proportional to the effective quadratic turbulence 2( )eqUΔ  
with gain ¾ 3 ( , )air qR Cρ π θ λ  if the turbine is operating at 
maximum efficiency and there is not significant energy 
storage in the rotor.  

B) Fast fluctuations at full generation 
Beyond rated wind, the generator torque control tries to 

maintain Ωrotor almost constant varying the generator power. 

The rotor torque can be estimated assuming 2(/ )rotor eqd UdΩ ~0 
since a low 2/ ( )rotor eqd d UΩ  is required for avoiding over-
speeding and for limiting the value of ( , )PC λ θ .  

Moreover, the blade angle θ does not change significantly 
in very short intervals due to its inertia and its actuator 
limitations. Therefore, if 2/ ( ) 0eqd dUθ ∼ for short intervals 
then (78) can be further simplified into: 

 3 21
2 2

( , )
( ) ( , ) q

rotor air eq q

C
T R U C

λ λ θ
ρ π λ θ

λ

⎡ ⎤∂⎢ ⎥Δ ≈ Δ −⎢ ⎥∂⎢ ⎥⎣ ⎦
 (86) 

(assuming θ and Ωrotor constant) 

This approximate formula (86) is valid wherever θ and 
Ωrotor are judiciously constant. 

In pitch regulated turbines, the regulation of ( , )qC λ θ  is 
slower than in active-stall turbines, (i.e. ( , )/qC λ θ θ∂ ∂  and 

( , )/qC λ θ λ∂ ∂  have lower values in pitch regulated turbines). 

C) Stall operation 
The aerodynamic torque coefficient in (24) is estimated 

from steady state operating points. The hypothesis that torque 
coefficient only depends on θ and λ underestimates the actual 
power fluctuations in the stall region due to flow separation 
hysteresis. Therefore the aerodynamic model can be 
improved by taking the dynamic stall effects into account 
through a dynamic torque coefficient ( , )dynamic

qC λ θ  –see 
[118, 119] for details.  

D) Slow fluctuations (quasi-static approximation) 
During slow wind variations, the control adjusts the blade 

angle θ and the rotor speed Ωrotor to their optimal values. On 
the one hand, the torque variations should be computed from 
the general formula (78) since the variation of θ and Ωrotor 
cannot be neglected. 

On the other hand, wind turbine dynamics are negligible 
provided the fluctuations are slow enough for the static 
approximation to remain valid. Thus, the torque can be 
alternatively estimated based on the power curve in function 
of the squared effective wind 2( )turbine eqP U  and the overall 
efficiency of the mechanical transmission (mainly the 
gearbox) and generator, mec genη + .  
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Thus, the small signal model of torque based on the power 
curve (valid only for slow fluctuations) is: 
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 (88) 

(assuming quasi-static operation) 

For slower fluctuations bellow rated speed, the turbine can 
be considered operating at maximum efficiency (control 
policy: maximize power bellow rated speed). Then λ, θ and 

( , )PC θ λ  are close to the optimum values and ( , )qC θ λ  is 
approximately constant. Thus, equation (85) is a good 
approximation and the torque is proportional to the square of 
the equivalent wind speed. 
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During slower fluctuations above rated wind speed, the 
turbine limits the power and rotor speed. Therefore, the 
torque is unaffected by slower fluctuations beyond rated 
speed:  

 max

,max

turbine
rotor,limit power

mec gen rotor

P
T constant

η +

≈ ≈
Ω

 (89) 

Thus, the torque variations are negligible under the quasi-
static approximation at constant power: 

 ,maxmax
2 2

,max
0
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Ω
Δ ≈ −

Ω
∼  (90) 

(assuming quasi-static operation at constant power) 

3.7.4. Small signal approximation of 
effective quadratic turbulence 2( )eqUΔ  on 
equivalent turbulence eqUΔ . 

When the wind turbines are generating, a small-signal 
model based on wind speed deviations eqUΔ can be obtained 
since eq eqU UΔ� ,:  

22 2 2
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eq eq eq eq eq eq eq
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U U U U U U U
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 (91) 

Notice that the average of (ΔUeq)2 is the equivalent 
turbulence parameter or more precise, the variance of the 
equivalent wind, 2 2 2( )eq eq eqU U U〈 Δ 〉=〈 〉−〈 〉 . Therefore the 
following relationship is also hold: 
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eq eq eq eq eq eq
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U U U U U U

U U U U

Δ = − = − − Δ =

= Δ + Δ − Δ
 (92) 

For relatively small variations of wind, the following fist-
order approximation is valid: 

 2( ) 2eq eq eqU U UΔ ≈ 〈 〉Δ  (93) 

Therefore, the relation between the power spectral densities 
of the equivalent speed and its square are: 

( )2

2

( )
( ) 2 ( ) 0

eq eq
eqU U

PSD f U PSD f fΔ Δ≈ 〈 〉 ∀ ≠  (94) 

3.7.5. Influence of turbine control 

The measurement system shown in the second chapter has 
been installed on two models of doubly-fed induction 
generator (DFIG) wind turbines (WT) from GAMESA with 
several control configurations, in a variable resistor induction 
generator (VRIG) turbine from VESTAS and two models of 
squirrel cage induction generator (SQIG) turbine from TAIM-
NEG MICON (now VESTAS). 

The turbine behaviour relies heavily on the control scheme 
and their fine-tuned parameters. The usual schemes are 
available in the literature (see the thesis of Comech-Moreno 
[120] and Akhmatov [121], or the book from Bianchi, De 
Battista and Mantz [122]) but the turbine manufacturers are 
very reluctant to provide the control parameters.  

The derivatives 2/ ( )eqd d Uθ  or 2/ ( )rotor eqd dUΩ  in (78) are 
difficult to estimate analytically since they depend on turbine 
control. If no information on the control is available, it can be 

assumed that the dynamic of θ  and rotorΩ are dominated by 
the blade and rotor inertias, respectively. 

Neither the drivetrain nor the generator is modelled in this 
work due to unavailability of the turbine and its control 
characteristics. The transfer functions in this thesis are 
estimated only from measurements since full turbine 
simulations are out of the scope of this thesis. 

For small torque variations, a linear model can be enough. 
Inertia constant of multimegawatt turbines is in the range of 8 
s (ratio of kinetic energy in the drivetrain to turbine assigned 
power). The drivetrain, with its torsion stiffness and its small 
damping is often modelled as a second order (see for example 
Comech [120]). The electromagnetic transients are usually 
fast compared to turbulence and to the inertia. The control 
influences notably the dynamics. In some turbines, it has been 
observed experimentally the noticeable changes in the 
behaviour after updating control parameters and/or software. 

Some turbine transfer functions are available in the 
literature for induction generators (see for example the book 
from  Ong [123] and Lesieutre [124] ), self-excited induction 
generator (see for example the review from [125], Melkebeek 
[126] and Uçtug [127]), doubly-fed induction generator (see 
Comech-Moreno [120], Akhmatov [121], Wu [128], Nagaria 
[129] and the book from Bianchi et al. [122] ), full converter 
generators (see for example Erikson [130] and [131]) and 
hybrid configurations (see for example Sallán-Arasanz [116] 
or Sanz-Osorio [117] ).  

3.8. Equivalent wind of turbine clusters 
3.8.1. Equivalent wind of a farm 

A) Average farm behaviour 
Sometimes, a reduced model of the whole wind farm is 

very useful for simulating a wind farm in the grid. The 
behaviour of a network with wind generation can be studied 
supplying the farm equivalent wind as input to a conventional 
turbine model connected to the equivalent grid. 

The foundations of these models, their usual conventions 
and their limitations can be seen in [120, 132, 133, 134]. The 
average power and torque in the turbines and in the farm are 
the same on per unit values. This can be a significant 
advantage for the simulation since most parameters do not 
have to be scaled. Notice that if electrical values are not 
expressed per unit, currents and network parameters have to 
be properly scaled. 

For convenience, all the N turbines of a wind farm are 
represented with a single turbine of radius Rfarm spinning at 
angular speed farmΩ . The equivalent power, torque, wind, 
rotor speed, pitch and voltage are their average among the 
turbines of the farm. Thus, the equivalent turbine represents 
the average operation among the farm turbines.  

If the turbines are different or their operational conditions 
are dissimilar, the averages are weighted by the turbine power 
(because the aim of this work is to reproduce the power 
output of farms). Elsewhere, the farm averaged parameters 
can by approximated by a conventional arithmetic mean. The 
average along the turbines will be notated as i turbinesx . 



 Ch. 3: The turbine torque and the equivalent wind 41 

The equivalent farm mechanical power farmP  is the 
average of the individual mechanical powers along turbine 
rotors:  

 ,

1

N
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farm i turbines
i

P
P P

N=

= = ∑  (95) 

where subindex i indicate that the parameters refer to the 
turbine i.  

The equivalent farm torque can be derived from farm 
power: 
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Thus, farm torque can be defined as: 
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Taking into account relationship (24), the farm torque is: 
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The equivalent farm wind is derived assuming a similar 
relationship to (24) with an equivalent wind farm torque 
coefficient ' ( , )q farm farmC θ λ : 

 2 3 '1
,2

( , )farm air eq farm farm q farm farmT U R N Cρ π λ θ=  (99) 

The average tip speed ratio farmλ , the equivalent rotor 
speed farmΩ  and the average blade angle farmθ  are typically 
estimated in the turbine model. However, they can be 
alternatively estimated as the weighted average of the actual 
turbine values according to formulas (100) and (102).  
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rotor i farmturbines
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P

P N
=Σ Ω

Ω = ≈ Ω  (102) 

The power considered for computing the weighted 
averages (100) to (103) can be the mechanical power at the 
turbine rotor, the electrical power output and the nominal 
power output (in decreasing order of model accuracy). Notice 
that even if  turbine iP  were considered the electrical power 
output of the turbine, then farmP  would be the output of the 
farm plus the losses inside the farm grid. Notice that 
whichever representation is selected for  turbine iP , the 
calculus of the rest of global parameters must be congruent. 

The turbine radius is a constructive property of the turbine. 
If a wind farm is composed by several types of turbines, the 
equivalent radius can be computed as the average of rotor 
areas weighted by the turbine nominal power (other 
constructive parameter): 

 1 ,
N
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P R
R R

P N
=Σ

= =  (103) 

The weighted average of squared radius produces a higher 
fidelity in power (104) whereas the linear average (103) 
produce more acurracy of tip speed ratio.  
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The standard IEC 61400-123 defines a methodology to 
compute the power curve of a whole wind farm. Based in this 
power curve, a wind farm torque coefficient ' ( , )q farm farmC λ θ  
can be estimated. Basically, ' ( , )q farm farmC λ θ  is the turbine 
torque coefficient , ( , )q i i iC λ θ  scaled and smoothed to take 
into account the diverse operational points of the different 
wind turbines.  

3
1 , , ,'

3
1

( , ) ( , )
( , )

N N
i rotor i i q i i i q i i i

q farm farm
ifarm farm

R C C
C

NR N

λ θ λ θ
λ θ =

=

Σ Ω
=

Ω
∑∼ (105) 

 '
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The wind farm equivalent wind is implicitly defined from 
the previous relationship as:  (107) 
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or, equivalently, as: 

 
1 ,2

, 3 '1
2

/

( , )

N
i turbine rotor i

eq farm
air farm farm q farm farm

P N
U

R Cρ π λ θ

=Σ
=

Ω
 (108) 

The effective quadratic turbulence of the wind farm 
2

,( )eq farmUΔ  is defined as: 
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or, equivalently, as: 
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A small-signal model of the wind farm can be derived from 
the previous relationships: 

 2 2
, ,

1

( ) ( )
N

eq farm i eq i
i

U b U
=
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where the sensitivity factor of wind farm equivalent wind 
respect turbine equivalent wind bi is: 
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and the farm sensitivity vector is notated [ ]farm ib b=
G

.  
The equivalent farm wind can be estimated as a weighted 

sum of joint Gaussian processes [135, 136] corresponding to 
the equivalent squared turbine wind. Thus, the turbine wind 
spectra , ( )eq iU fΔ  are joint complex normal random 
variables ∀ 1 ≤i ≤N and the coherence can be used to 
compute an equivalent wind speed for the whole wind farm 
according to (22).  
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If all the turbines are equal and they are operating near the 
same operational points — ( )i tθ ≈ ( )farm tθ = ( )tθ  and ( )i tλ ≈ 

( )farm tλ ≈ ( )tλ — then 1/ib N≈ . (113) 

a) Model based in equivalent squared wind  
In general, 2

,( )( )eq farmU tΔ  –defined analogously to (73)– is 
not a Gaussian process. However, an instantaneous 
transformation can be used to obtain a process with the same 
stationary probability as the actual one. 

Assuming that the equivalent squared wind at the different 
wind turbines behaves as a multivariate Gaussian process 
with spectral covariance matrix: 

2 22 , ,
' ( ) ( )( ) ( ) U eq i U eq jijU eq

PSD f PSD ff fγ⎡ ⎤Ξ = ⎢ ⎥⎣ ⎦
G  (114) 

Thus, the 2 , ( )U eq farmPSD f  of the equivalent squared wind 
for the farm can be computed as: 
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where ' ( )ij fγ
G

 is the complex coherence of effective quadratic 
turbulence at frequency f. 

If all the turbines experience similar equivalent squared 
wind spectra – 2 2, ( ) ( )U eq i U eqPSD f PSD f≈ – and their 
contribution to the farm is similar – 1/ib N≈ – then the 
following approximate formula is valid: 
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Notice that ' ( ) 1ii fγ =
G  and '0 ( ) 1ij fγ≤ ≤

G
. Since the 

real part of ' ( )ij fγ
G

 is usually positive or close to zero (i.e., 
non-negative correlation of fluctuations), 2 , ( )U eq farmPSD f  is 
generally between the behaviour of perfectly correlated and 
independent fluctuations at the turbines. 
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if '0 Re[ ( )]ij fγ
G1  

b) Model based in equivalent wind 
The properties of the effective quadratic turbulence are not 

available usually. A second-order approximation based on 
(93) and  (118) can be used to obtain its characteristics: 

 2
,( )( )eq farmU tΔ ≈  2 , ( )eq farmU tΔ  ,eq farmU  (118) 

The wind farm model based in equivalent wind speed 
assumes that the equivalent wind at the wind turbines behaves 
as a multivariate Gaussian process with covariance matrix: 
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where ( )ij fγ
G  is the complex coherence of equivalent 

turbulence at frequency f –as the coherence for Høvsøre (22)– 
and 2 ( )

iU eqPSD f  can be computed through (45). 
The equivalent turbulence coherence and the effective 

quadratic coherence are roughly equivalent, '( ) ( )ij ijf fγ γ≈
G G

, 
provided the second-order approximations (93) and (118) are 
valid: 

2 2

, ,

*
2 2

, ,
'

2 2
2 2

, ,

*

, ,
, ,

, , ( ) ( )

( )· ( )

( )

( ) ( )

( )· ( )
4

( )
4

eq i eq j

eq i eq j

ij

eq i eq j

eq i eq j
eq i eq j

ij
eq i eq j U f U f

U f U f

f

U f U f

U f U f
U U

f
U U

γ

γ

= ≈

≈ =

JJJJG JJJJG

G
JJJJG JJJJG

JJJJG JJJJG

G
JJJG JJJG

 (120) 

And the spectral density of quadratic coherence, expressed 
with equivalent turbulence complex coherence, is: (121) 
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If the turbines experience the same equivalent wind 
spectra, , ( ) ( )Ueq i UeqPSD f PSD f≈ , their equivalent average 
wind speed  is similar, ,eq i eqU U≈ , and their 
contribution to the farm is similar ( 1/ib N≈ ), then the 
following approximate formula for the effective quadratic 
wind speed is valid: (122) 
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Assuming that ,eq eq farmU U≈ , then the model for the 
equivalent speed is valid: 
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and 
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( ) ( )
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Ueq Ueq
Ueq farm

PSD f PSD f
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B) Equivalent wind farm filter 
The rotor angle of each turbine is random and independent 

of the rest of the turbines due to the lack of noticeable 
synchronizing forces. The torque modulation of many 
turbines with random phases is a stochastic process that will 
be studied in detail in the next section. 

Since the tower shadow is quite narrow (the blades and the 
tower are quite slim), the probability of several simultaneous 
tower shadows is small. Moreover, the shape of the torque dip 
at the rotor due to tower shadow is heavily smoothed at the 
output of the drivetrain due to the elasticity of the drivetrain 
and the high inertias in the turbine. 

Thus, the main effect of torque modulation –apart from the 
fatigue on the blades and on the drivetrain– is the excitation 
of vibration modes of the blades, drivetrain and generator of 
each turbine. Many frequencies of vibration are not harmonic, 
resulting into stochastic processes characterized primarily by 
their PSD (in a linear system, vibration modes are fed by the 
frequency content of the torque, irrespectively of its original 
shape). 

Thus, it is sensible to model rotational sampling only by 
the PSD of the equivalent wind modulation. Since each 
turbine angle is independent of the rest of the turbines, there 
is a partial cancelation of power fluctuations along the farm. 
Thus, the equivalent wind will present –in average– an 
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angular modulation inversely proportional to the number of 
turbines of the farm.  

If different turbines are installed in the farm, an average 
shape of the torque modulation can be estimated but, in many 
cases, it would be more practical to simulate the turbines 
aggregated in groups of the same characteristics. 

In Fig. 52, the spatial diversity smoothing filter 3( )H f and 
the aerodynamic rotor filter 1( )H f  account for the spatial 
variation of wind computed in a region or in the turbine rotor, 
respectively. 3( )H f  is related to the PSD of the equivalent 
wind of a representative turbine and of the wind farm: 

 2 ,
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( ) 1
( ) ( )

( )
N NUeq farm

iji j
Ueq

PSD f
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PSD f N
γ

= =
= ≈ ∑ ∑ G  (125) 

For simplicity, 3( )H f  can be estimated from the 
equivalent turbulence coherences among turbines. Since the 
phase of the white noise is random, the phase of the filter 

3( )H f  do not alter the statistical properties of the farm wind. 
According to (123), a simple estimation of 3( )H f  is: 
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H f f
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γ
= =
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 (126) 

3.8.2. Equivalent wind of turbines 
distributed along a geographical area 

The turbines are grouped into farms, and some farms are 
concentrated around the geographical spots with higher wind 
potential. Thus, the approach used to compute the equivalent 
wind of a wind farm can be iterated for a cluster of wind 
farms.  

However, this would subsection presents another approach 
valid when the wind farms are fairly distributed across a 
region. This approach accounts the asymptotic wind 
smoothing due to geographical dispersion of the wind farms. 
This subsection relates the dimensions of a geographical area 
with the smoothing of the equivalent wind of that area. 

In (22), a model of complex root coherence ( )rc fγ
G  was 

introduced based on the works of Schlez and Infield [45] in 
the Rutherford Appleton Laboratory and Sørensen et Al. [85] 
in the Høvsøre offshore wind farm. In (116), a formula was 
derived assuming all the turbines experience a similar wind 
and they have similar characteristics. 

In this section, the decrease of variability of the equivalent 
wind of a geographical area due to its spatial diversity is 
computed in (127) from the variability at a single turbine or a 
single farm and from the complex root coherence ( )rc fγ

G .  
Formula (127) assumes that wind turbines are 

approximately evenly spread over the area corresponding to 
the integrating limits. Even though the former assumptions 
are oversimplifications of the complex meteorological 
behaviour and wakes have been neglected, (127) indicates the 
general trend in the decrease of wind power variability due to 
spatial diversity in bigger areas. Notice that PSDUeq,turbine(f) is 
assumed to be representative of the average turbulence 
experienced by turbines in the region and hence, it must 
account average wake effects. Even though the model is not 
accurate enough for most applications, it leads to expression 
(132) that links the smoothing effect of the spatial diversity of 
wind generators in an area and its dimensions. 

Since ( )rc fγ
G  in (22) is expressed in terms of the power 

spectral density of the wind, ( )UeqPSD f , the model presented 
here will be also referred to ( )UeqPSD f , which is more usual 
than 2 ( )

U eq
PSD f  –which is more closely related to 

aerodynamic force and torque fluctuations. Notice that the 
variations of the wind and the variations of its square are 
closely related through the first order 
approximation 2( ) 2eq eq eqU U UΔ ≈ 〈 〉Δ  (31) and thus 

2
2

( )
( ) 4 ( )

eq eq
eqU U

PSD f U PSD fΔ Δ≈ 〈 〉   (32). 
The coherence ( )rc fγ

G  between points r =(x1,y1) and c = 
(x2,y2)  inside the wind farm can be derived from Fig. 47 and 
formulas (20), (21) and (22). The geometric distance between 
them is drc=|(x2,y2)–(x1,y1)|= [(y2-y1)

2 + (x2-x1)
2]1/2 and the 

angle between the line that links the two points and the wind 
direction is αrc= β – ArcTan[(y2-y1)/(x2-x1)]. In the general 
case, the equivalent wind taking into account the spatial 
diversity can be computed extending formula (123) to the 
continuous case:  (127) 
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where the quadruple integral in the denominator is a forth of 
the squared area, i.e., a2 b2/4. 

 
Fig. 47: Wind farm dimensions, angles and distances among wind farm 
points for the general case. 

Due to the complexity of drc and αrc and the estimation of  
( , , )rc rc rcf dγ α

G  in formula (22), no analytical closed form of 
(127) have been found for the general case.  

In case wind has x direction as in Fig. 48, then the 
coherence has a simpler expression: 

 ( , , )rc rc rcf dγ α =
G   (128) 
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Fig. 48: Wind farm parameters when wind has the x direction (β=0). 
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The presence of the squared root in (128) prevents from 
obtaining an analytical , ( )Ueq areaPSD f . In case aAlongábAlat, 
the region can be considered a thin column of turbines 
transversally aligned to the wind. This is the case of many 
wind farms where turbine layout has been designed to 
minimize wake loss (see Fig. 50) and areas where wind farms 
or turbines are sited in mountain ridges, in seashores and in 
cliff tops perpendicular to the wind. Since Along(x2-x1) á 
Alat(y2-y1), then , ( )Ueq areaPSD f  can be computed 
analytically as: 
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Fig. 49: Wind farm with turbines aligned transversally to the wind. 

In case aAlongàbAlat, the region can be considered a thin 
row of wind farms longitudinally aligned to the wind. This is 
the case of many areas where wind farms are disposed in a 
gorge, canyon, valley or similar where wind is directed in the 
feature direction (see Fig. 50). Since Along(x2-x1) à Alat(y2-
y1), then , ( )Ueq areaPSD f  can be computed analytically as: 
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which can be expressed with real functions as: 
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Fig. 50: Wind farm with turbines aligned longitudinally to the wind. 

Notice that (130) includes an imaginary part that is due to 
the frozen turbulence model in formula (22). A wind wave 
travels at wind speed, producing an spatially average PSD 

that depends on the longitudinal length a relative to the 
wavelength. For long wavelengths compared to the 
longitudinal dimension of the area (Alongà2π), the imaginary 
part in (130) can be neglected and (130) simplifies to (129). 
This is the case of the Rutherford Appleton Laboratory, 
where Schlez and Infield [45]  fitted the longitudinal decay 
factor to Along ≈ (15±5) windU /σUwind for distances up to 
102 m. 

But when the wavelengths are similar or smaller than the 
longitudinal dimension, (Along12π), then the fluctuations are 
notably smoothed. This is the case of the Høvsøre offshore 
wind farm, where Sørensen et Al. [85] fitted the longitudinal 
decay factor to Along = 4 for distances up to 2 km. In plain 
words, the disturbances travels at wind speed in the 
longitudinal direction, not arriving at all the points of the area 
simultaneously (see Fig. 5 for clarity) and thus, producing an 
average wind smoother in longitudinal areas than in 
transversal regions. 

In the normalized longitudinal and transversal distances 
have the same order, then (127) can be estimated as the 
compound of many stacked longitudinal or transversal areas 
(see Fig. 51): 
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 (132) 
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Fig. 51: Rectangular area divided in smaller transversal areas. 

The approximation (132) is equivalent to consider the 
Manhattan  distance (L1 or city-block metric) instead of the 
Euclidean distance (L2 metric) in the coherence rcγ

G (128): 
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3.8.3. Equivalent wind smoothing due to 
turbine spatial layout 

Expression (132) is the squared modulus of the transfer 
function of the spatial diversity smoothing in the area. 3( )H f  
corresponds to the low-pass filters in Fig. 53 with cut-off 
frequencies inversely proportional to the region dimensions.  

The overall cut-off frequency of the spatially averaged 
wind is obtained solving 2

3( )H f =1/4. Thus, the cut-off 
frequency of  transversal wind farms (solid black line in Fig. 
53) is: 
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In the Rutherford Appleton Laboratory (RAL), Alat ≈ 
(17,5±5)(m/s)-1σUwind and hence fcut,lat ≈ (0,42±0,12) windU〈 〉 / 
(σUwind b). A typical value of the turbulence intensity σUwind/ 

windU〈 〉  is around 0,12 and for such value fcut,lat ~ (3.5±1)/b, 
where b is the lateral dimension of the area in meters. For a 
lateral dimension of a wind farm of b = 3 km, the cut-off 
frequency is in the order of 1,16 mHz. 

In the Høvsøre wind farm, Alat= windU /(2 m/s) and 
hence fcut,lat ≈ 13,66/b, where b is a constant expressed in 
meters. For a wind farm of b = 3 km, the cut-off frequency is 
in the order of 4,5 mHz (about four times the estimation from 
RAL).  

In RAL, Along ≈ (15±5) σUwind / windU . A typical value 
of the turbulence intensity σUwind / windU〈 〉  is around 0,12 and 
for such value Along ≈ (1,8±0,6). 
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For a significative wind speed of windU〈 〉  ~ 10 m/s and a 
wind farm of a = 3 km longitudinal dimension, the cut-off 
frequency is in the order of 2,19 mHz. 

In the Høvsøre wind farm, Along = 4 (about twice the value 
from RAL). The cut-off frequency of a longitudinal area with 
Along around 4 (dashed gray line in Fig. 53) is: 
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For a significative wind speed of windU〈 〉  ~ 10 m/s and a 
wind farm of a = 3 km longitudinal dimension, the cut-off 
frequency is in the order of 2,26 mHz.  

In accordance with experimental measurements, turbulence 
fluctuations quicker than a few minutes are notably smoothed 
in the wind farm output. This relation is proportional to the 
dimensions of the area where the wind turbines are sited. That 
is, if the dimensions of the zone are doubled, the area is four 
times the original region and the cut-off frequencies are 
halved. In other words, the smoothing of the aggregated wind 
is proportional to the longitudinal and lateral distances of the 
zone (and thus, related to the square root of the area if zone 
shape is maintained). 

In sum, the lateral cut-off frenquency is inversely 
proportional to the site parameters Alat and the longitudinal 
cut-off frequency is only slightly dependent on Along. Note 
that the longititudinal cut-off frequency show closer 

agreement for Høvsøre and RAL since it is dominated by 
frozen turbulence hypothesis. 

However, if transversal or longitudinal smoothing 
dominates, then the cut-off frequency is approximately the 
minimum of ,cut latf  and ,cut longf . The system behaves as a 
first order system at frequencies above both cut-off 
frequencies, and similar to ½ order system in between ,cut latf  
and ,cut longf . 

 
Fig. 53: Normalized ratio PSDUeq,area(f) /PSDUeq,turbine(f) for transversal (solid 
thick black line) and longitudinal areas (dashed dark gray line for Along = 4, 
long dashed light gray line for Along = 1,8). Horizontal axis is expressed in 
either longitudinal and lateral adimensional frequency a Along f /〈Uwind〉 or 
b Alat f /〈Uwind〉. 

Conclusions 
This chapter has introduced a simplified small signal model 

of the torque variation based on the wind variation. the 
simplified calculation of the aerodynamic torque coefficient 
based on the torque of the turbine, which assumes that the 
wind is uniform in the area swept by the turbine. From this 
formula, a simplified small signal model has been derived to 
estimate the torque when the wind conditions in the swept 
area are not uniform 

Based on this approximation, the equivalent wind has been 
defined as the one that produce the same effects that the non-
uniform real wind field. This simplification implies that the 
effects of the wind field, which cannot be measured directly, 
can be estimated from an equivalent wind, usually estimated 
from the measurements of an anemometer.  

Thus, the aerodynamic torque has been computed 
approximately with a simple formula from the torque 

Fig. 52: Diagram of the proposed additive rotational sampling model for the off-line estimation of the equivalent wind in the frequency domain. 
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coefficient and from the equivalent wind, derived from the 
measured wind.  

The equivalent wind speed contains a stochastic 
component due to the effects of turbulence, a rotational 
component due to the wind shear and the tower shadow and 
the average value of the wind in the swept area, considered 
constant in short intervals. The fluctuations in the 
aerodynamic torque due to the real wind field along the swept 
rotor area are introduced in the equivalent wind modifying its 
spectra. This oversimplification works relatively well since 
the vibrational turbine dynamics randomize the real 
dependence of the generator torque with the rotor angle. 

The combination of the small signal model and the wind 
coherence permits to derive the spatial averaging of random 
wind variations. A stochastic model that links the overall 
behaviour of a large number of turbines is derived from the 
behaviour of a single turbine. 

The power spectral density of the equivalent wind of a 
cluster of turbines is estimated from parameters of an isolated 
turbine, lateral and longitudinal dimensions of the cluster 
region and the decay factor of the spatial coherence.  

Although the proposed model is an oversimplification of 
the actual behaviour of a group of turbines scattered across 
the area, this model quantifies the influence of the spatial 
distribution of the turbines in the smoothing and in the 
frequency content of the aggregated power. This stochastic 
model is in agreement with the experimental observation that 
slow changes are highly correlated among a turbine cluster 
while fast changes are poorly correlated. 

The small signal model used in this chapter is derived 
mathematically. In the next chapter, a model based on the 
blade element theory is presented. That model predicts torque 
oscillations based on the wind field perturbation due to the 
surface and the tower. 

 
 
 
 
 
 



4.1. Introduction 
n previous chapters, the wind has been analyzed to 
estimate the variations of aerodynamic torque. 
However, the structural and drive-train vibrations result 

into stochastic fluctuations in the generator speed. 
The complexity of the mechanical vibrations, the turbine 

control and the non-linearity of the generator power 
electronics interactions affects notably the generator 
electromagnetic torque and the turbine power fluctuations, 
specially in the frequency range from tenths of Hertzs to grid 
frequency. 

There are many dynamic turbine models described in the 
literature. Most megawatt turbine share the following 
behaviour, considering the aerodynamic torque as the system 
input and the power injected in the grid as the system output: 
[212, 120, 122] 

•  Between the cut-in and rated wind speeds, the 
system usually behaves as a low frequency filter of 
first order with a time constant between 1 and 10 s.  

• Between the rated and cut-out wind speeds, the 
system usually behaves as an asymmetric band pass 
filter of characteristic frequency around 0,3 Hz due 
to the combined action of the slow action of the 
pitch/active stall and the quicker speed controllers. 

• At some characteristic frequencies, the turbine 
mechanical vibrations, the power electronics and the 
generator dynamics modify the general trend of the 
transfer function. Generally, these effects are not 
linearly related to the wind and the ratio of the 
output signal divided by the input signal in the 
frequency domain is not constant. 

There are many specific characteristics that impact notably 
in the power fluctuations between the first tower frequency 
(usually some tenths of Hertzs) and the grid frequency. The 
realistic reproduction of power fluctuations needs a 
comprehensive model of each turbine.  

The details of the control, the structural details and the 
power electronics implemented in the turbines are proprietary 
and they are not available. In contrast, the electrical power 
injected by a turbine can be measured relatively easily. 

Moreover, some fluctuations in power are not proportional 
to the fluctuations in wind or aerodynamic torque. Thus, a 
general transfer function cannot be obtained for the power 
oscillation, respect the equivalent wind or the aerodynamic 
torque, unless big errors are allowed.  

The approach taken in this chapter is primarily 
phenomenological: the power fluctuations during the 
continuous operation of the turbines are measured and 
characterized for timescales in the range of minutes to 
fractions of seconds. Thus, one contribution of this chapter is 
the experimental characterization of the power fluctuations of 
three commercial turbines. Some experimental measurements 
in the joint time-frequency domain are presented to test the 
mathematical model of the fluctuations. 

A literature review on experimental data of Power Spectral 
Densities (PSD) and periodograms (averaged spectrum) of 
power output of wind turbines or wind farms are presented  at 
the end of the chapter. The variability of PSD is also studied 
in the joint time-frequency domain through spectrograms. 

Other contribution of this chapter is the admittance of the 
wind farm: the oscillations from a wind farm are compared to 
the fluctuations from a single turbine, representative of the 
operation of the turbines in the farm. The partial cancellation 
of power fluctuations in a wind farm are estimated from the 
ratio of the farm fluctuation relative to the fluctuation of one 
representative turbine. Some stochastic models are derived in 
the frequency domain to link the overall behaviour of a large 
number of wind turbines from the operation of a single 
turbine. 

This chapter is based mostly on the experience designing, 
programming, mounting and analyzing two multipurpose 
measuring system installed in several wind farms through the 
years 1998 to 2002 [52, 53, 137, 138, 139, 140, 141, 142, 
143, 144, 145]. During that years, a set of programs devel-
oped in LabVIEW [146], C++ [147], a set of spreadsheets and 
algorithms [148] and an analysis methodology was devel-
oped. According to the CIRCE Foundation [149], this 
measuring system and its procedures has been the first 
prototype of a multipurpose data logger, now called AIRE 
(Analizador Integral de Recursos Energéticos), that is 
commercialized by Inycom and CIRCE [150]. 

4.2. Overview of wind power 
fluctuations 

The power from a cluster of turbines is the sum of powers 
from their turbines less the transmission losses. Since the 
losses are usually small, the power fluctuations of clusters 
are, basically, the sum of turbine contributions –or if a small 
signal of power losses is used, a linear combination of turbine 
powers [204]. 

The interaction between the wind fluctuations and the 
turbine is very complex and a thorough model of the turbine, 
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generator and control system is needed for simulating the 
influence of wind turbulence in power output [151, 152]. The 
control scheme and its optimized parameters are proprietary 
and difficult to obtain from manufacturers and complex to 
guess from measurements usually available.  

The turbine and micro-meteorological dynamics transforms 
the combination of periodic and random wind variations into 
stochastic fluctuations in the power. 

This chapter is focused in the variations of power in the 
frequency domain, which is linked to equivalent wind 
variations and to the distribution of almost periodic events 
such as vibration, blade positions, etc. The spatial sampling of 
the wind in the rotor and the frequency content of the 
equivalent wind has been carefully considered in the previous 
chapter. In the next chapter, the distribution of almost 
periodic events such as the blade shadow and is studied. 

Wind distribution inside the wind farm is studied in the 
micro-sitting to optimize the wind farm layout. Wind 
spectrum and coherence between turbines has been analyzed 
in the previous chapters. Turbulence, turbine wakes, gusts... 
are highly random and don’t show a definite frequency [46, 
153]. Non-cyclic variations in the power are usually regarded 
as the outcome of the random component of the wind. They 
concern the control (short term prediction) and the forecast 
(long horizon prediction). Artificial Intelligence techniques 
and advanced filtering have been used for forecasting. Power 
fluctuations of frequency around 8 Hz can eventually produce 
flicker in very weak networks [154, 155]. 

An alternative to Fourier analysis is time series.  Time 
series are quite popular in stochastic models since its 
parameters and its properties can be easily estimated [156, 
157].  Even though the two mathematical techniques are quite 
related, the study of periodic behaviour is more direct through 
Fourier approach whereas the time series approach is more 
appropriate for the study of non-systematic behaviour.  

Both current and power can be measured directly, they can 
be statistically characterized and they are straightforward 
related to power quality. Current is transformed and its level 
depends on transformer ratio and actual network voltage. In 
contrast, power flows along transformers and networks 
without being altered except for some efficiency losses in the 
elements. That is why linealized power flows in the frequency 
domain are used in this chapter for characterizing 
experimentally the electrical behaviour of wind turbines. 

4.2.1. Random and cyclic fluctuations 

Fluctuations of power output can be divided into cyclic 
components (tower shadow, wind shear, modal vibrations, 
etc.), wind farm weather dynamics and events (connection or 
disconnection of the turbine, change in generator 
configuration, etc.). The customary treatment of these 
fluctuations is done through Fourier transform. 

Cyclic fluctuations due to tower shadow, wind shear, etc. 
present more systematic behaviour than weather related 
variations. Cyclic fluctuations are almost periodic and they 
present definite frequencies. Almost periodic means in this 
context that the signal can be decomposed in a set of sinoidal 
components (some of them non-harmonically related) with 
additive (stationary) noise (i.e., polycyclostationary signals). 
Since some frequencies cannot be expressed as multiple of 

the others, the signal is not periodic in the conventional sense 
(see Fig. 204). 

Cyclic time variations are usually characterized from the 
signal PSD (see for example the review from Gardner et al. 
[158]). The magnitude and frequency of the cyclic 
fluctuations can be characterized for each turbine model and 
wind regime [52]. Thus, the cyclic fluctuations can be 
represented by spectral density phasors revolving at the 
oscillation frequency. 

Turbulence has been previously characterized through its 
power spectral density, which is basically the Fourier 
transform of its autocorrelation. Thus, turbulence can be 
represented by power spectral density phasors revolving at 
the oscillation frequency with a random phase since 
turbulence does exhibit neither a characteristic shape nor 
timing. 

Weather evolution is the outcome of slow and complex 
atmospheric processes. Since weather evolution has a strong 
non-linear behaviour, it not considered in this section. An 
alternative statistical characterization of wind power 
variability based on Markov chains, which suits better the 
complex non-linear weather behaviour, will be presented in 
the following chapter.  

4.2.2. Major difficulties on the 
fluctuation characterization 

The torque drop due to rotor spatial sampling has a 
characteristic shape (see Fig. 311 or Fig. 59). This torque is 
filtered by turbine dynamics and the influence in output 
power can be complex (see Fig. 204). The signals cannot be 
considered truly periodic neither the characteristic 
frequencies are constant (rotor speed is not constant due to 
the wind) nor frequencies are harmonically related (some 
frequencies cannot be expressed as multiple of the others). 
Under some conditions –steady wind, short data length, etc– 
the power can be considered a set of periodic signals 
decomposable in their fundamental component f1,i and their 
harmonics k·f1,i. 

The structural resonance modes of the tower, blades and 
cinematic train present a vibration behaviour with frequencies 
different from the blade passing the tower frequency, fblade. 

The turbulence adds a “coloured noise” overimposed to the 
former oscillatory modes, modulating cyclic vibrations and 
influencing rotor speed. The actual power is the outcome of 
many processes that interacts and the analysis in the 
frequency domain is a simplifying approximation of a system 
driven by stochastic differential equations. 

The first problem when analyzing power variations is that 
the contributions from rotor sampling, vibrational modes and 
turbulence-driven variations are aggregated. 

The second difficulty is the fact that frequencies of almost 
cyclic contributions are neither fixed nor are they multiple. 
Fourier coefficients are defined for periodic signals, but a 
signal with components not harmonically related is not longer 
periodic. 

The third difficulty is that frequencies of contributions are 
overlapped. Fortunately, characteristic frequencies (resonance 
and blade frequencies and its harmonics) have narrow 
margins for given operational conditions, producing peaks in 



 Ch. 4: Variability of Power in the Frequency Domain 49 

the spectrum where one contribution usually predominates 
over the rest. 

The forth difficulty is the turbulence, that introduces a non-
periodic stochastic behaviour interacting with periodic 
signals. Different mathematical tools are customarily used for 
periodic and stochastic signals, increasing the difficulty of the 
analysis of these mixed-type signals.  

The cyclic fluctuations of the turbine power can be 
considered in the fraction-of-time (FOT) probability 
framework as the sum of sets of signals with different periods 
with additive stationary coloured noise and, hence, almost 
cyclostationary (see the review from Gardner et al. [158]). 
Since wind power is formed by the superposition of several 
almost cyclostationary signals whose periods are not 
harmonically related, wind power is polycyclostationary. 

Therefore, thorough models of the wind turbines and 
turbulence are needed for the analysis of power fluctuations. 
In the following sections, a phenomenological and pragmatic 
approach will be applied to draw some conclusions and to 
extrapolate results from specific measurements to general 
cases. 

4.3. Mathematical framework 
4.3.1. Definitions 

According to [159], a very steady and a very uniformly 
distributed wind together with a weak electrical network is 
necessary for synchronisation to happen driven by voltage 
drops. Experimental measurements [52] have corroborated 
that the synchronisation of the blades is unusual. In addition, 
the spectral model of the turbulence (128) showed that wind 
fluctuations at frequencies much higher than ,cut latf  and 

,cut longf  defined in (134) to (136) can be considered 
independent because its coherence is very small. 

Thus, fast fluctuations can be considered statistically 
independent whereas slower fluctuations are linked basically 
to weather dynamics. Fortunately, slow fluctuations can be 
linked to equivalent wind fluctuations through a quasi-static 
approximation based on the power curve of the turbines. 

A) Aggregation of uncorrelated almost-cyclic signals 
results on stochastic signals 

As main wind characteristics are similar inside the farm, 
the typical magnitude of the cyclic components would be 
similar in all turbines. If the turbines blades are not 
synchronized, the cyclic uncorrelated fluctuations due to rotor 
movement have random phases. 

Thus, the aggregation of cyclic fluctuations from the 
turbines in a wind farm or in an area turns out to have a 
stochastic behaviour. Moreover, the correlated fluctuations in 
a wind farm or in an area are due to meteorology. Both 
turbulence and weather have strong stochastic nature. 

As an outcome, the total fluctuation from an area is best 
characterized as a stochastic signal even though the 
fluctuations from single turbines have strong cyclic 
components. The properties of the total fluctuation can be 
derived from the turbine fluctuations and their relationship 
(especially the coherence among turbines). 

In sum, the transformation of cyclic components into 
stochastic components eases the treatment of area 
fluctuations. 

B) Dependence on the data length of the Fourier 
transform of random and cyclic signals. 

The Fourier transform of a signal of active power P(t), 
recorded in 0 ≤ t ≤ T , is ( )TP f

G
: 
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T
j f t

TP f P t e dt P tπ−= =∫
G

F  (137) 

The units of ( )TP f
G

 are the same than the ones of P(t) per 
Hertz. Thus, if P(t) is in MW, then ( )TP f

G
is in MW/Hz and if 

P(t) is in p.u. (per unit system), then ( )TP f
G

is in p.u./Hz. The 
subindex notation in ( )TP f

G
 indicate the sample duration T of 

the original time series and it is used in this chapter to 
distinguish the Fourier transforms, the Fourier coefficients 
and the stochastic spectral phasor densities. 

If P(t) is a periodic component of period T =1/f1 in the 
active power, its Fourier transform is a modulated Dirac 
comb. The complex Fourier coefficient of order k, 

k
P
G

, is the 
conventional Fourier transform of the signal during a period, 
scaled by the period, at harmonic frequency 1f k f= =k/T  
∀k ∈ Z.: 
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The units of kP
G

 is the same than PT(t). The amplitude of 
the fluctuation of harmonic k is * 2k k kP P P−+ =

G G G
 in peak 

values and its initial phase is [ ]kArg P
G

. The Fourier 
coefficients are notated with the k subscript to distinguish 
them from the Fourier transform.  

Notice that the active power can be considered the 
aggregation of stochastic noise and periodic components. 
Since periodic components can be considered deterministic 
with period T under the FOT probability framework, its 
Fourier coefficients can be computed. 

If P(t) is the stochastic component in the active power 
recorded in 0 ≤ t ≤ T, the conventional Fourier transform, 
denoted by F, is scaled by a factor √T to achieve an spectral 
measure whose main statistical properties do not depend on 
the sample duration T.  (139) 

{ }2  

0

1 1 1
( ) ( ) ( ) ( )

T j f t
TP f P t e dt P t P f

T T T
π

σ
−≡ = =∫

G G
F  

The factor 1/√T  applied to the conventional Fourier 
transform ( )TP f

G
 to obtain ( )P fσ

G
 is between unity –used for 

pulses and signals of bounded energy– and 1/T  –the Fourier 
coefficients 

k
P
G

used for pure periodic signals–.  
Fortunately, the definition (791) has the advantage that the 

variance of ( )P fσ

G
 is the two-sided power spectral density, 

2| ( )|P fσ

G
= ( )PPSD f , which is independent of the sample 

length T and it characterizes the process. ( )P fσ

G
 will be 

referred as stochastic spectral phasor density of the active 
power or just the (stochastic) phasor for short. 

Notice that the text or the subscript indicates the scaling 
factor applied to the Fourier transform. If nothing is stated, 
then ( )P f

JG
should be interpreted in this chapter just as ( )P fσ

G
, 

the stochastic spectral phasor density. 
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C) Stochastic spectral phasor density of the active 
power 

The instantaneous output of a wind farm or turbine can be 
expressed in frequency components using stochastic spectral 
phasor densities. As aforementioned, experimental 
measurements indicate that wind power nature is basically 
stochastic with noticeable fluctuating periodic components.  

The stochastic spectral phasor density of a power output 
time series ( )P t  with duration T and zero initial time is: 

( ) 2  

0

1
( ) ( ) ( )

Tj f j f tP f P f e P t e dt
T

ϕ π
σ σ

−= = ∫
G

 (140) 

The signal in the time domain can be computed from the 
inverse Fourier transform: 
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where e is the base of the natural logarithm, j is the imaginary 
unit, Re states for the real part of a complex number and * 
stands for complex conjugate. An analogue relation can be 
derived for reactive power and wind, both for continuous and 
discrete time. 

Standard FFT algorithms use two sided spectra, with 
negative frequencies in the last half of the output vector. 
Thus, calculus will be based on two-sided spectra unless 
otherwise stated, as in (141). In real signals, the negative 
frequency components are the complex conjugate of the 
positive one and a ½ scale factor may be applied to transform 
one to two-sided magnitudes. 

Fluctuations at the point of common coupling (PCC) of the 
wind farm can be obtained from power balance equations for 
the average complex power of the wind farm.  

Neglecting the increase of power losses in the grid due to 
fluctuating generation, the sum of oscillating power from the 
turbines equals the farm output undulation. Therefore, the 
complex sum of the frequency components of each turbine 

( )turbine iP f
JG

 totals the approximate farm output, ( )farmP f
JG

.: 
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For usual wind farm configurations, total  real losses at full 
power are less than 2% and reactive losses are less than 20%, 
showing a quadratic behaviour with generation level [160]. A 
small-signal model of power losses due to fluctuations inside 
the wind farm can be derived [161], but since they are 
expected to be up to 2% of the fluctuation, the increase of 
power losses due to oscillations can be neglected in the first 
instance. A small signal model can be used to take into 
account the network losses multiplying the turbine phasors in 
(142) by the sensitivity factors /farm turbine iP P∂ ∂  estimated 
from power flows with small variations from the mean values 
using methodologies as the point-estimate method [162, 163]. 

4.3.2. Statistical properties of the sum 
of stochastic spectral phasor densities 

Periodic fluctuations appear as narrow peaks at their 
harmonic frequencies in the spectrum, whereas random 
fluctuations (which have neither a periodic pattern nor a 
characteristic frequency) can be associated with the tendency 
of the smoothed spectrum.  

The discrete Fourier transform (DFT) divided by √T (the 
square root of the sample duration) is the phasor ( , )P f tσ

G
 

which vary randomly in time (even though f and t are discrete 
in logged data, the notation is maintained as if frequency and 
time where continuous for convenience). The squared 
modulus of the DFT divided by T is an estimate of the power 
spectrum density 

2
( , )P f tσ

G
 in grey in PSD plots –such as 

Fig. 205– which varies in time since wind is stochastic. 
However, its time average

2

( , )P f tσ

G
=

2

( )P fσ

G
 is 

approximately constant for certain operational conditions and 
it is an estimation of the actual PSDP(f) (see black thin line in 
in PSD plots). 

The PSDPfarm(f) is the Fourier transform of the 
autocorrelation function, RPfarm(τ) provided the power output 
of the farm can be considered a stationary random process. A 
basic estimation of the power spectral density is PSDP(f ) = 
P2(f)/Δf, where Δf = 1/T is the inverse of the duration of the 
record and P2(f) is the square of the spectrum density, 
smoothed in the frequency domain to decrease the variance of 
the PSD estimate [164, 165, 166]. Wind farm or turbine 
PSD, 

2

( )farmP f
JG

 or 
2

( )turbine iP f
JG

, has been estimated as 
the averaged squared DFT modulus of power output, scaled 
by period T. This technique is called “averaged periodogram” 
and its properties can be found in [167, 168, 169]. 

In PSD plots such as Fig. 205, the original power spectrum 
is plotted in grey whereas the estimated PSD is in thin black 
(linearly averaged periodogram in squared effective watts of 
real power per hertz). Since the required frequency resolution 
in this application is low, the power spectrum has been 
smoothed in order to lower the PSD variance (the frequency 
resolution fΔ has decreased Naver. times to reduce the PSD 
uncertainty in the factor .averN ). In the analyzed cases 
where power is measured each grid cycle, the values 10 
<Naver. < 100  have been suitable tradeoffs between frequency 
resolution and variance of the estimated PSD. The PSD has 
been estimated in the figures with Naver.=20 if nothing else is 
stated. 

The fluctuation of power output of the farm is the sum of 
contributions from many turbines (142), which are mainly 
uncorrelated. The sum of N  independent phasors of random 
angle of N  turbines in the farm asymptotically converges to 
a complex Gaussian distribution, ( )farmP f

JG
~ [0, ( )]PfarmN fσ^ , 

of null mean and standard deviation ( )farm fσ = 1( )N fσ , 
where 1( )fσ  is the mean RMS fluctuation at a single turbine 
at frequency f . To be precise, the variance 2

1 ( )fσ  is half the 
mean squared fluctuation amplitude at frequency f, 2

1 ( )fσ = 
21

2 ( )turbine iP f
JG

= 2
 Re ( )turbine iP f⎡ ⎤

⎢ ⎥⎣ ⎦
JG

= 2
 Im ( )turbine iP f⎡ ⎤

⎢ ⎥⎣ ⎦
JG

. Therefore, the real and imaginary phasor components 
Re[ ( )]farmP f

JG
 and Im[ ( )]farmP f

JG
 are independent real 

Gaussian random variables of standard deviation ( )Pfarm fσ  
and null mean since phasor angle is uniformly distributed in 
[–π,+π].  Moreover, the phasor modulus ( )farmP f

JG
 has 

[ ( )]PfarmRayleigh fσ  distribution. The double-sided power 
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spectrum 2
( )farmP f

JG
 is an 21

2 ( )Pfarm fExponential σλ −⎡ ⎤=⎢ ⎥⎣ ⎦  
random vector of mean 2

( )farmP f
JG

 = 22 ( )Pfarm fσ  
= 1

2 ( )PfarmPSD f  (the double-sided power spectral density is 
half the one-sided power spectral density) [170, 171].  

The estimate from the periodogram is the moving average 
of Naver. exponential random variables corresponding to 
adjacent frequencies in the power spectrum vector. The 
estimate is a Gamma random variable. If the PSD is sensibly 
constant on NaverΔf bandwidth, then the PSD estimate has the 
same mean as the original PSD and the standard deviation is 

.averN times smaller (i.e., the estimate has lower uncertainty 
at the cost of lower frequency resolution). 

A comprehensive literature survey on the sum of random 
vectors can be reviewed in [172]. The statistical properties of 
the wind power spectrum will be further analyzed in this 
chapter. 

A) Sum of two phasors with random angle and the same 
modulus 

Fig. 54 shows the instantaneous phasor diagram of a wind 
farm with four turbines with similar uncorrelated fluctuation 
level at angular frequency f. Recall that the stochastic 
spectral phasor density ( )P fσ

G
 has been notated as ( )P f

G
 for 

simplicity. Phases ϕ1, ϕ2, ϕ3 and ϕ4, are random and its value 
is uniformly distributed in [-π,+π] (uncorrelated fluctua-
tions). It should be noted that the phases of each turbine are 
random when compared to the others because each turbine 
has its own blade reference. 
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Fig. 54:  Model of the phasor diagram at frequency f of a park with four 
turbines with similar uncorrelated fluctuation level P(f). 

The sum of phasors of equal frequency is another phasor 
with a statistical distribution which will be derived in the next 
sections. Finally, an expression for the phasor of a wind farm 
will be obtained in function of the number of turbines N and 
the frequency component of a single turbine, P(f).  

Each phasor will be decomposed in real and imaginary 
components, that correspond to the projection on horizontal 
and vertical axis in Fig. 54. For convenience, the phasors will 
be treated as complex random variables with some modulus 
distribution in p.u. or in standardized variables and uniformly 
distributed angle [-π,+π ].  

B) Sum of two phasors with the same modulus 
The sum of two phasor i and k is another phasor with 

random phase and amplitude 2 ( )· [( )/2]i kP f Cos ϕ ϕ−  

The modus of the sum of phasors i k i kP P P+ = +
JG JG JG

 of the 
same amplitude P(f). is: 

2
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+ +
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= = + =
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 (143) 
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Fig. 55:  Sum of two phasor with same magnitude. 

The cumulative density function (CDF) of the amplitude of 
the sum of two uncorrelated turbines is:   

( )
( )( )

-
Pr Pr 2 ( ) Cos

2
-
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2
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+
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=
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 (144) 

The probability density function (PDF) of the sum 
amplitude can be derived from its CDF:   

( ) ( ) 2
2

1
( ) ( )

( )
2

i k i kP f P f
d

PDF x CDF x
dx x

P fπ
+ +

= =
⎛ ⎞⎟⎜− ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (145) 

C) Sum of two phasors with different modulus 
The sum of four phasors can be computed iteratively from 

the former subsection.  

( ) ( ) ( )

( ) ( ) ( ) ( )

i k l m i k l m

i k l m

P f P f P f

P f P f P f P f

+ + + + += + =
⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

JG JG JG

JG JG JG JG  (146) 

The phasors obtained in the former subsection have 
different modules and the result is a bit different from the 
previous paragraphs. The modulus of the sum will be derived 
by trigonometry. The projection of the phasor ( )i kP f+

JG
 of the 

turbines i and j in the axis of the sum of the four turbine 
phasors is | ( )| ( )i k i kP f Cos fϕ+ +

JG
. The projection of the 

phasor ( )l mP f+

G
  of the turbines l and m in the axis of the 

sum of the four turbine phasors is | ( )| ( )l m l mP f Cos fϕ+ +

G
. 

The phases ( )i k fϕ + α and ( )l m fϕ +  are uniformly 
distributed in [-π, π] and the function ArcCos(ϕ) returns a 
number in [0, π]. The modulus of two vectors ( )i kP f+

JG
and 

( )l mP f+

JG
 are distributed according to (145). 
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Fig. 56:  Sum of two phasor with different magnitude. 
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Therefore the cumulative density function (CDF) of the 
modulus of the phasor of the sum of four turbines is:  (147) 
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For the rest of this subsection, the dependence of 
parameters with frequency will not be indicated explicitly to 
shorten expressions. The projection of a phasor of modulus 
Pi+k in the direction of the overall sum is xi+k and it has the 
following conditional CDF (the explicitly notation of the 
dependence of variables with frequency f  has been dropped 
for simplicity):  (148) 
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The conditional probability density function (PDF) of the 
projection, given Pi can be derived from CDF:  (149) 

| | 2 2

1
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d
PDF x P CDF x

dx P xπ+ + + ++

+

= =  

Taken into account that the distribution of modulus ri of 
the sum of two vectors has been obtained previously, the total 
PDF of xi+k can be computed by integration.  (150) 
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Finally, the total PDF of the relative modulus of the sum of 
the four phasor is:  (151) 

2 ( )

2 ( )
( ) 2 ( - )· ( )

i k l m i k i k

P f

S x xP f y
PDF y PDF y x PDF x dx

+ + + + +− +
= ∫  

where 0 4 ( )y P f< <  and factor 2 take account that 
( )i k fϕ +  and ( )l m fϕ +  are uniformly distributed in [-π,  π] 

whereas ArcCos(ϕ) returns a number in [0, π], half the 
interval. 

The integral (151) doesn’t have a simple analytic solution 
and must be computed numerically. The calculus of the sum 
of phasors can be done iteratively. However, the integrals 
cannot be solved analytically and the accumulated numerical 
error can be noticeable for farms with more than 32 turbines. 
The next subsection employs a general method to compute 
the sum of any number of phasors using the characteristic 
function of the modulus of fluctuation phasors.  

D) Sum of any number of phasors 
In some applications, we encounter a random signal that is 

composed of the sum of several random sinusoidal signals, 
e.g., multipath fading in communication channels, clutter and 
target cross section in radars, interference in communication 

systems, wave propagation in random media and channels, 
laser speckle patterns and light scattering and summation of 
random current harmonics such as the ones produced by high 
frequency power converters of wind turbines [173, 174]. 

Any random sinusoidal signal can be considered as a 
random phasor, i.e., a vector with random length and angle. In 
this way, the sum of random sinusoidal signals is transformed 
into the sum of 2-D random vectors. So, irrespective of the 
type of application, we encounter the following general 
mathematical problem: there are vectors with lengths 

,, | |i uncorri uncorrP P=
JG

 and angles ϕi,= ,( )i uncorrArg P
JG

, in 
polar coordinates, where Pi, uncorr and ϕi,  are random 
variables. It is desired to obtain the probability density 
function (pdf) of the length of the resulting vector. 

, , ,
1 1

·
turbines turbines

i

N N
j

farm iN i
uncorr uncorr uncorri i

P P P P e
ϕ

= =

= = =∑ ∑
JG JG

 (152) 

A comprehensive literature survey on the sum of random 
vectors can be obtained from [172]. This problem is often 
solved through the joint characteristic function of the 
modulus of ,i uncorrP . 

If the turbines i = 1 to N  have approximately the same 
phasor density modulus, Pi, uncorr = P1, then the PDF of the 
modulus of the sum PN = NP

G
 can be computed according to 

equations (9), (10) and (29) from [172] as: 
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where 0J  denotes the zeroth-order Bessel function. 
An analytical PDF can be obtained accurate enough for 

N > 4 (farms with more than 4 turbines) using the asymptotic 
approximation 
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 (154) 

The ( )N NPDF P  for wind farms with N = 8, 16 or 32 
turbines computed from exact formula (153) or computed 
from the approximation (154) is very similar, as can be seeing 
in Fig. 57. The approximate PDF of the modulus (shown in 
red) corresponds to a Rayleigh distribution with parameter 
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Fig. 57: Normalized PDFN(PN) for wind farms with N = 8, 16 and 32 
turbines. 
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E) Projection of the phasor in the horizontal axis 
The projection of a phasor in the horizontal (or real) axis 

corresponds to the instantaneous value represented by 
phasors. N NP Cos ϕ  is the instantaneous value of the 
fluctuation (at frequency f).  

If the modulus and the angle are independent random 
variables and the angle is uniformly distributed in [0,2π], all 
the odd moments are zero. The 2r order absolute moments of 
the projection, 2 , projrM , can be computed as: 

2 , projrM =   (155) 

( ) ( )
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1
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2
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π
=∫ ∫

JJJG

JJJG
JJG JJG JJG

 

The relation between absolute moments of the phasor 
modulus 2 , mod' rM  (respect 0) and the absolute moments of 
the phasor proyection 2 , projrM  is: 

2| | 2
2

2 , proj 0 0

cos( )
| | ( ) | | ·

2
N

N

rMax P
r

r N N NP
M P PDF P d P d

π ϕ
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π
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JJJG
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JJJG JJG JJJG

 

2 , mod' ra M=   (156) 

where a = ½, 3/8, 5/16, 35/128, 63/256… for 2r = 2, 4, 6, 8, 
10… (odd moments are null) 

For example, the quadratic value of the proyection –i.e., 
the quadratic average of time-domain signal– is half the 
squared amplitude. Hence, the RMS value of a phasor is its 
amplitude divided by √2. 

The distribution of the projection can be computed by 
integration: 

 ( )
2

proj | |0

1
( ) /cos( )

2 NP
CDF x CDF x d

π
ϕ ϕ

π
= ∫ JJJG  (157) 

The projection in the real axis of a phasor with Rayleigh 
distributed modulus and parameter Nσ  is distributed 
normally with zero mean and standard deviation Nσ .  

The real and imaginary part of a phasor with random 
(equally probable) phase angle and its modulus Rayleigh 
distributed are two identically distributed and independent 
real Gaussian random variables. Thus, the squared modulus 
has an exponential distribution with rate parameter 
λ=1/(2 Nσ ) (also equivalent to a gamma distribution with 
unity shape factor and scale parameter 2 Nσ ). 

4.3.3. Spectral density of uncorrelated 
oscillations in a group of turbines 

The fluctuations of a group of turbines can be divided into 
the correlated and the uncorrelated components. According to 
Fig. 57, the Central Limit is applicable for the sum of 
uncorrelated spectral components of more than 8 turbine 
phasor densities and the sum distribution converges 
assimptotically to a complex normal distribution.  

The correlated fluctuation components are usually linked to 
slow meteorological dynamics and they have been 
characterized in the former chapter –see (115) and (127). 
Thus, the correlated components are not considered in this 
section. 

The one-sided stochastic spectral phasor density of the 
active power of a cluster of N turbines at frequency f is 

( )NP f+
G

= ( )NP f
G

 + ( )NP f−
G

= 2 ( )NP f
G

. In plain words, 

the one-sided density is twice the two-sided density. The 
amplitude of fluctuations at frequencies between - /2f fΔ  
and + /2f fΔ  is | ( )|·NP f f+ Δ

G
. 

The one-sided amplitude density of fluctuations at 
frequency f, ( )NP f+

G
, is a Rayleigh distribution of scale 

parameter ( )N fσ  = | ( )| 2/NP f π+〈 〉
G

, where angle brackets i  
denotes averaging. In other words, the mean of ( )NP f+

G
* is 

| ( )|NP f+〈 〉
G

= /2π ( )N fσ  where ( )N fσ  is the RMS value of 
the phasor projection. 

The RMS value of the phasor projection ( )N fσ  is also 
related to the one and two sided PSD of the active power:  

 ( )N fσ = 2 ( )
NP

PSD f = ( )
NP

PSD f+  (158) 

Put into words, the phasor density of the oscillation, 
( )NP f+

G
, has a Rayleigh distribution of scale parameter 

( )N fσ  equal to the square root of the one-sided power 
spectral density. 

For convenience, effective values are usually used instead 
of amplitude. The effective value of a sinusoid (or its root 
mean square value, RMS for short) is the amplitude divided 
by √2. Thus, the average quadratic value of the fluctuation of 
a wind farm at frequency f is, according to (156): 

2 2 2

[ ( )]

( )/ 2 ( ) /2 ( ) ( )
N

N

N N N P
Rayleigh f

P f P f f PSD f
σ

σ+ + += = =
G G

(159) 

If a fast Fourier transform is used as ideal narrowband filter 
and the Parseval’s Theorem is applied, an estimate of ( )N fσ  
is { } 2 1/2

/
2 · | ( ) |

n f f
f FFT P k t= ΔΔ 〈 Δ 〉  (in Bartlett or Welch 

methods, some smoothing or averaging is applied to obtain a 
consistent estimate). 

If fluctuations at a cluster of N turbines are independent, 
then ( )N fσ ≈ 1( )N fσ , where 1( )fσ  is the mean RMS fluc-
tuation density at a single turbine and at frequency f. The 
mean phasor density is:  (160) 

1 1
( ( ))

| ( )| ( ) ( ) | ( )|
2 2N

N N
Rayleigh f

P f f N f N P f
σ

π π
σ σ+ +〈 〉 = = = 〈 〉

G G
 

If the real power of the turbine cluster is filtered with an 
ideal narrowband filter tuned at frequency f and bandwith Δf, 
then the average effective value of the filtered signal is 

( )
N

f fσ Δ  and the average amplitude of the oscillations is 
| ( )| ·NP f f+〈 〉 Δ
G

 = ( ) · /2
N

f fσ πΔ . The instantaneous value of 
the filtered signal , , ( )N f fP tΔ  is the projection of the phasor 

2  ( )· j f t
NP f e fπ+ Δ
G

 in the real axis. The instantaneous value 
of the filtered signal squared, 2

, , ( )N f fP tΔ ,  is an exponential 
random variable of parameter λ= 2 1

1[ ( ) ]N f fσ −Δ . Taking into 
account the properties of the exponential distribution: 

 2 2
, , 1( ) ( )N f f

Exp distribution
P t N f fσΔ = Δ  (161) 

The RMS oscilation resulting from all the discrete 
frequency components of uncorrelated fluctuations is the sum 
of the contributions of each characteristic frequency. For a 
discretized spectrum, the Parseval’s theorem is: 

                                                           
* Comparision note: if the amplitude density ( )

N
P f+
G

 is deterministic, 
then | ( )|

N
P f+〈 〉
G

 = ( )
N

P f+
G

= 2 ( )
N

fσ , slightly bigger than if ( )
N

P f+
G

 
is Rayleigh distributed. During a short record, ( )

N
P f+
G

 can be fairly 
constant and thus the average sample amplitude density would be 

/2 ( )
N

fπ σ ≤ | ( )|
N

P f+〈 〉
G

≤ 2 ( )
N

fσ .  
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Notice that the factor 1/2 must be changed into 2 if two-
sided phasors densities are used. For a continuous PSD, the 
sum transforms into an integral: 
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According to (160) and (163), both the RMS value and the 
spectral phasor density of uncorrelated fluctuations scale up 
in a wind farm with a factor N . 

The distribution of 2
 ( )uncorr fluctuationP t  can be derived in 

the time or in the frequency domain. In both cases, 
2

 ( )uncorr fluctuationP t  is the sum of infinitesimal Exponential 
random variables. 

If the modulus and phase of ( )kP f+
G

 are not linearly 
correlated at different frequencies kf , then 

2
 ( )uncorr fluctuationP t  in (163) can be computed as the sum of 

independent infinitesimal random variables with exponential 
distribution. If ( )fσ is constant 1 2f f f∀ ≤ ≤  and null 
otherwise, the resulting distribution converges to a normal 
distribution with mean 2

 ( )uncorr fluctuationP t  and standard 
deviation 2

 2 ( )uncorr fluctuationP t . In practice, the 
fluctuation spectral density ( )fσ  do depend on frequency and 
the sum of correlated gammas with different scale parameters 
can be computed with algorithm proposed in [175].   

Power dips due to a blade passing in front of a turbine 
resembles pulse dips, which have a wide frequency spectrum. 
The correlation coefficients of frequency components will be 
derived in the second part of this work. 

One or two sided sums of phasors are consistent –provided 
all values refer exclusivelly either to one or to two side 
spectra. Most differences do appear in integral or summation 
formulas – if two-sided spectra is used, a factor 2 may appear 
in some formulas and the integration limits may change from 
positive frequencies to positive and negative frequencies, as 
in (163). 

4.4. Sum of partially correlated phasor 
densities of power from several turbines 
4.4.1. Sum of fully correlated and fully 
uncorrelated spectral components 

On the one hand, slow fluctuations (f < 10-3 Hz) are mainly 
due to meteorological dynamics and they are widely 
correlated spatially and temporally. Slow fluctuations in 
power output of nearby farms are quite correlated –see (115) 
and (127)– and wind forecast models try to predict them to 
optimize power dispatch.   

On the other hand, fast wind speed fluctuations are mainly 
due to turbulence and microsite dynamics [176]. They are 
local in time and space and they can affect turbine control and 
cause flicker [177]. Tower shadow is probably the more 
noticeable fluctuation of a turbine. It has a definite frequency 

and, if the blades of all turbines of an area became eventually 
synchronized, it could be a power quality issue. But 
synchronization is very rare since the only synchronizing 
forces might be turbine wakes and voltage drops in the grid.  

The phase ϕi (f) implies the use of a time reference. Since 
fluctuations are random events, there is not an unequivocal 
time reference for use it as angle reference. Since fluctuations 
can happen at any time with the same probability –there is no 
preferred angle ϕi (f)–, the phasor angles are random 
variables uniformly distributed in [-π,+π] (i.e., the system 
exhibits circular symmetry and the stochastic process is 
cyclostationary). Therefore, the relevant information 
contained in ϕi (f) is the relative angle difference among the 
turbines of the farm [178] in the range [-π,+π], which is 
linked to the time lag among fluctuations at the turbines. 

If the N turbine fluctuations at frequency f are completely 
synchronized, all the phases have the same value ϕ(f) and the 
modulus of fully correlated fluctuations , | ( )|i corrP f+

G

 sum 
arithmetically. 

 , , , 
1 1

| ( )| ( ) | ( )|
N N

farm corr i corr i corr
i i

P f P f P f+ + +

= =

= =∑ ∑
G G G

 (164) 

If there is no synchronization at all, the fluctuation angles 
ϕi(f) at the turbines are stochastically independent. Since 

, ( )i uncorrP f
JG

 has a random argument, its sum across the wind 
farm will partially cancel and inequality (165) holds true.  

 , , , 
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= =
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If there is no synchronization at all, the fluctuation angles 
ϕi(f) at the turbines are stochastically independent. If the 
number of turbines N >4, the central limit for the sum of 
phasors is a good approximation and (160) is applicable. 

This approach remarks that correlated fluctuations adds 
arithmetically and they can be an issue for the network 
operation whereas uncorrelated fluctuations diminish in 
relative terms when considering many turbines (even if they 
are eventually very noticeable at turbine terminals).  

4.4.2. Sum of partially linearly 
correlated spectral components  

Inside a farm, all the turbines exhibit a similar behaviour 
for a given frequency f and the PSD of each turbine is 
expected to be quite similar. However, the phase differences 
among turbines do vary with frequency. Slow meteorological 
variations affect all the turbines with negligible time lag, 
compared to characteristic time frame of weather systems 
(i.e., the phasors ( )turbineP f

G
have the same phase). 

Turbulences with scales significantly smaller than the turbine 
distances have uncorrelated phases. Fluctuations due to rotor 
positions also show uncorrelated phases provided turbines are 
not synchronized. 

 
2 2 2

, ,( ) ( ) ( )turbine turb corr turb uncorrP f P f P f+ + += +  (166) 

If the number of turbines N >4 and the correlation among 
turbines are linear, the central limit is a good approximation. 
The correlated and uncorrelated components sums 
quadratically and the following relation is applicable:  (167) 
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2 22 2
, ,( ) ( ) ( )farm turb corr turb uncorrP f N P f N P f+ + +≈ +

G G G
 

where N is the number of turbines in the farm (or in a group 
of close farms). Since phasor densities sums quadratically, 
(166) and (167) are concisely expressed in terms of the PSD 
of correlated and uncorrelated components of phasor density: 

2
, ,( ) ( ) · ( )farm turb corr turb uncorrPSD f N PSD f N PSD f≈ +  (168) 

, ,( ) ( ) ( )turb turb corr turb uncorrPSD f PSD f PSD f= +  (169) 

The correlated components of the fluctuations are the main 

source of fluctuation in large clusters of turbines. The cluster 
admittance ( )J f  is the relative transfer function of the mean 
fluctuation density of the farm, ( )farmP f

JG
, respect the 

mean turbine fluctuation density, 
( )turbineP f

JG
.  

 ( )J f =
( )

( )

farm

turbine

P f

P f

+

+
≈

( )

( )
Pfarm

Pturbine

PSD f

PSD f
 (170) 

Note that the phase of the transfer function ( )J f  has been 
omitted since the phase lag between the oscillations at the 
cluster and at a generic turbine is meaningless if the turbine 
position is not specified. 

 
TABLE II: SUMMARY OF STATISTICAL PROPERTIES OF UNCORRELATED SINUSOIDAL FLUCTUATIONS IN A CLUSTER OF N TURBINES 
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 • The instantaneous uncorrelated fluctuation amplitude density at frequency f is: 

( )1| ( )| ( )NP f Rayleigh N fσ+
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∼  

⇒ The mean fluctuation amplitude density is | ( )|NP f+〈 〉
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 • The instantaneous uncorrelated fluctuation density at freq. f is 
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j f t
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π−⎡ ⎤= ⎢ ⎥⎣ ⎦

G
( )10, ( )N N fσ∼  
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 • The one-sided power spectral density of the wind farm fluctuation is 2( ) ( )
N

NP
PSD f fσ+ =  

 • If the real power of the turbine cluster is filtered with an ideal narrowband filter tuned at frequency f and 

bandwidth Δf, then the average RMS value of the filtered signal is 
1
( )f N fσ Δ  and the average amplitude of 

the oscillations is 
1
( ) · /2f N fσ πΔ . 
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Since turbine clusters are usually not negatively correlated, 
then the following inequality is valid: 
 ( )N J f N1 1  (171) 

The squared modulus of the admittance ( )J f  is 
conveniently estimated from the PSD of the turbine cluster 
and a representative turbine using the cross-correlation 
method and discarding the phase information [179]: 

, ,22
( ) ( )

( ) ( )

( )
( )

( )

turb corr turb uncorr

turb turb

Pfarm

Pturb

PSD f PSD f
N

PSD f PSD f
N

PSD f
J f

PSD f
= +=  (172) 

If the PSD of a representative turbine, ( )PturbPSD f , and 
the PSD of the farm ( )PfarmPSD f  is available, the 
components , ( )turb corrPSD f  and , ( )turb uncorrPSD f  can be 
estimated from (168) and (169) provided the behaviour of the 
turbines is similar.  

At f � 0,01 Hz, fluctuations are mainly correlated due to 
slow weather dynamics, , ( )turb uncorrPSD f � , ( )turb corrPSD f , and 
the slow fluctuations scale proportionally ( )PfarmPSD f  
≈ ,

2 ( )turb corrPSD fN . At high frequencies f > 0,01 Hz, 
individual fluctuations are statistically independent, 

, ( )turb uncorrPSD f � , ( )turb corrPSD f , and fast fluctuations are 
partially attenuated, ( )PfarmPSD f  ≈ , ( )· turb uncorrPSD fN . 

An analogous procedure can be replicated to sum 
fluctuations of wind farms of a geographical area, obtaining 
the correlated , ( )farm corrPSD f  and uncorrelated 

, ( )farm uncorrPSD f  components. The main difference in the 
regional model –apart from the scattered spatial region and 
the different turbine models– is that wind farms must be 
normalized and an average farm model must be estimated for 
reference. Therefore, the average farm behaviour is a 
weighted average of individual farms [180] with lower 
characteristic frequencies. Recall that if hourly or even slower 
fluctuations are studied, meteorological dynamics are 
dominant and other approaches are more suitable. 

4.4.3. Estimation of wind farm power 
admittance  

In the previous sections, the equivalent farm squared wind 
has been derived assuming that equivalent squared wind is a 
multivariate Gaussian process with spectral covariance matrix 

2 ( )
U eq

fΞ . 
According to (99), wind farm admittance ( )J f  can be 

estimated from the equivalent farm squared wind (115) or 
from the equivalent farm wind (121). (173) 
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≈
Ω

= =
Ω
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=
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In a wind farm with turbines of the same model and 
functioning at similar operational points:  
 farmΩ = ,rotor i turbines

Ω = Ω   (174) 
 farm i turbinesλ λ λ= =   (175) 

 farmθ = i turbinesθ θ=  (176) 

 2
farmR = 2

i turbines
R = 2R  (177) 

 ' ( , )q farm farmC θ λ = , ( , )q i i i turbines
C θ λ = ( , )qC θ λ  (178) 
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 (179) 

If all the turbines experience similar equivalent squared 
wind spectra, i.e. 2 2, ( ) ( )U eq i U eqPSD f PSD f≈ , then 
approximation (116) is valid and the following ratio can be 
computed: 
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2

, '
2 1 1

,

( ) 1
( )

( )
N NU eq farm

iji j
U eq turb

PSD f
f

PSD f N
γ

= =
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 (180) 

where ' ( )ij fγ
G

 is the complex coherence of effective quadratic 
turbulence at frequency f and at turbines i and j.  

Therefore, the wind farm power admittance ( )J f  is the 
sum of the complex coherence of effective quadratic 
turbulence among turbines: 

 '
1 1

( ) ( )
N N

iji j
J f fγ

= =
≈ ∑ ∑ G  (181) 

As stated in (120), the equivalent turbulence and effective 
quadratic coherence are roughly equivalent, ' ( ) ( )ij ijf fγ γ≈

G G
,  

provided the second-order approximations  (93) and  (118) 
are valid. 

Thus, the admittance ( )J f  can be estimated as 
PSDUeq,area(f) /PSDUeq,turbine(f), the smoothing factor of the 
area (132). For the rectangular region shown in Fig. 51, the 
admittance is: 

 7 8

  
( ) ,longlat

long
wind wind

A a fA b f
J f f f A

U U

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟⎜⎟≈ ⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎜〈 〉 〈 〉⎝ ⎠ ⎝ ⎠
 (182) 

4.5. Parameterization of the power 
output spectrum 

The actual spectrum of power from a wind turbine depends 
on many parameters such as turbine technology and wind 
regime. Kaimal  (11) and Von Karman (14) wind turbulence 
spectra corresponds to a low pass filter of fractional order r 
=5/6 and cut-off frequency related to the integral time [153]. 
The peak of wind PSD has a characteristic time usually in the 
order of minutes and the turbine dynamics are negligible at 
such slow frequencies (a quasi-static approach can be precise 
enough in most cases).  

A simple model (183) will be used to characterize power 
fluctuations in partial load generation from the grid point of 
view. It will be used also to compare spectrum main 
characteristic of spectra available in the literature.  

 2( ) ( ) ( ) ( )PPSD f P f H f G fσ
+= ≈ ½  (183) 

where either ( )PPSD f  or 2( )P fσ  are the two-sided PSD 
of the turbine or the farm real power. The factor ½ has been 
introduced since ( )PPSD f  is the two-sided PSD and ( )H f+  
corresponds to one-sided representation (f ≥ 0). The one-
sided representation of ( )H f+

have been selected to compare 
more easily the parameters from the literature, where one-
sided plots are the standard for real signals and because only 
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positive frequencies are customarily considered in transfer 
functions. 

( )H f+
 is the smooth part of the PSD due to turbulence 

and ( )G f  is the squared gain which models the periodic 
components (PSD peaks at bladef  and its harmonics). ( )G f  
can be understood as the squared module of a filter bank that 
amplifies turbulence at some characteristic frequencies (blade 
frequency, tower resonance frequency, etc.) to match 
experimental data.  

( )H f+
 can be parameterized approximately in the range 

from milihertzs to 35 Hz as: 

 
( )

'2
2'

1 2 2
1

1 /
( )

r

f f
H f P

f f
+

⎛ ⎞⎟⎜ + ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟+ ⎟⎜⎝ ⎠
 (184) 

where r’, 1f , 2f  and P’1 are parameters adjusted from 
experimental PSD.  

The PSD of real or reactive power output has several 
components: 
• Output of a system of fractional order r’ slightly usually 

bigger than unity (1 < r’ < 1,75). The slope of ( )H f  in 
a double logarithmic plot at mid frequencies (10-2 Hz < f 
< 10 Hz) is r’. In all measurements and in almost all 
analyzed references, the order of power output is superior 
to the usual wind order r’ =5/6 = 0,833 from von 
Karman, Davenport or Kaimal PSDs. This indicates that 
the turbines attenuate wind oscillations of high 
frequency. 

• The cut-off frequency f1 = 11/τ  indicates the transition of 
constant PSD to the constant slope 1/(2r) in a double 
logarithm plot. Frequency f1 is usually in the range of 
milihertzs (first time constant 1τ  is in the range of 
minutes). If PSD has a constant slope in low and middle 
frequencies, f1 ≈ 0. 

• The scale factor is P’1. At 1 Hz, the PSD is 
approximately P’1 and at very low frequencies, PSD is 
approximately constant with value P’1·f1-2r. 

• In some turbines, the PSD is approximately constant at 
frequencies higher than f2. At 2f f�  the noise floor is 

2
1 2· rP f − . If PSD decays with the same slope in a double 

logarithmic plot at middle and higher frequencies, the 
noise floor is negligible and the second time constant is 
very small, 2 21/ 0fτ = ≈ . 

Since 1 < r’ < 1,75, ( )H f can be approximated for 1f f�  
(i.e., f ≥ 10-2 Hz) by: 

 
1

2
1 2( ) r

f f
H f P f P+ −≈ +

�
 (185) 

where r ≈ r’  is the approximate order of the system and it 
can be computed as the slope of ( )H f  in a double 
logarithmic plot at mid frequencies, f1 < f < f2. If PSD remains 
approximately constant at high frequencies, the value of noise 
floor for frequencies between f2 21/ τ=  and 35 Hz 
(maximum frequency of interest in flicker analysis) is 
P2 ≈( ) 2

1 22 -1r rP τ . 
The deviation of the actual system from the spectrum trend 

is modeled as a multiplicative factor ( )G f , which can be 
considered approximately unity except at blade frequency 

3 3blade rotorf f p= =  (for a rotor with three blades) and its 
harmonics. ( )G f  is significantly above unity at frequencies 
f  where the system presents a periodic pattern. If turbine 

dynamics and its control damp fluctuations of some 
frequency range, ( )G f  is bellow unity at those frequencies. 

PSD shows peaks at blade frequency ( bladef = 
3 /(2 )rotor πΩ = 3p for a rotor with three blades) and its 
harmonics due to wind shear and aerodynamic effects as the 
blades pass in front of the tower.  

Exact frequency of fluctuations can be very important for 
avoiding mechanical resonance modes in the design of a wind 
turbine, but they play a secondary role in the grid. The main 
power quality concern due to fluctuations is flicker level. 
Since weighting filter on flickermeter varies smoothly with 
frequency, the frequency value of is not as important as in 
mechanical resonance studies. Moreover, the PSD shows 
some wide peaks at blade frequency harmonics indicating 
modulation (i.e., periodic fluctuations have actually variable 
frequency and amplitude). A simplified admittance function 

( )G f  with a few harmonics of blade frequency bladef  can 
have enough precision in most cases: (186) 
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where δ  is the delta of Dirac function. ( )G f concentrates the 
accumulated relative error of ( )H f  at the center of the 
frequency band 1

2( )k fblade− < f  < 1
2( )k fblade+ . If the 

modulation of the fluctuations needs to be represented, then 
( )bladef fδ − can be replaced by a notch filter such as: 
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where the bandwidth parameter (in Hertz) controls the 
modulation of the fluctuations. 

The delta impulse at origin is due to the mean value of 
power, ( )P t . The rest of terms can be estimated with the 
following expression: 
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 (188) 

where the factor 2 is due that ( )PPSD f  is the two-sided PSD 
–simmetric respect origin–, integration limits corresponds 
only to positive frequencies and gk corresponds to one-sided 
representation (k >0). 

At full load generation, wind fluctuations of frequencies 
bellow 0,05 Hz are strongly attenuated in electrical power 
output.  Recall that frequency analysis must be used with care 
because wind is a stationary stochastic process only if 
meteorological conditions do not vary significantly. In 
general, parameters P1, P2, r, 1τ , 2τ  and 

bladek fg must be 
estimated for the fundamental operational modes of the 
turbines. Since the turbine dynamics at very low frequencies 
is driven by the meteorological evolution where operational 
conditions do change, non-linear models can be more 
appropriate to model very slow changes. 
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4.5.1. Estimation of power variance 
during a time interval  

Often, the variance is computed not from instantaneous 
power but from mean averages integrated during a short 
period Δt multiple of half grid period. Since the available 
data in this work is measured based on half grid periods, then 
the corresponding Nyquist frequency is fNyquist = 1/(2Δt) ≤ 
fgrid. The maximum frequency considered in the flicker 
standard IEC 61000-4-15 [181] is 35 Hz. Power oscillations 
of frequency higher than the network frequency (fgrid=50 or 60 
Hz) has negligible influence in flicker and it can be 
considered as waveform distortions (their interaction with the 
grid is different than slower fluctuations). 

The variance of power computed during a time interval T 
from data recorded each Δt seconds can be computed from 
(185) and (186) through Parseval's theorem, assuming that 
fluctuations of different frequencies f > 0,01 Hz typically 
have uncorrelated phases: 
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∫ ∫
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where 2 factor has been included since ( )PPSD f  is two-
sided and only positive frequencies are considered in the 
integral limits. If 2

, ,P T tσ Δ  is computed directly from discrete 
( )PPSD f , take into account that the integral transforms into 

a sum, DC term should be excluded and Nyquist frequency 
should be accounted only once (without the 2 factor). 

If the model is extrapolated up to the maximum frequency 
of interest fgrid, the variance of power can be estimated as: 

2 1 1 2
22

, 1 2

- 1
( )

2 1

r r
grid

grid k blade
k

P T

T f
f g H k f

r T
P Pσ

− −
+≈ + − +

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠ ∑ (190) 

Taking into account the actual uncertainty of estimated 
parameters P1, P2, r and 

bladek fg and the fact that fgrid�T, the 
following approximate expression is suitable: 
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Since wind evolves due to meteorological dynamics, wind 
is not a truly stationary stochastic process. The weather 
evolution increases the variance in power output. In fact, if P1 
has been estimated from raw power output (without de-
trending the weather evolution), formulas (190) and (191) 
include variance due to meteorological dynamics. If weather 
forecast is employed as an input of the variability model, the 
variance due to the unpredictable component of the wind (i.e. 
stochastic wind turbulence) and foreseeable wind evolution 
(i.e., slow weather evolution) should be accounted separately. 
In fact, this approach improves the estimation of  P1 and the 
turbulence length of the wind in Kaimal and von Karman 
turbulence models. In [182], a method to detrend turbulence 
and weather evolution in measured wind variance is presented 
(a similar approach can be used for power output data). 

Since fluctuations of different frequencies typically have 
uncorrelated phases during continuous operation, the variance 
of instantaneous power is half the integral of the power 
spectrum. In other words, the expected variance of 
instantaneous power is half the area beneath the PSD plot in 

linear axis plot. Moreover, the linear averaging of power 
spectrum (used to estimate the PSD) does not change the 
variability of instantaneous power. 

The value and bandwidth of PSD peaks are influenced by 
frequency resolution, recorded signal, window function and 
the estimation method (Welch’s periodogram, ARIMA 
models, etc). Fortunately, the variability content in a 
frequency band has lower uncertainty than the PSD 
estimation at a single frequency. 

For time spans of minutes or smaller, the fluctuations of 
different turbines are highly uncorrelated and the PSD of the 
turbines sums the wind farm PSD (i.e., the PSD in p.u. units 
of turbines and the farm is the same at f > 0.001 Hz).  

For time spans of quarters of hour (f < 0.001 Hz), the 
fluctuations of turbines inside a farm are quite correlated and 
the simple spectrum of the turbines (i.e., the modulus of the 
Fourier transform of the instantaneous power) sums the 
simple spectrum of the farm. 

If all the phasors had had the same angles, the standard 
deviation of instantaneous power would have been half the 
integral of the simple spectrum. In such case, the frequency 
analysis would have been based on the spectrum modulus 
instead of the PSD. Measurements have shown that the angles 
of phasors are significantly correlated only at the tripping of 
turbines or wind farms or at very low frequencies (for 
example, in a gradual weather change leading to the evolution 
from no generation to full generation or the reverse). 
Fluctuations of very low frequency are related to 
meteorological dynamics, which are out of the scope of this 
work. Abrupt changes of instantaneous power will be studied 
in time domain with Markov chains in the following chapter. 

In conclusion, the PSD is a consistent estimator of wind 
power variability for the time span of interest. 

4.6. Estimation of parameters from 
measured data 

4.6.1. General features of measured 
data  

The smoothed periodogram (module averaged Power 
Spectrum Density) has proved suitable PSD estimator. There 
is a trade-off between removing noise and frequency 
resolution, but a data record of several minutes measured at 
50 Hz is usually enough to obtain a good PSD estimation.  

The PSD of the wind agrees, up to some extent, to the 
usual Kaimal wind spectra (i.e., system order ~ 5/6). 

Slow fluctuations are prevalent in the turbine power (the 
spectrum quickly decreases at frequencies beyond fblade since 
both wind spectra decreases and turbine dynamics act as a 
low-pass filter). The fluctuations do not have a narrow 
frequency margin; they are spread in wide frequency bands.  

Even though rotor torque at low-speed shaft has strong 
periodic components due to rotor position (see Fig. 311), this 
modulation is largely filtered by the gearbox, the drive train 
and the generator dynamics. The resulting power fluctuations 
have neither the characteristic shape of Fig. 311 nor a true 
periodic signal. The fluctuations in power vary their 
frequency and amplitude slowly, probably because the 
randomness of the wind interacts with turbine resonance 
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modes of frequency similar to blade frequency (interference 
of two oscillations of similar frequency). The rotor speed of 
the turbines varies slightly and the sum of the fluctuations due 
to turbine modes and blade frequency modulates 
instantaneous power output (see for example Fig. 190). The 
PSD of power show peaks at rotor and tower resonance 
frequencies and their harmonics (see Fig. 205 and Fig. 206). 
In some turbines, sub-harmonic 2/3 (f = 2frotor), sub-harmonic 
½ (f = 2/3frotor), and sub-harmonic 1/3 (f = frotor), have been 
found, probably related misalignments in the blades and 
excitation of low frequency turbine oscillation modes.  

Superposed to the almost periodic component, there are 
random variations due to wind turbulence that can be 
identified as the background spectrum trend after removal of 
cyclical oscillations. The power output PSD background 
corresponds to a system of fractional order between 1 and 2. 

The switching events can be clearly noticed in the WT, but 
the effect in the substation of the park is quite weak. This is 
mainly due to the independent operation of the WT in a farm 
and the diverse wind conditions that each WT experiences. 
Thus, if switching events are fast enough, there is low 
probability that more than two turbines are connecting their 
generators at the same time. 

There is a small probability of resonance or turbine 
synchronization along a wind farm. A time-frequency 
analysis has been performed to detect a possible resonance. 
Some methods with large time-frequency resolution as 
Wigner-Ville Distribution (WVD) and S-Method (SM) have 
been tested, but they generate cross-terms because of the wide 
range of frequencies in the signal. In fact, the Short Fast 
Fourier Transform (SFFT) is the method more stable and less 
influenced by cross-terms of the tested techniques. In the 
SFFT, the Fourier Transform is applied to a small window of 
the signal. If a frequency appears remarkably perceptible in 
the correlogram, an eventual resonance of that frequency has 
happened during that elapse. Finally, some examples of the 
application of the time-frequency analysis to wind power are 
shown in this chapter using SFFT. 

4.6.2. Procedure to estimate model 
parameters 

The adjustment of parameters of the model (184) is 
somewhat subjective, since the standard least square fitting 
method overweight frequencies where PSD is bigger and 
where the spectrum has more points per decade. Generally, 
low frequency deviations have more influence in total fit 
error.  

Several fitting methods have been tested for fitting P1’, r’, 
f1 and f2 whilst minimizing ∑gk

2 using standard mathematical 
tools. One method has been developed based on the manual 
fit procedure (see Fig. 58). This procedure is quite simple and 
it gives reasonable performance for the estimation of P1’, r’ 
although the estimation of f1 and f2 can be further improved. 

Sample PSDP
+(f) units are effective square Watts per 

Hertz and it is plotted in light gray (see Fig. 187). The term 
effective or rms refers to the fact that the integral bellow the 
PSDP

+(f) is the signal variance according to (192). These 
units are consistent with the effective or rms values of 
voltages and currents. 

 
Fig. 58: Basic procedure for estimating P1’, r’, f1 and f2.  

The running average of PSDP
+(f) is the smoothed 

periodogram and it is ploted in black. The average blade 
frequency is indicated in vertical yellow line. Red line is the 
model (184) (the output of a system of fractional order r 
between 1 to 1,75 with a zero and a pole excited by white 
noise). In the cases analized, the frequency of the pole is 
generally in the range f1 1 10-2~10-3 Hz and the zero 
frequency is usually f2 2 7 Hz.  

On the one hand, the zero characterizes the frequency 
where the spectrum no longer decreases, i.e. the noise floor of 
the spectrum (if there is no noise floor, then f2 ≈ ∞). Since the 
noise floor is quite small, it is influenced by the measurement 
accuracy.  

On the other hand, the pole characterizes the frequency 
where the spectrum starts decreasing. Since it occurs at very 
low frequencies, it is biased by the duration of the sample. If 
f1 ≤ Nsmoothing /T, where T is the duration of the sample and 
Nsmoothing is the effective number of samples in the smoothing 
filter applied to the spectrum to decrease its uncertainty, then 
the estimate of f1 is unreliable and only upper bound of f1 can 

Estimate P1’ and r’ from low-frequency data 
through the exponential fit: 
PSD+(f)=P1’ Exp(r’ x0) 

where x0 = 
2

2
2 2

1

1 ( / )f f
Ln

f f

⎡ ⎤+⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

  ∀ 0<f<fblade/2 

and weighting proportional to 1/f 
 (only low-frequency data is considered) 

Initial guesses for f1 ~ 0.01 Hz and f2 ~ 15 Hz. 

Estimate f1 from very low-frequency data through 
the linear fit y = a + b x  

where f1=√a, x = f 2 and 

y = 
1/ '

2 '
2 1

( )1

1 ( / )

r
PSD f

f f P

+⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠
 

∀ 0< f <0.02 Hz (only very low frequencies are 

considered for estimating f1) 

Estimate f2 from high-frequency data through the 
linear fit y = a + b x  

where f2=1/√b, x = f 2 and 

y = ( )
1/ '

2
1 '

1

( )
1

r
PSD f

f f
P
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∀ f > 5 Hz (only high frequencies are considered 

for estimating f2) 

End 

Refine fitting? Yes 

No 
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be given.  In the cases presented in this section, T is from 
200 s to 800 s and the effective smoothing is Nsmoothing= 
0,443·20 = 8,86 samples (cut-off frequency of a moving 
average of 20 samples, in sample units). Therefore, pole 
frequencies bellow 0,01 to 0,04 Hz (depending on the sample 
duration) cannot be estimated from these short samples.  

However, f1 can be estimated from data of lower time 
resolution but with longer duration records. During the 
measuring campaign, only the average values of one or two 
second spans were recorded during several days due to 
storage limitations. These records allows to study very low 
frequency behaviour, up to the Nyquist frequency (0,5 or 
0,25 Hz). For very long series, the number of samples in the 
original series is very big and special techniques may be 
applied to avoid running out of memory while the PSD is 
being estimated. Note also that very long records can include 
meteorological changes and different operational modes of 
the turbine (these features will be analyzed in the last 
chapter). 

A dark blue line is added sometimes to indicate the 
variance 2

, ,P T fσ  of the signal filtered up to frequency f. 

 2
, , 1/

( )
f

P T f PT
PSD f dfσ +=∫  (192) 

Sometimes, a green line is added to indicate the 
accumulated error of the model from frequency  f  up to the 
Nyquist frequency (25 Hz). (193) 

1 1
2 2( ) ( )t t

Pf f
accumulated error PSD f df H f df+Δ Δ= −∫ ∫   

In PSD plots such as Fig. 187, the bar chart are the values 
of gk ∀ k>0 computed from (188) and the color of the bar 
indicates that gk is positive (red) or negative (blue). 

4.7. Estimation of parameters from the 
literature 

A literature review on experimental data of power output 
PSD from wind turbines or wind farms are presented. In most 
cases, the fluctuation level '

1S can not be computed from the 
literature data. Recall that many papers show the discrete 
Fourier Transform of real power, which is essentially the 
squared root of the PSD times the frequency resolution fΔ . If 

fΔ  is not stated, the PSD normalization constant is 
unknown. In other cases, the units of PSD are not pointed out. 
Even though the PSD depends on the employed estimation 
method –specially its peak values at periodic frequencies–, 
the power content in a frequency band is less sensible and 
therefore, suitable for comparing fluctuations at different 
locations.  

Table III shows the adjusted parameters of (183) from 
measurements taken by the author or estimated from the 
references. Unfortunately, there is not enough information in 
most references to estimate 1S ,  1f  or the interval variance of 
power 2

,P Tσ . 
Finally, recall that the turbine or farm can be approximated 

by a system with transfer function ( )S f  excited with white 
noise of unity variance plus a unity DC component. 

4.8. Conclusions 
In the former chapters, the wind has been analyzed to 

estimate the variations of aerodynamic torque. However, the 
aerodynamic torque interacts with the structural and drive-
train vibrations. Consequently, the power injected in the grid 
has a stochastic nature even in total absence of turbulence. 

There are many specific characteristics that impact notably 
in the power fluctuations between the first tower frequency 
(usually some tenths of Hertzs) and the grid frequency. The 
realistic reproduction of power fluctuations needs a 
comprehensive model of each turbine, that is usually 
confidential and private. 

One contribution of this chapter is the experimental 
characterization of the power fluctuations of three 
commercial turbines with a multipurpose data logger 
designed and installed by the author of this thesis. This 
multipurpose data logger has posteriorly evolved into a 
commercial product called AIRE (Analizador Integral de 
Recursos Energéticos). 

The variations of power during the continuous operation of 
turbines are measured and experimentally characterized for 
timescales in the range of minutes to fractions of seconds. 
Some experimental measurements in the joint time-frequency 
domain are presented to test the mathematical model of the 
fluctuations. 

The admittance of the wind farm is defined as the ratio of 
the oscillations from a wind farm compared to the 
fluctuations from a single turbine, representative of the 
operation of the turbines in the farm. The partial cancellation 
of power fluctuations in a wind farm are estimated from the 
ratio of the farm fluctuation relative to the fluctuation of one 
representative turbine. Some stochastic models are derived in 
the frequency domain to link the overall behaviour of a large 
number of wind turbines from the operation of a single 
turbine. 

A literature review on Power Spectral Densities (PSD) and 
periodograms (averaged spectrum) of wind power are 
presented. The variability of PSD is also studied, a step ahead 
from the literature, in the joint time-frequency domain 
through spectrograms. 

 
 
 
 
 
 

El anchor de la tabla está ligado al salto de sección. No 
borrar el salto de sección. 
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TABLE III: COMPARISON OF SPECTRUM PARAMETERS OF POWER OUTPUT 

Source r 
'
1S   

(kW2/Hz) 2τ  (s) Remarks 

[52], NM-750 kW, SCIG 1,35 1.4 103 0 Fixed speed, stall regulated turbine at Valdecuadros. 
[52], Gamesa DFIG 640 kW 1,23 6 103 0,5 Variable speed, pitch wind turbine at Remolinos, 1S  high 
[52], 17 x 640 kW wind farm, Gamesa 
pitch contr. DFIG  1,23 105 0,5 Remolinos wind farm with variable speed, pitch controlled 

wind turbines, 1S  high. 
[52], 27x600 kW turbines, Vestas pitch 
controlled VRIG 1,1 104 0 Borja wind farm, pitch control and almost fixed speed 

(opti-slip control), 1S  high. 
[183],  5 x 500kW stall-regulated 
offshore wind farm  ~1,9  0 Bockstigen  stall-regulated offshore wind park with 

variable speed turbines at low winds 
[183],  5 x 500kW offshore  ~1,6  0.2 Constant speed operation at medium or high winds 
[184], 2,5 MW wind farm  
operating at 500 kW, fixed speed 0.63  0 Fixed speed operation. 

Noticeable tower shadow pulsation. 
[184], 2,5 MW wind farm  
operating at 500 kW, variable speed 1.3  0.8 Good agreement also for r ~1 and 2τ =0. Anti-flicker 

algorithm avoids tower shadow pulsation  
[185] 2x225 kW wind farm 1,03   Two 225 kW pitch-controlled turbines. 
[186], 4 x 180 kW Alsvik wind farm  1*  0.24 vwind ≈ 14 m/s, low turbulence wind  at Gotland 
[186], 4 x 180 kW  Alsvik wind farm 1,1*  0.24 vwind ≈ 14 m/s, wake operation 
[186], 4 x 180 kW  Alsvik wind  1,15  0.24 vwind ≈ 10 m/s, low turbulence wind 
[187], 10 x 500 kW wind farm 1  0 Spectrum of real power, fixed-speed, stall-regulated 
[187], 10 x 500 kW wind farm 0.86  0 Spectrum of reactive power, fixed-speed, stall-regulated 
[188]  7 x 1.5 MW ENRONWIND EW 
offshore wind farm at  Utgrunden 

0.7~ 
1.4  10-

20 
At full power, almost constant PSD from 0,05 Hz (at 
medium and low power, constant PSD from 0,1 Hz) 

[189]7 x 1.5 MW ENRONWIND EW 
offshore wind farm at  Utgrunden ~1.5   Real and reactive power shows an almost linear 

relationship up to 17 Hz: /10Q PΔ Δ∼  
[152], MADE AE46/I, 660 kW  1  0 Stall regulated turbine, fixed speed, SCIG 
[190], 4 x 180 kW,  Alsvik wind farm, 
Fig. 5.2 a= ~1  0 Spectrum of real power. Generator fluctuations near 10 Hz. 

[190], 4 x 180 kW ,Fig. 5.2 b) ~0,8  0 Stall regulated turbine,  spectrum of reactive power at Alsvik. 
[43], 180 kW, constant speed, soft shaft 1.1  0 Soft shaft damps high frequency oscillations down  
[43], 180 kW, constant speed, stiff shaft 1.1  3 Stiff shaft increases oscillations faster that 1 Hz 
[191], [192] or [193],  2 MW, 
NM2000/72 turbine at 9 m/s 

1,04~
1,17 ~158 0 Medium power operation (8~9 m/s) 

[191], [192] or [193], 2 MW, NM2000/72 
turbine at rated wind speed 

1,04~
1,1 ~16 0 Rated power operation (14~15 m/s) 

[44], 500 kW stall regulated turbine ~1,5 ~20 0 Constant speed, stall regulated wind turbine 
[194] multi-megawatt turbine, 
coordinated  pitch controller ~0.7 ~500 0 Simulation results without reference to real measurements 

[194]  multi-megawatt turbine, traditional 
controller 1 ~300 0 

Simulation results without reference to real measurements, 
1K  high. 

[195], 2-bladed, teeter hub, down wind, 
stall controlled 11 kW turbine 

1,15~
1,24 25~80 0 PSD of the turbine operating in a wind-diesel autonomous 

system is 3 times bigger than operating connected to the grid.
[196], 500 kW fixed-speed, stall-
controlled wind turbine 1,45 ~4,6 0 Wind farm and turbine power output shows a N  ratio 

for f > 0.07 Hz 
[197], simulated PSD (not experimentally 
measured PSD) 1,15 ~10-4 

pu2/Hz 0 At high winds, PSD decreases in a factor of 10. 

[47], 8 x 55 kW ENERCON-16 turbines 
at Cuxhaven wind farm 0.62 ~10-4,2 

pu2/Hz 0 Wind farm and turbine fluctuations show N  ratio for 
f > 0.09 Hz and N  ratio for f < 0.03 Hz 

[198], 4 x 180 kW wind farm at Gotland 1,25 ~64 0,17 Spectrum of real power. Stall-regulated, fixed speed. 
[198], 4 x 180 kW wind farm at Gotland 0.8~1 ~6.4 0 Spectrum of reactive power 
[199], GE 3.6 MW, DFIG, pitch 
regulated 1.025  0 Spectrum of mechanical power at low winds 

(not electrical power output) 
[199], GE 3.6 MW, DFIG, pitch 
regulated 1,6  0 Slow mechanical fluctuations are attenuated by constant 

power control at high winds. 
* The spectrum fit neither a single slope in the double –logarithmic plot nor a slope and a horizontal zone at high frequencies. The 
value indicated is the mean slope, but they should be considered carefully. 

http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5
http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDEQFjAC&url=http%3A//repository.tudelft.nl/assets/uuid%3A388bdf8c-26ee-4711-bf88-14ce82c8f3bb/papaefthymiou2008.pdf&rct=j&q=MCMC%20for%20Wind%20Power%20Simulation%22&ei=klmoTZqnFM-ZhQfj4qXhCQ&usg=AFQjCNFXB5
http://www.risoe.dk/rispubl/VEA/veapdf/ris-r-1408.pdf




5.1. Blade angle difference among 
turbines in a wind farm 

The nature of turbulence and vibrations are different. The 
equivalent wind fluctuations due to the turbulence are 
broadband stochastic processes with no characteristic 
frequencies. However, vibrations and electrical oscillations 
are almost cyclostationary stochastic processes, usually with 
several noticeable narrowband components. 

The influence of blade position in a single turbine power 
output has been analyzed in the annex C and in the literature 
[43, 44, 81, 154, 207, 208]. The almost determinist behaviour 
used in the annex C and in the reference does not represent 
the real stochastic nature of the turbine torque, that is the 
outcome of many random vibrations, most of them fueled by 
the rotor spining. Moreover, the electrical system interacts 
with the mecanical vibrations, damping some frequencies and 
introducing new oscillations.  

This chapter focuses on the instantaneous overall effect in 
a cluster of turbines, assuming a deterministic behaviour of 
the turbine torque or power, which is a more conservative 
than actual random fluctuations. In any case, it will be 
derived that the sum of the power variations from more than 
four turbines converges approximately to a Gaussian process 
despite of the process nature (deterministic, stochastic, 
broadband or narrowband), analogously to the martingale 
central limit theorem. The only required condition is the 
negligible effect of synchronization forces among turbine 
oscillations. 

According to [159], a very steady and very uniformly 
distributed wind together with a weak electrical network is 
necessary for synchronisation to happen driven by voltage 
drops. Experimental measurements [52] have corroborated 
that the synchronisation of the blades is unusual. In addition, 
the spectral model of the turbulence (128) showed that wind 
fluctuations at the frequency of the blades crosses the tower 
can be considered independent because it is much higher than 

,cut latf  and ,cut longf , defined in (134) to (136),. 
If the synchronization forces are negligible, the cyclic 

uncorrelated fluctuations due to rotor position have random 
phases. As wind characteristics are similar inside the farm, 
the magnitude of the cyclic components would be similar in 
all turbines. The angle (or phase) difference between blades 
of turbines i and j  is ,i jϕ /3 and it is uniformly distributed in 
[ ],π π− + . Therefore, phase difference of harmonic k in 
turbines i and j  is ,i jk ϕ , which is also uniformly distributed 
in [ ],π π− + . 

The frequency decomposition poses the burden of 
computing phase relationships and time-domain approaches 
are advantageous. However, they are closely related and some 
interesting results will be derived. For example, the 
approximate flicker emission of a wind farm is derived from 
measurements of a single turbine. 

5.2. Tower shadow and wind shear 
effect in the wind farm power 

In the third chapter, a method to compute the relation of 
blade angle on rotor torque has been computed  –see for 
example Fig. 311. The interaction between the rotor torque 
fluctuations and the turbine is very complex and a thorough 
model of the turbine, generator and control system is needed 
for simulating the influence of wind turbulence in power 
output. The control scheme and its optimized parameters are 
proprietary and difficult to obtain from manufacturers and 
complex to guess from measurements usually available.  

This chapter is focused in almost periodic variations of 
power in the time domain, such as the blade shadow, from a 
phenomenological point of view. 

Both current and power are straightforward related to 
power quality. Current is transformed and its level depends 
on transformer ratio and actual network voltage. In contrast, 
power flows along transformers and networks without being 
altered except for some efficiency losses in the elements. 
Since real and reactive power is less affected by the factors 
external to the self turbines, the parameters selected to 
characterize the electrical output of wind turbines are the real 
and reactive power. Notwithstanding this fact, the model is 
also applicable to the rotor torque in case the drivetrain and 
generator can be assimilated to a linear, time-invariant 
dynamic system. 

The power dips due to blade position will be represented 
by negative pulses in real power. Since all blade angles are 
equally probable, the pulse is  distributed uniformly in time t 
∈ [0, T], where T is the period of the pulses (the period in 
Fig. 59 is T = 1s).  

For a turbine of three blades, the period in seconds is 
= Ω20/ rotorT , where Ωrotor is the rotor in r.p.m. and the 

conversion factor is 60 s/min divided by 3 blades in the rotor, 
equal to 20 blades/r.p.m. The effective period of a wind farm 
–whose turbines can have different Ωrotor – is the average of 
the periods of its turbines. 

Since the occurrence of pulses is not correlated, usual 
techniques for the computation of the sum of identically 
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distributed independent random variables are applicable. 
They involve iterative computation of convolutions or the 
inverse Fourier transform of the characteristic function to the 
power N.  
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Fig. 59:  Power output at a single turbine with blade rate 1 Hz, depth of tower 
shadow α = 0,06 p.u. and average power loss = /Tα τ = 0,0075 p.u. (the 
power dip shapes are rectangular, triangular and Gaussian). 
 
TABLE IV: PROCESS OF COMPUTING THE DISTRIBUTION OF FLUCTUATIONS IN 

A WIND FARM DUE TO TOWER SHADOW. 
1. Compute the PDF of the pulse. 
2. Compute continuous Fourier transform of the PDF. 

{ }*
pulse pulse( ) ( )f PDF yφ = F  

3. Compute the PDF of the wind farm as the inverse Fourier  
transform of the PDF Fourier transform to the power N, 

* *
wind farm pulse( ) [ ( )]Nf fφ φ=  (N = the number of 

turbines in the wind farm). 
4. Quantify the power quality of the wind farm from its 

PDF. 
{ }-1 *

wind farm wind farm( ) ( )PDF y fφ= F  
 

Note that pulse( )F f  is the conjugate of the characteristic 
function of the pulse distribution, ( )fφ . Note also that 

{ }pulse( )PDF yF  can only be computed analytically in a few 
cases.  

The pulse will be characterized by its energy loss α τ   
(area between power pulse and unperturbed power) and its 
maximum depth α . 

Tower shadow of shapes rectangular, triangular, cosine and 
Gaussian have been compared to test the shape influence in 
overall behaviour of the farm. 

turbine 0 pulseP (t) = P  - f (t)   (194) 

pulse

t-
1- -

f ( )= ( /2)

0 -

t
t T

t

μ
α μ τ

ττ
μ τ

Δ

⎧ ⎛ ⎞⎪ ⎟⎜⎪ ⎟⎜ <⎪ ⎟⎜⎪ ⎟⎟ <⎜⎨ ⎝ ⎠⎪⎪ ≥⎪⎪⎩

 (195) 

pulse

t- / 2
f (t) = ( )

0 t- / 2
T

α μ τ
τ

μ τ

⎧ <⎪⎪ <⎨⎪ ≥⎪⎩
,  (196) 

( )2( )/
gaussian pulsef (t) = ( / 2 )

t
e

π μ τα σ τ π− − =  (197) 

cos pulse

( - )
1 cos t-

2f (t) =  
0 t-

tπ μα
μ τ

τ
μ τ
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 (198) 

pulse(f (t)) ;Max α=   (199) 
/2

pulse
/2

= f (t)
T

T
Pulse Energy Loss dt

μ

μ
α τ

+

−
=∫  (200) 

=
Pulse Energy Loss

Average Power Loss
timebetween pulses T

τ
α=  (201) 

where α is the depth of the pulse, τ is the characteristic width 
and μ is the time position of the pulse. For convenience, the 
origin of time will be chosen in the center of the pulse (μ=0). 
Tower shadow duration is small, in the order of 1/8 of period 
according to [50] and Fig. 311, because the solidity of the 
blades and the tower radius are small. The torque pulse 
depthdepends on the blade pitch, rotor speed and wind speed. 
The power pulse depth, α, depends additionally on turbine 
inertia, type and control of the generator.  

5.2.1. Distribution of the fluctuation 

The first step is the computation of the distribution of the 
pulse. If the pulse is symmetrical about its mass center, its 
PDF is the inverse function divided by half the pulse energy. 
Then, the CDF can be computed, taking into account the 
symmetry of the pulse and taking the positive branch (t >0) 
of the inverse function of fpulse(t). 

pulse pulse

-1
pulse

CDF ( ) Pr[ f ( )< ] = 

=Pr[ >f ( )|0< <T/2]

y t y

t y t

=
 (202) 

Assuming 0< <T/2, 0t y α≤ ≤  and =0μ  
(symmetric pulse centered in time origin), the general formula 
is:  

 
1
pulse| 0

pulse
f ( )

CDF ( )=1 -
/2

y
y

T
μ

−
=  (203) 

From (203), the distributions of fluctuations of a single 
turbine due to triangular, rectangular and Gaussian pulses are: 

pulse
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2 2
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where U states for the Heaviside unit step function and δ for 
the delta of Dirac. 

The characteristic function ( )wφ  of this distribution is the 
complex conjugate of the continuous Fourier transform of  

pulsePDF ( )y : 

 *
pulse

0
( ) PDF ( )

j w y
turbine w e y dy

α
φ −= ∫  (207) 

where the asterisk denotes complex conjugation and j denotes 
the imaginary unit. Since the tangent of the pulse is horizontal 
at some points (at least at the maximums and minimums), 

pulse( )PDF y  contains essential singularities. Therefore, the 
Fourier transform of pulse( )PDF y  should be computed 
analytically. 
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The pulsating power of a wind farm with N turbines is the 
sum of individual power pulses, supposed identically 
distributed independent random events. The corresponding 
characteristic function is ( )N

turbine wφ  = ( )wind farm wφ . Thus, 
the PDF of the wind farm deviation can be computed as 
inverse Fourier transform of the complex conjugate of  

( )wind farm wφ : (208) 

*1
( ) [ ( )]

2 
j w y N

Pwind farm turbinePDF y e w dwφ
π

+∞

Δ −∞
= ∫   

The characteristic function of a wind farm with rectangular 
power dips shown at Fig. 59 corresponds to a binomial 
distribution. This makes sense since the number of 
simultaneous pulses in a wind farm is the probability of the 
number of successes in a sequence of N independent “pulse” / 
“no pulse” experiments with success probability p = τ / T 
(the relative width of the pulse). Therefore, the instantaneous 
fluctuation in the wind farm follows a Binomial distribution: 

( ) ( )
/ /

( ) 1
/

y N y

Pwind farm

N
PDF y

T Ty

α ατ τ
α

−

Δ

⎛ ⎞⎟⎜ ⎟⎜= −⎟⎜ ⎟⎟⎜⎝ ⎠
,  (209) 

1 /( ) ( / , / 1)Pwind farm TCDF y I N y yτ α αΔ −= − +,  (210) 

where 1 /TI τ−  is the regularized incomplete beta function. 
Fig. 60 shows the CDF of the deviation of power output at 

a wind farm due to tower shadow effect. Pulse sum (p.u.) is 
the ratio of the experienced power deviation relative to the 
maximum deviation which occurs when all tower shadows 
happen simultaneously. As the number of turbines in the wind 
farm increases, the relative deviation is more stable and it 
tends to its average, /y y N pα α α= = .  
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Fig. 60:  CDF of pulses at a wind farms of 1, 3, 5, 10, 20 and 50 turbines 
(starting from upper part at zero fluctuation). The parameters of the pulses 
correspond to Fig. 59 and rectangular shape (p = τ / T = 0,125). The discrete 
CDF  (210) has been evaluated at midpoints to account that real pulses are 
continuous and derivable. 

The standard deviation of the wind farm power output y is: 

/ (1 ) 1y y N p p N
T Tα
τ τ

σ α σ α α= = − = −  (211) 

which scales with N  instead of being proportional to the 
number of turbines N. The probability of simultaneous tower 
shadows events at most turbines is very low, as can be seen in 
the figure, pulseCDF (3 ) 1y ≈ . The probability of 
exceeding a certain amount of power dip is the 
complementary CDF: 

Pr[ > ]=1-CDF ( ) 1,wind Pwind
farm farm

T

y y
P y y I Nτ α αΔ

⎛ ⎞⎟⎜Δ = + − ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 (212) 

The average power loss due to tower shadow is y  (there 
are exactly N pulses in a period T). 

 
/2
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/2 pu lse

f ( )
T

T

N N
y t dt

T T
α τ

+

−
= =∫  (213) 

Since turbine rotor angles are independent random 
variables, the variance of wind farm power output due to 
turbine blade position, 2

yσ , can be computed as: (214) 
2

/2 /2
2 2

single single
/2 /2pu lse pu lse

1 1
f ( ) f ( )

T T
y

T T
N t dt t dt

T T
σ

+ +

− −

⎡ ⎤⎛ ⎞⎟⎢ ⎥⎜ ⎟= − ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫  
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Fig. 61:  Probability of farm output exceeding the normalized deviation y/N 
α for farms with of 1, 3, 5, 10, 20 and 50 turbines as in the previous figure. 

A) Numerical computation of tower shadow effect. 
In most cases, integrals (207) and (208) cannot be 

computed analytically. In such cases, the convolution can be 
computed numerically through discrete FFT or numerical 
integration. 

Since pulsePDF ( )x  contains essential singularities 
whichever shape it has, the spectrum does not vanish at high 
frequencies and the numerical Fourier transform is not 
accurate (only analytical transform is suitable). The 
computation of N-fold convolution through repetitive direct 
numerical integration also introduces significant errors at 
essential discontinuities, aggravated by the iterative process 
of calculus.  

Thus, usual numerical methods to compute wind farm( )PDF y  
such as FFT and numerical integration introduce significant 
errors. If the number of turbines is big, the distribution of 
power output can be approximated by a normal distribution of 
average power loss (213) and variance (214). 

If the number of turbines is small, the second order 
approximation can be not enough precise. The following 
approach is based in the discretization of the pulse silhouette 
into segments and it is valid even for small wind farms. A 
rectangular pulse can be decomposed into two segments (up 
and down). The number of turbines in the “down” state 
follows a binomial distribution (the multinomial distribution 
for two options). Therefore, the farm fluctuation is the pulse 
height α times the number of turbines experiencing tower 
shadow effect. 

If the pulse is approximated by more piecewise segments, 
the combinations of segments obey a multinomial distribution 
instead a binomial distribution. 

For instance, the turbine pulse of Fig. 62 is approximated 
by tree segments (notice that for convenience, the shape has 
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been inverted vertically to operate with usual pulses instead 
of power dips). Therefore, the wind farm CDF of the power 
deviation can be computed summing probabilities 
corresponding to the combinations of segments which 
generate an output bellow level y.  

1 1

1 2

1 2 1 2

1 2

1 2 31 2 1 2
0 0

( )

, ,

Pwind farm multinomial
y i yy

y y
i i n i i

i i

CDF y

n a a ai i n i i

Δ
−

− −

= =

=

⎛ ⎞⎟⎜= ⎟⎜ − − ⎟⎜⎝ ⎠∑ ∑
 (215) 

where the multinomial coefficient is: 

 ( )1 2 1 2
1 2 1 2

!
, , ! ! ( )!

n n
i i n i i i i n i i

=− − − −
 (216) 
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Fig. 62:  Discretization of a pulse dip into tree segments taking the mass 
center of each segment. 

 
Fig. 63:  Discrete counterpart of the continuous pulse dip of Fig. 62. Notice 
that the energy power loss (area beneath the pulse) of both pulses are the 
same.  

The discretization of a continuous pulse has the following 
advantages: 
• The computation of  pulse( )PDF y  is avoided. Moreover, if 

pulse( )PDF y  is needed, it can be computed as the 
probability mass function ( )pulsePMF y  of the segmented 
pulse. 

• Since a wind farm usually has more than 10 turbines, the 
approximation of the continuous pulse shape with its 
discrete counterpart does not introduce significant error. 
Furthermore, the discrete ( )wind farmCDF y  can be 
interpolated to account that real pulses are, actually, 
continuous and derivable, as in Fig. 60 or Fig. 61. 

• The sums in (215) can be computed efficiently and the 
CDF of the wind farm does neither degenerate nor loss 
accuracy for wind farms with many turbines. In addition, 
this algorithm is numerically stable since the essential 
singularities are avoided. 

• For wind farms with many turbines, the pulse shape can be 
approximated to a rectangle with relatively small error in 

( )wind farmCDF y  because the shape of the turbine pulses is 
blurred in the wind farm output (both distributions 
converge for wind farms with increasing number of 
turbines provided the two pulses has the same energy loss). 
Therefore, a reduced number of segments are enough to 
characterize the pulse shape. 

• A similar method can be used to compute the distribution 
of the power gradient. This can be helpful to assess the 
variability of power output due to blade position instead of 
the power deviation. 

5.2.2. Rate of tower shadow events 

The alignments of blades with their tower axis are [tower 
shadow] events whose time occurrence can be modeled as a 
stochastic process. The number of tower shadow events in the 
period T is the number of turbines in a wind farm, N. 

The event rate or event  intensity λ(t)  is the number of 
events per unit time and its average can be computed as λ0 = 
〈λ(t)〉  = N/ T since in one period exactly one blade of all 
turbines of the wind farm passes in front of its tower 
(provided all turbines were spinning approximately at the 
same speed). The event rate λ0 can be thought of as the 
probability that a blade alignment occurs in a specified 
interval.  

A) Prior probability distributions 
Since there is no explicit time origin and there are no 

appreciable synchronizing forces, the event can occur at any 
instant with the same likelihood and λ0 is constant. This 
implies that the time between consecutive events (called 
interarrival times) are independent random variables. The 
only interarrival time distribution with constant hazard rate is 
the exponential. The waiting time Δt until the first 
occurrence is a continuous random variable with an 
exponential distribution (with parameter λ0). This probability 
distribution may be deduced from the fact that 

Pr( ) Pr( 0 (0, ])interarrivial eventst t N in interval tΔ > = = =  

0

0( )1 ( )t
Exponentiale CDF tλ

λ
−= = −  (217) 

For exponentially distributed events, the Poisson 
distribution is the probability distribution of the number of 
events that would occur within a preset time t. 

( )0

0

0
( )

Pr( (0, ])

( )
!

events

kt

Poisson t

N k in interval t

e t
PDF k

k

λ

λ
λ−

= =

= =
 (218) 

The Erlang distribution describes the waiting time until k 
tower shadow events have occurred when inter-event time is 
distributed exponentially (the Erlang distribution is the 
distribution of the sum of k independent identically 
distributed random variables each having an exponential 
scattering). The probability density function of the Erlang 
random variable is: 

0

0
( , )

Pr( | )

( , )
( )

( 1)!

waiting events

Erlang k

t t N k

k t
CDF t

kλ
γ λ

Δ ≤ = =

= =
−

 (219) 

where γ(·) is the lower incomplete gamma function. The 
probability density is: 

0

0

1
0

( , )( )
( 1)!

k k t
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t e

PDF t
k

λ

λ
λ − −

=
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 (220) 

B) Including periodicity in probability distributions 
During normal operation, turbine speed fluctuates slightly. 

Multi-megawatt turbines spin at Ωrotor = 8~20 rpm, implying 
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blade periods T = 1~2,5 s. During a short time interval, the 
turbine speed can be considered constant and the time interval 
between two consecutive tower shadow events of the same 
turbine is (approximately) T. If all turbines of a wind farm 
rotate at the same approximate speed Ωrotor , each turbine 
must experience one and only one tower shadow event in the 
interval (0, T] with uniform probability.  

The implications of periodicity can be included in the 
probability of the number of tower shadow events in a time 
interval tΔ   using Bayes’ theorem, provided 0 t T≤ Δ <  
and 0 k N≤ ≤ : 

0 0

0

( ) ( ( ))

( )

= (0, ] = (0, ] | = (0, ]

Pr( (0, ] | (0, ])

Pr( )·Pr( )

Pr( (0, ])

( )· ( )

( )

events events events

events events

events

Poisson t Poisson T t

Poisson T

N k in t N N in T N k in t

N k in t N N in T

N N in T

PDF k PDF N k

PDF N

λ λ

λ

−

= = =

=
=

−
= =

  

1
k N kN t t

k T T

−⎛ ⎞⎛ ⎞ ⎛ ⎞⎟⎜ ⎟ ⎟⎜ ⎜⎟⎜= ⎟ − ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (221) 

The PDF of the number of tower shadow events in an 
interval t is a binomial distribution of N trials, k events and 
event probability p = t/T. (This equation is equivalent to 
(209), where the pulse width τ has been replaced by the 
interval time t, and the depth ratio of the power dip at the 
farm y/α has been replaced by the number of pulses, k).  

The probability density of the waiting time tk  until the kth 
occurrence can be computed using Bayes’ theorem, provided 
0 t T< <  and 0 k N< < : 
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0 0( , ) ( , )

( )· | = (0, ]
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( )· ( )
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− − −⎛ ⎞⎛ ⎞ ⎛ ⎞−− ⎟⎜ ⎟ ⎟⎜ ⎜⎟⎜= ⎟ − ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟− ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (222) 

The PDF of the waiting time t  resembles the binomial 
distribution of N-2  trials, k-1 successes and success 
probability p = t/T, multiplied by a normalizing factor.  

C) Evenly distributed tower shadow events 
The interarrival time between pulses k and k+1 will be 

denoted Δt(k) = Δtk,k+1. The interarrival times are not 
constant, but it has a mean value 〈Δt(k)〉 = Δt 0 = T/N.   

The expected number of tower shadow occurrences during 
the time unit is the inverse of the mean interarrival time, 
λ0 = 1/Δt 0 = N /T  and λ0 is also the average frequency of 
occurrence, measured in hertz, and the average blade rate of 
the wind farm. At an instant t  between pulses k and k+1, the 
instantaneous frequency λ(t) of tower shadow events at the 
wind farm output can be computed as λ(t) = 1/Δtk,k+1. In 
Poisson process theory [200], the event rate λ(t) is the 
process parameter, whereas the interarrival time Δt(k) is an 

outcome of the process. When the number of wind turbines is 
big (N > Τ/τ or λ0 τ > 1), the density of blade events λ(t) is 
more significant than the interarrival time Δtk,k+1. 

At an instant between pulses k and k+1, the instantaneous 
angular frequency w1 of tower shadow at wind farm output 
can be computed as w1(t) = 2 π λ(t) = 2 π / Δtk,k+1. The 
angular frequency will oscillate around its average value 
〈w1(t)〉 = 2π λ0 = 2πN /T. 

The spectrum of a time interval will show a somewhat 
wide peak, revealing that tower shadow frequency is not 
definite. Thus, the spectrum at the wind farm output will 
resemble a frequency modulated signal of carrier frequency 
f = λ0. 

If two blades are crossing the tower with a time delay λ 
less than the pulse width τ, the averaged frequency will be 
〈w1(t)〉 = 2π (N-1) /T. Tower shadow events are considered 
approximately simultaneous if Δtk,k+1 < τ and it can happen 
several times during a period T. If this phenomenon occur 
several times in a period T, the averaged frequency will be 
〈w1(t)〉 = 2π (N-k)/T, where k is the number of approximately 
simultaneous tower shadows in the period  The probability of 
λ(t) < 1/τ can be computed with the interarrival distribution 
(217). In a wind farm with many turbines, k can likely have 
appreciable values.  

0 0.2 0.4 0.6 0.8 1
Time HsL

0.94

0.96

0.98

1

enibruT
rewop
Hp
.u
.L

0 0.2 0.4 0.6 0.8 1
Time HsL

0.94

0.96

0.98

1

enibruT
rewop
Hp
.u
.L

 
Fig. 64:  Power output of 5 turbines with blade position uniformly 
distributed. The parameters of the pulses correspond to Fig. 59 and Gaussian 
shape. 
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Fig. 65:  Overall tower shadow effect at the wind farm output as the sum of 
individual turbine power of Fig. 64. 
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Fig. 66:  Individual tower shadow pulses of Fig. 64 and their sum (notice the 
diminution of fluctuation due to the smoothness of Gaussian pulses). 
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Fig. 67:  Individual tower shadow pulses of Fig. 64 with triangular shape and 
their sum (notice that the fluctuation of the pulse sum increases with the 
sharpness of individual fluctuations shape). 
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Fig. 68:  Individual tower shadow pulses of Fig. 64 with rectangular shape 
and their sum (notice that rectangular pulse shape is the contour that 
produces the most variable output at the wind farm). 

D) Calculus of the instantaneous frequency harmonics 
with evenly distributed pulses. 

The continuous Fourier transform of a single pulse centred 
in time origin and symmetric is: 

{ } max

max

max

2
single pulse pulse pulse

pulse0

( ) f ( ) f ( )

2 f ( ) cos(2 )

t j f t

t
t

even symmetry

F f t t e dt

t f t dt

π

π

−

−
= = =

=

∫

∫

F
 (223) 

The continuous transforms of the rectangular, triangular 
and Gaussian shapes are: 
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1 pulse 0
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fF f e f t dt e
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The frequency spectrum of the tower shadow can be 
computed considering the sum of the wind farm as the 
convolution of one pulse with a train of pulses (comb 
function) at the interarrival time λ  rate. The convolution is 
equivalent to multiplication of the Fourier transforms. The 
transform of the tower shadow pulses at constant rate λ  is 
another train of pulses at frequencies mf mλ=  and 
amplitude pulse( )F mλ λ . Therefore, the coefficients mc  of 
the new Fourier series are 1 pulse2 ( )mc F mλ λ=  [201].  

( )
1

( ) cos 2farm farm m
m

P t P c m tπ λ
∞
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^  

Where : 
farmP = mean power output. It includes the average power 
loss due to wind shear and tower shadow (DC term  
component of the Fourier series of tower shadow 
undulation, 0 /2c = α τ λ ). 

λ  = ( )tλ  = instantaneous blade rate of the wind farm. The 
fluctuation of ( )tλ  can be modelled as a modulation of the 
tower shadow oscillation. 

single pulse( )F mλ  = continuous Fourier transform of a single, 
centred pulse at frequency ( ) ( )mf t m tλ= .  

pulse2 ( )mc F mλ λ=  = coefficient m  of the Fourier series or 
the fluctuation at harmonic m of the blade rate. The tower 
shadow fluctuation usually decrease with blade rate λ , as 
can be derived from (228). 
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 (228) 

0c = twice the average power loss due to tower shadow 
events: 

( )

0 single pulse single
0 pu lse

Lim ( ) 2 f ( ) =

2 = 2

f
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, ( )i corrP f
JG

 = turbine power fluctuation at frequency f, corre-
lated with the rest of turbines in the wind farm. Its modu-
lus is the correlated component amplitude and its argu-
ment is the phase difference referred to the time origin. 

, ( )i uncorrP f
JG

= turbine power fluctuation at frequency f, 
uncorrelated with the rest of turbines in the wind farm. 
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( ),0, ( )i uncorrN N P f
JG

^  is a complex normal random 
number with zero mean and standard deviation 

, ( )i uncorrN P f
JG

 (i.e., the modulus follows a Rayleigh 
distribution and the argument is uniformly distributed in [-
π, +π]). 

The tower shadow oscillation frequency 〈fblade’(t)〉 scale 
linearly with the number of turbines of a wind farm, but its 
amplitude do not scale in factors N  or N . Rectangular 
power pulses have Fourier coefficients that generally do not 
increase with the number of turbines. Triangular power pulses 
have Fourier coefficients that generally decrease with the 
number of turbines since 〈 ( )tλ 〉 = N/ T. For some values of 
λ , the effect of wind shear and tower shadow is minimum 
(for instance, pulse( ( )) 0nF w t =  when 2λ τ= -rectangular 
pulses- or λ τ=  -triangular and rectangular pulses-). 

Note that farmP , λ  and ( )P fi
JG

 are parameters of a 
stochastic process and their values varies according to the 
system operation. The explicit dependence of time has been 
dropped to simplify notation. Note also that N is the number 
of turbines functioning, which can be different of the number 
of installed turbines in the wind farm. 

One important result of this section is that the effect of the 
tower shadows at a wind farm can be eventually compensated 
if the turbines could be controlled to distribute their rotor 
angle evenly. However this is not practical because this 
control would impose the same wind speed at all turbines.  

5.2.3. Modulation of the pulse density at 
the wind farm with randomly distributed 
pulses. 

When N > Τ/τ  (or equivalently λ0 τ > 1), the effects due 
to the sharp shape of the pulse diminish and the main contri-
bution to wind farm fluctuations is due to the possible con-
centration of tower shadow events in a part of the period Τ.  

In a real wind farm, the pulse rate λ  is not constant in the 
period. Fundamental harmonic (m = 1) measures how much 
the pulses are concentrated in half period. The order 2 
harmonic (m = 2) measures if the tower shadow events 
occurs preferably every T/4 seconds. 

The event density at a given time t  is λ(t) (this will be 
used in the next subsection for computing the modulation of 
power output). 
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Fig. 69:  Individual tower shadow pulses with Gaussian shape and random 
blade position corresponding to a wind farm with N = 20 turbines spinning at 
Ω = 20 rpm (1 blade/s). 

A) Estimation of coefficients of Fourier series of random 
pulses 

Blade positions inside a turbine can be understand as ran-
dom. However, each 1/3 rotor revolution, a blade crosses the 
tower. The rate of tower shadow pulses is the number of 
blades divided by the mean rotor speed, / rotorbladesλ= Ω . 
The instantaneous power due to tower shadow and wind shear 
is periodic with  period 1/T λ= . In general, the pulse is not 
centred at the time origin and the Fourier coefficients will be 
complex numbers except the DC component (term of zero 
order). 

If turbine speeds are equal, power is cyclic with period T 
and there are N tower shadow events in each cycle. There-
fore, power can be decomposed in its Fourier series of 
harmonics of fundamental angular frequency 1/bladef T= . 
As power is a stochastic magnitude, the coefficients of 
Fourier series are stochastic complex values (coefficients are 
not real since instantaneous power is not symmetric with 
respect to time origin). 

 2
( ) Re bladej f m t

farm m
m

P t c e
π

∞

=−∞

⎡ ⎤= ⎢ ⎥⎣ ⎦∑
JJG

 (230) 

The distribution of the complex Fourier coefficients mc
JJG

, 
0m ≠ , can be estimated taken into account that: 

• Fourier transform is linear and, thus, the transform of wind 
farm output is the sum of the transform of the individual 
turbines:  

 1 pulses 1 pulses
turbine turbine
f ( ) f ( )N N

i i i i
i i
t tμ μ= =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪∑ − =∑ −⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
F F  (231) 

• The Fourier coefficient for a single turbine whose tower 
shadow event coincides with time origin can be obtained 
from the continuous Fourier transform of a single pulse, 
centred in time origin, ( )single pu lseF w . 

( ) ( )single singlesingle turbine 
pu lse pu lsewith pulses at

0, ,2 ,3 ...

2 2 2
2m

t T T T

m m
c F F

T T T
π π

λ
=

= =
JJG  (232) 

• The tower shadow can occur at turbine i at any time 
iμ with equal probability. Hence iμ  is uniformly distrib-

uted in the period [0,T]. 
• The circular time shift property of Fourier transform 

implies that { } { }pulses pulsesf ( ) f ( )ijw
it e tμμ −− =F F , 

where pulsesf ( )t  is the pulse train centered in the time 
origin, pulsesf ( )it μ−  is the pulse train displaced iμ  time 
and w  is the angular frequency.  

 pulses pulse train centered
in time originturbine

f ( ) f ( )ijw
i

i
t e tμμ −

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪− =⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭
F F  (233) 

 pulses pulse train centered
 in time originturbine

f ( ) f ( )i
i
t tμ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⇒ − =⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭
F F  (234) 

• Therefore, the module of the Fourier transform of a 
pulse is independent of its position and can be easily 
calculated: 

 ( )single singleturbine pu lse

2 2
m

m
c F

T T
π

=
JJG  (235) 

• Since iμ  is uniformly distributed in [0,T], the argument of 
{ }pulsesf ( )it μ−F  is also uniformly distributed in  
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[-π,+π]. Thus, the angles 2 /i Tπμ  and 2 /k Tπμ  at which 
pulses i and k occur are independent random variables.  

 2
[0, ] [0, 2 ]i iUniform T Uniform

T
π

μ μ π⇒∼ ∼  (236) 

• If 0m ≠  and m ∈ ` , 2 /ij m T
e

π μ  is a phasor of unity 
modulus and random argument. For the usual number of 
turbines in a wind farm ( 4N > ), the sum of these 
phasors, 2 /ij m T

e
π μ∑ , is approximately a complex normal 

random variable with zero mean and standard deviation 
/2N  (see Fig. 57 and  

• Table II). 

 
2

1

(0, / 2) 0,i
mN j

T

i

e N N m m
π

μ+

=

≠ ∈∑ ∼ ^ `  (237) 

• If 0m ≠ , mc
JJG

is the sum of N phasors of random 
argument and fixed module. 

 ( )
2

single
pu lse 1

2 2 i
N m

j
T

m
i

m
c F e

T T

π
μπ +

=
= − ∑JJG  (238) 

• Summarizing, the complex Fourier coefficients mc
JJG

 are, 
approximately, complex normal random variables with 
zero mean and standard deviation cmσG . 

 (0, )m cmc N σG
JJG ∼ ^  (239) 

 single
pu lse

2 2
0cm

N m
F m

T T

π
σ

⎛ ⎞⎟⎜= ⎟ ∀ ≠⎜ ⎟⎜ ⎟⎝ ⎠
G  (240) 

The argument of mc
JJG

 is uniformly distributed in [-π,+π] 
and the modulus | mc

JJG
| has a Rayleigh distribution with 

parameter cmσG . 
The zero order coefficient 0c

JG
 or 0c  is twice the DC 

component of the signal (i.e., twice the average wind farm 
power). 

 0 2 farmc P=  (241) 

a) Product of complex coefficients of Fourier 
series. 

The covariance of two complex Fourier coefficients mc
JJG

 
and nc

JJG
 is:  (242) 
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The case 0m =  or 0n =  is the multiplication of the DC 
component of the signal, which is a real number. Mean power 
during a blade period T and tower shadow can be marginally 
considered low correlated and almost statistically independent 
given some operation conditions. Therefore, the covariance of 
a phasor and the zero order Fourier component is null: 
 0[ , ] 0 ( )mCov c c independent random variables=

JJG  (243) 

Notwithstanding this fact, the product of any Fourier 
Coefficient by a constant such as 0c  has non-null variance. 
 

0 0

2
0 0[ ] [ ]m m

c
Var c c c Var c

σ
≈
�

JJG JJG  (244) 

If n m≠ , the covariance is zero because *·m nc c
JJG JJG  has a 

random argument uniformly distributed (circular symmetry) 
[202]. 
 [ , ]m nCov c c =

JJG JJG
0 or 0 0m n m or n≠ = =  (245) 

The only non-null covariance case is 0n m= ≠  because 
*·m mc c

JJG JJG 2
mc=
JJG

 and the product is a non-negative real 
random variable and its average is non-zero and positive. It is 
also special because mc

JJG  and itself is fully correlated. 
The pseudo-covariance can be also computed (it can be 

used to derive the flicker contribution of turbine tower 
shadows).  (246) 
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Except if 0m = , 2 /ij m T
e

π μ  is a phasor of unity modulus 
and random argument since m ∈ ` . Therefore, the pseudo-
covariance is always zero due to its circular symmetry 
 k[ , ] 0 ,m nCov c c m n= ∀ ∀

JJG JJG  (247) 

for any value (even for m n= ). 
The product of independent complex normal variables with 

zero mean is another random variable with circular symmetry 
but the modulus is not Rayleigh-distributed.  Therefore, the 
product of two independent complex normal random 
variables is not another normal. 

*

*

··

y/

0 0

1

Pr ·

CDF ( )=CDF ( ) CDF ( )=

= PDF (| |) PDF (| |) | | | |

1

m n n mm n

cn

m n

c c c cc c

Ray m Ray n m n
leigh leigh

c c c cm n m n

c c y

y y y

c c d c d c

y y
K n m

σ σ σ σ

∞

⎛ ⎞⎟⎜ ⎟≤ =⎜ ⎟⎜ ⎟⎜⎝ ⎠
= =

=

⎛ ⎞⎟⎜ ⎟⎜= − ∀ ≠⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∫ ∫
JJG

JJG JJG JJG JJGJJG JJG

G G G G

JJG JJG

JJG JJG JJG JJG  (248) 

where 1K  is the modified Bessel function of second kind and 
unity order. This distribution is similar to a Gamma with 
shape parameter between 1 (exponential case) and 2 
(Rayleigh case). Its PDF is:  

02 2
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y y
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y y
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 (249) 

where 0K  is the modified Bessel function of second kind and 
zero order. 

In conclusion, the product of Fourier coefficients 
(conjugated or not) of different order (n m≠ ) is a complex 
random variable with circular symmetry and modulus 
distributed as: 

02 2·m n n m
c cc c m nm n

y y
c c c c K

σ σσ σ

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠G GG G

JJG JJG JJG JJG ∼  (250) 

The average of the modulus of the product of the Fourier 
coefficients is computed by integration: 
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The second order centered moment of the modulus of the 
product of the Fourier coefficients is:  (252) 

( )2 2 2 2

0
· P DF ( ) 4

n mm n c c c cm n n mc c y y dy σ σ
∞

≠= =∫ JJG JJG G GJJG JJG  

In the convolution of Fourier coefficients, many of these 
complex variables must be summed and they can be replaced 
by complex normal variables with the same standard 
deviation (the second order approximation of the random 
variables). According to (155) and (252), the second order 
statistical approximation of the product ·m nc c

JJG JJG  or *·m nc c
JJG JJG  is 

a complex normal with the same average than its projection 
(zero) and variance equal to the second order centered 
moment divided by two:  (253) 

( )*
, 0, 0· · 0, 2m n m n c cm napprox

n m n mc c c c N σ σ ≠ ≠ ≠G GJJG JJG JJG JJG∼ ∼ ^   

The product of a harmonic coefficient and the zero order 
term, which is a constant, has the complex normal 
distribution: 

 ( )0 00,m cmc c N c σG
JJG ∼ ^  (254) 

The case where 0n m= ≠  is special because 
* 2·m m mc c c=

JJG JJG JJG  and the product is a non-negative real 
random variable (no longer circular symmetry). It is also 
special because mc

JJG  and itself is fully correlated and the 
conditions used in to derive the CDF of the product does not 
hold for the product of Fourier coefficients of the same order. 
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which corresponds to an exponential random variable with 
rate parameter λ  and mean 1 22 mλ σ− = . Thus, 2

mc
JJG

 is an 
exponential random variable: 

( )
* 2

2 0· 2m m m cm
mc c c Exponential σ ≠= G

JJG JJG JJG
∼  (256) 

The average of *·m mc c
JJG JJG  is not null: 

* 2
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 (257) 

Therefore, the variance of mc
JJG

 is: 
*

2[ ] [ , ] · 2 0m m m m m cm
Var c Cov c c c c mσ= = = ≠G

JJG JJG JJG JJG JJG
 (258) 

Summarizing, the covariance between Fourier coefficients 
are: 

[ , ]m nCov c c =
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The second order centered moment of the product of the 
Fourier coefficients of the same order is: 

( )2
4 4 4

20
PDF ( ) 8

m
m cmExponentialc y y dyσ σ

∞
= =∫ GJJG  (260) 

and its variance is: 
22 4 2 4[ ] 4m m m cmVar c c c σ= − = GJJG JJG JJG  (261) 

The product 2
mc
JJG

 is a real number distributed 
exponentially. Even if exponential distribution is significantly 
different from a real normal distribution, the second order 
approximation can be acceptable in sums of a high number of 
random variables. The second order statistical approximation 
of 2

mc
JJG

 is:  (262) 
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approx

mc Exponential Nσ σ σ ≠G G G
JJG

∼ ∼  

According to (155) and (260), the second order statistical 
approximation of the phasor product 2

mc
JJG  is a complex 

normal with zero average  and variance: 

 ( )2 2 00, 2m cmapprox
mc N σ ≠GJJG ∼ ^  (263) 

B) Experimental variance of mean power in interval T 
It is convenient to define 0c  as twice the power for one 

period given some operational conditions. Most standards 
assume that the operation conditions for the turbine remain 
roughly the same during Tint = 10 minutes. For usual 
distances inside a wind farm, uncorrelated fluctuations 
predominate for smaller timescales than  Tint, whereas power 
variations with longer characteristic times are mostly 
correlated (see p. 79 of [44]). Since there are exactly N tower 
shadow events in each cycle, the tower shadow power loss 
per cycle is constant and 0c  do not vary with tower shadow 
distribution. 

If operational conditions of a turbine during 10 minutes 
remain constant approximately, the variance of mean power 
during each interval 

0

2
cσ /4 is: 
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The variance 
0

2
cσ can be estimated as the sample variance 

0
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where ( )turbP k  is the average power of interval k of the 10 
minute interval (600 seconds or 600/T periods).  

Alternatively, the variance of the coefficient is the energy 
in the frequency range 1/600 Hz to 1/2T Hz. If the 
periodogram of the real power 2( )PfarmS f  is available 
(averaged power spectrum density or PSD), 

0

2
cσ /4 is: 

 0

2 1
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4 2
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σ
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The zero-order phasor can be understood as a phasor with 
random phase (but it approximately does not vary during the 
interval T) and modulus with absolute second moment 

0

2
, mod' 2r cM σ= . In fact, the zero-order phasor correspond 

to a stochastic process with frequencies between the range 
1/600 Hz to 1/2T Hz. Taking into account that these 
frequencies are very low, the dynamic characteristic  
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/farmP v∂ ∂  can be used to estimate the variance of power 
from the spectrum of wind speed v . 

C) Root Mean Square (RMS) value of the power 
fluctuations due to tower shadow and wind shear at the 
wind farm output 

The Root Mean Square (RMS) value of the power 
fluctuations, farmRMS , is a figure that characterizes the 
overall oscillation of a the wind farm output due to tower 
shadow and wind shear. It is the standard deviation of the 
sum of power pulses or the root of the squared sum of the 
modulus of Fourier coefficients. The calculus of farmRMS  
from Fourier coefficients can be derived using Parseval’s 
Theorem. 
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The RMS value of fluctuations can be also equivalently 
derived for any single pulse shape using the following 
relationship: 
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 (269) 

Mean value of squared farmRMS  for rectangular, 
triangular and Gaussian shape of pulses as defined in (194) to 
(201) is: 

( )
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2 1Pfarm
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RMS N k
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α τ
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 (270) 

where the constant k  depends on the pulse shape 
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The distribution of 2
farmRMS  can be derived from the 

distribution of wind farm power output. 

2 ( )RMS PfarmCDF xΔ = ( / )Pwind farmCDF x N Tα τΔ +  (272) 

where ( )Pwind farmCDF xΔ  has been computed for rectangular 
and discretized pulses in (210) and (215), respectively. Recall 
that the standard deviation of farm power has been calculated 
also for rectangular pulses in (211) and all results coincide. 

In farms with a many turbines, the distribution of farm  
output y due to tower shadow converges asymptotically to a 
normal distribution with mean /y N Tα τ=  and variance 

22 2( ) PfarmVar y y y RMSΔ= − = . Thus, the 
modulus of the fluctuation, PfarmRMSΔ , is distributed as a 
Rayleigh random variable with scale parameter equal to 
standard deviation of the underlying cyclic stochastic process 
[203]. 

( )2
Pfarm Pfarm

N
Lim RMS Rayleigh RMSΔ Δ
→∞

→  (273) 

The average of farmRMS  is a bit smaller than the squared 
root of the 2

farmRMS  mean since quadratic averages weigh 
up larger values.  (274) 
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π

Δ Δ Δ≈ <  

Mean farmRMS  for rectangular, triangular and Gaussian 
pulses is shown bellow.  
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T

α τ π
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Since usually 1 / 6 10T τ ≈� ∼ , the fluctuation is also 
proportional to the square root of the relative width of the 
pulse /Tτ , approximately. 

2Pfarm
approx

k
RMS N

T
τ π

αΔ �  (276) 

Notice that PfarmRMSΔ  is proportional to the pulse power 
dip amplitude α  and to the square root of the number of 
turbines N  and the relative width of the pulse, /Tτ . 

D) Distribution of the gradient of power (time 
derivative of power) due to tower shadow effect 

The derivative of farm power is a measure of the variability 
of farm output with time. Whereas farmRMS  only account 
the deviation from the average of the power output, the 
distribution of time gradient of power /farmdP dt  measures 
how quickly are the oscillations due to the position of the 
turbine blades.  

The distribution of the gradient of power (time derivative 
of power) can be computed using properties of Fourier 
transforms in a similar fashion to the previous section.  
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Using the results form (240) and (265), the sum is: 
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Notice that square pulses presents infinite derivative at 
flanks and its quadratic average is infinite (real pulse are 
continuous functions). For triangular and Gaussian pulses, the 
RMS value of the time derivative is: 

2 2
·

·2

farm

N
triangular shapedP T

dt N
gaussian shape

T

α
τ
π

α
τ

⎧⎪⎪⎪⎪⎪= ⎨⎪⎪⎪⎪⎪⎩

 (280) 

The RMS value of the derivative of farm power is 
proportional to turbine pulse height α and to the square root 
of the number of turbines N . Notice that the time 
derivative of farm power is inversely proportional to square 
root of the product of turbine time constants. If the turbine 
pulse is symmetric respect its peak, as all the pulses presented 
in this work, the distribution of power gradient is also 
symmetric respect to zero level. 
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5.3. Contribution of periodic 
components to Flicker  

The fluctuations in voltage are strongly influenced by the 
external grid and they are several orders of magnitude smaller 
than the power fluctuations. Due to these difficulties, IEC 
61400-21 measures current and then voltage fluctuations are 
derived from the current, instead of using directly voltage 
measurements. 

5.3.1. Voltage variations of induced by 
power fluctuations 

The approach followed in this section is based in [204], 
where a simplified model of the wind farm is derived based 
on the fourth-pole equivalent representation of the electrical 
elements, the distributed layout of the turbines, the stochastic 
nature of power output and small-signal analysis of the grid. 
The model is based on the circuit of Fig. 70 and its 
parameters can be obtained from [160] (see annex A for 
further information). 
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Fig. 70:  Small signal model of the farm. 

The approximated voltage variation can be obtained from 
the small signal model: 

 
· ·fic fic

approx PCC

R P X Q
U

U
+

Δ �  (281) 

where P  and Q  are the real and reactive generated power of 
the wind farm at the point of common coupling with the grid 
(PCC), nU  is the nominal voltage at PCC, ficR  and ficX  are 
the equivalent resistance and reactance at PCC.  

A) General model 
According to (281), the voltage drop in the fictitious grid 

can be computed approximately as a linear combination of the 
real and reactive power spectra: 

 ( ) ( ) ( )fic fic

approx
PCC PCC

R X
U f P f Q f

U U
Δ +�  (282) 

During continuous operation, the variations of real power 
are bigger than the oscillations of reactive power. However, it 
is usual that ficR << ficX  at high voltage (see Table XV) and 
reactive power variations can influence notably ( )U fΔ . 

If the dynamics of reactive power are important, then the 
characterization of pulses (Section II of this chapter) should 
be based on the fictitious voltage drop ( )U fΔ  instead of real 
power ( )P f . Moreover, the modeling of stochastic 
fluctuations should be based on ( )UPSD fΔ  instead of 

( )PPSD f . Elsewhere the methodology remains the same. 
For convenience, a fictitious power fluctuation can be 

computed as: 

 fic

fic

X
S P Q

R
= +  (283) 

Thus, the voltage at the PPC of the farm can be expressed 
according to Fig. 70: 
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 (284) 

where 
m

c
JJG

 are the phasors of the almost periodic voltage 
fluctuations based on the fictitious power S instead of P.  
The voltage sensitivity coefficient respect the fictitious power 
is β . It can be expressed in terms of the apparent short-circuit 
power ,k ficS and the network impedance angle kψ . 

 k
2

,

cos( )fic

k ficPCC

R

SU

ψ
β = =  (285) 

B) Model for constant power factor 
At frequencies f <<fgrid, the dynamics of reactive power can 

be discarded. Thus, a quasistatic relationship between active 
and reactive power is sometimes accurate enough. 

Assuming that the voltage-current lag angle 
( ) arctan( ( ) / ( ))f Q f P fϕ =  at PCC is approximately 

constant under some operational conditions, then voltage 
deviations are proportional to power deviations: 

 
·tan( )fic fic

PCC
approx PCC

R X
U P U P

U
ϕ

β
+

Δ =�  (286) 

where β  is a sensitivity coefficient of voltage to power 
fluctuations. It can be expressed in terms of apparent short-
circuit power ,k ficS , its network impedance angle kψ  and 
voltage-current lag angle ϕ .  
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Thus, the voltage at the PPC of the farm can be expressed 
with random phasors, according to Fig. 70: 
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where 0PCC PCCU U U Pβ= +  is the average voltage 
for the given operational condition. In fact, (288) is the small 
signal model for voltage respect its mean value PCCU . The 
parameters PCCU  and β  are actually random variables 
which depend on nearby loads, generators and grid 
configuration. Their characteristics can be estimated from 
measurements or from power flow simulations and they can 
be considered constant during blade period T (around 1 s). 
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5.3.2. Standard IEC 61400-21 approach 
to flicker emission from wind farms 

Standard IEC 61400-21 [205]states flicker emission 
assuming flicker is inversely proportional to ,k ficS  and 
computing separate flicker contribution of continuous 
operation (mainly due to tower shadow and wind variability) 
and contribution of switching events (such as connection and 
disconnection of turbines and other components) [206, 207, 
208]. 

The flicker coefficient for continuous operation, ( )kc ψ , is 
the normalized short term flicker for 10 minutes measuring 
interval and , 1 . .k ficS p u=  in (287), i.e., sensitivity 
coefficient cos( ) sin( ) tan( )β ψ ψ ϕ= + . The flicker 
coefficient for continuous operation and annual average wind 
speed aυ , ( )k, ac ψ υ , is the averaged 99th percentile of 
( )kc ψ for and voltage. Nonetheless, for usual real network 

impedance values at PCC of a wind farm, β  range from 0.1 
to 0.005 for p.u. power values. 

Since the distribution of the Fourier coefficients has been 
derived, it is possible to compute the Flicker that a wind farm 
would produce in a fictitious grid as defined in IEC61400-21. 

A) Flickermeter functional blocks 
According to IEC 61000-4-15 [209], the flickermeter is 

divided into functional blocks (see Fig. 71). The first block is 
a normalizing voltage adaptor with proportional constant 
1/ PCCU . The output of the first block is a signal 
proportional to voltage and unity mean (i.e., per unit voltage 
respect its average). 
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∞

=

⎡ ⎤− ⎢ ⎥⎣ ⎦∑
JJG

�  (289) 

The more difficult blocks to compute in the frequency 
domain are the quadratic demodulator (block 2) and quadratic 
multiplier (block 4) since squaring in the time domain is 
equivalent to convolving in the frequency domain. The 
convolution in the frequency domain requires the summation 
of the product of Fourier coefficients. Taking into account the 
transforms of the sines and cosines of the Fourier series, the 
Fourier coefficients of the squared input at block 2 can be 
computed from the auto-convolution of the farm power 
output 

The Fourier coefficients of a squared voltage kd
JJG

 can be 
computed from the coefficients of the original signal mc

JJG
.  
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The odd order coefficients of the squared voltage are: 

*
2

( 1)/2 1

2 · ·
k

k k m k m m k m
m k m k

d c c c c cβ β
∞

− −
= + = +

⎛ ⎞⎟⎜ ⎟⎜ ⎟=− + +⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑

JJG JJG JJG JJJJG JJJJG JJG
 (291) 

   ( )k odd  
The even order coefficients of the squared voltage are: 
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The statistical distribution of phasors can be computed 
from results from previous chapters. As the stochastic sum 
includes infinite terms and distributions of different types, the 
Central Limit can be applied to substitute exact distributions 
with approximated normalized random variables (i.e., second 
order statistical approximation). Notice that the main 
contribution to kd

JJG
 is 2 kcβ

JJG
, which is a complex normal 

quantity of zero mean. The sum of components of kd
JJG

 can be 
neglected since 1dk

β σ G � . This is equivalent to the 
approximation: 

 ( )2 2 2

2

2

2

U U U U U U

U U U

− Δ = − Δ +Δ

− Δ

�

�
 (293) 

For usual network configurations, the fluctuating voltage 
deviation due to periodic components in wind power at PCC 
is PCCUΔ < 10-3 p.u. and therefore, 2

PCCUΔ < 10-6 p.u.  
The linear approximation (293) is implicit when standard 

IEC61400-21 states that flicker level is proportional to the 
short-circuit impedance at PCC, the high ratio , /k fic n turbS S  
recommended or the independent flicker contribution of 
continuous and switching operation.  

Using the properties of complex normal variables, the 
output of block 2 (quadratic demodulator) at harmonic k kd

JJG
 

for 0k ≠ will be approximately a normal random variable 
with zero mean and variance 2

dk
σ G : 

( )
2

00,
ndk dkorder approx

d N kσ ≠∀G
JJG

∼ ^  (294) 
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• k is even.  
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• 0k = . The DC component 0d  is a special case because it 
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Fig. 71:  Simplified block diagram of IEC Flickermeter according to IEC 61000-4-15 
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is not a phasor, it is a real number with nonzero mean. 
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2 ( 2 )m cm
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d Exponentialβ λ σ
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The finite sum of independent exponential variables of the 
same scale parameter 1

mλ −  is a gamma distribution. This is 
not the case because 1

mλ −  decreases with m (the spectrum 
vanishes for high frequencies). Since the number of 
independent random variables to be summed is infinite, the 
second order approximation is suitable. The average of 0d  is 

0d . 
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2 2 1m Sfarm
m
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Δ
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where 2
SfarmRMSΔ  is the average quadratic fluctuation of 

the wind farm fictitious power output, defined in (268), and 
cmσG is the standard deviation of mc

G
, defined in (240). 

The variance of 0d  is 2
0dσ , the sum of the variances of the 

independent exponential random variables: 

 2 4 4
0

0
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σ β σ
∞

=

= ∑ G  (299) 

Thus, the second order approximation of 0d  is a normal 
real variable with the same average and standard deviation: 

 ( )0 0 0
, dd N d σ∼  (300) 

The weighting filters of block 3, as named in IEC 61000-4-
15, is equivalent to the multiplication of Fourier coefficients 
by the filter transfer function at the harmonic frequency. The 
phase displacement introduced by a filter in a stochastic 
signal with circular symmetry does not alter its statistical 
properties since the phase of the signals is random [203]. 
Therefore, the variance is multiplied by the modulus of the 
transfer function, 3( )blockF w , squared at the corresponding 
frequency, 2

3( ) ( ) ( )PCC blockf t U w F w⎡ ⎤= ∗⎢ ⎥⎣ ⎦
-1F . 
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• 0,05 35T k T< < . 
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3 3
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π π

σ σ β σ= ≈G G G  (302) 

where 2
fk

σ G  is the variance of the Fourier coefficient k of the 
weighted voltage fluctuation (output of block 3) and 

3( )blockF w  is the weighting transfer function defined in [209] 
between 0,05 Hz and 35 Hz and zero elsewhere (ideal pass-
band sinc filter). Recall that the pass-band filter removes the 
DC component of the signal.  

The fourth block is another quadratic multiplier and its 
output can be computed with formulas (295) to (296), taking 
into account that now its input signal, g(t), is band limited. 
Using the properties of complex normal variables, the k  
Fourier coefficients of the output of the of block 4 (quadratic 
multiplier), kg

JJG
,will be approximated by normal random 

variable with zero mean and variance 2
dk

σ G  for 0k ≠ : 
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( )
2

00,
ndk gkorder approximation

g N kσ ≠GJJG ∼ ^  (304) 

where floor means rounded towards the smaller integer. 

• k is odd.  
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• k is even and 0k ≠ .  
Floor(35 )
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The DC component 0 2 ( )g g t=  is a special case 
because it is not a phasor, it is a real number. The average of 

0g  is 0g  and its variance is 2
0gσ . 
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After performing the squaring, a first order low-pass filter 
must be applied. Therefore, the output of block 4 can be 
computed as: 

( )
2

2 2
, 4

2
flick k blockgk

k
F

T
π

σ σ= G  (308) 

where 2
,flick kσ  is the variance of the instantaneous flicker 

coefficient k. 4( )blockF w  is the transfer function of the first 
order displacement filter.  

B) Stochastic characterization of instantaneous flicker 
Block 5 is a statistical classifier. Since the stochastic 

characteristics of the signals have been tracked along each 
block, the percentiles of the instantaneous flicker can be 
computed from the variance of Fourier coefficients of 
instantaneous flicker and the mean and variance of DC 
component.  

The Fourier coefficients of the instantaneous flicker 
( )flick t  are the result of two stochastic sums of complex 

normal and non-normal distributions followed by weightings. 
The result of this process can be approximated by a normal. 

( )( ) ,flick flickflick t N μ σ∼  (309) 

where flickμ  is the average of the instantaneous flicker level 
and 2

,flick mσ  is the variance of the instantaneous flicker 
(output of quadratic demodulator). 

The complex coefficients kg
JJG

 have null mean except the 
zero order component, 0g . The average of the instantaneous 
flicker flickμ  is just half the zero order coefficient of g(t) 
since the block 4 does not alter DC value. 

2
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2flick fm
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The variance of the instantaneous flicker, 2
flickσ , is the 

sum of the variance of the mean flicker, 2
0

/4gσ , plus the 
variance due to the projection of the phasors in the real axis. 
According to (156), the variance due to the m phasor 
projection is half the sum of the second order central moment 
of the Fourier coefficient modulus divided by two, i.e. 

2
,flick mσ . 
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Round(35 )
2 2 2
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flick g flick m
m

σ σ σ
=

= + ∑  (311) 

Therefore, assuming normal distribution of the 
instantaneous flicker (309), the short-time flicker stP  is: 
 0, 5096 0, 6879st flick flickP μ σ= +  (312) 

Since the terms multiplied by 4β  are negligible respect the 
term multiplied by 24β  in (295) to (296), the blocks 1 to 3 of 
the flickermeter behaves almost linearly. The mean flickμ and 
the standard deviation flickσ of the instantaneous flicker are 
approximately proportional to 2 2 /N Tα β . Thus, stP  is 
approximately proportional to /N T α β  and stP  can be 
estimated as:  

 1( , )st
N

P Coef T
T

α β τ=  (313) 

Or alternatively, it can be expressed in grid parameterers: 

1 k k( , ) cos( ) sin( ) tan( )st
k fict

N
P Coef T

S T

α
τ ψ ψ ϕ⎡ ⎤= +⎢ ⎥⎣ ⎦  

Where: 
• ( , )Coef T τ  is a coefficient that depends on the tower 
shadow shape, its characteristic width τ  and the blade period 
T . It is usually between 0,1 and 0,2. 
• / k fictSα  is the relative depth of  the tower shadow α  
compared to the short circuit ratio at PCC, k fictS . This factor 
is usually bellow 0, 03/N  for grid connected wind farms 
(according to typical tower shadow effect and usual grid 
codes). 
• /N T  is the wind farm blade frequency. The formula 
(313) has been derived with all the N  turbines spinning at 
the same speed, but it  can be extended substituting /N T  by 
the average number of blades that crosses a tower per second, 

λ . 
• k kcos( ) sin( ) tan( )ψ ψ ϕ+  is the functional dependence of 
flicker with impedance angle kψ  and voltage-current lag 
angle ϕ . This factor is usually bellow 0,5 for high voltage 
grids (see Table XV). 

Recall that for usual conditions, the flicker emission of 
continuous at PCC is far below 1 for grid connected wind 
farms. 

 0.004/ ( )stP N emission at PCC<  (314) 

At medium voltage and high voltage, the capacity of the 
grid to be perturbed is shared among generators and loads 
(IEC 1000-3-7 [210] asses this capacity). As tower shadow is 
a continuous process and it has been computed through the 
mean and variance of instantaneous flicker, the cuadratic 
summation law is more suitable than the cubic summation. 

The low flicker emission at PCC makes very difficult to 
relate measured flicker and the output of near wind farms. 
The authors of this article performed several test in various 
wind farms with a conventional flickermeter and the 
influence of nearby loads masked the influence of the farm. 

The flicker coefficient ( )kc ψ  defined in Standard IEC 
61400-21 is the flicker that the farm would emit if it is 
connected at a PCC with 1 p.u. short-circuit impedance and 
impedance angle ψ . Notice also if ( )kc ψ  is given for some 

kψ  and ϕ , the flicker for other operational conditions can be 
computed.  (315) 
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where / nSα  is the relative depth of  the tower shadow α  
compared to the nominal power of the turbine.  

The wind farm flicker coefficient ( )kwind farmc ψ  can be 
obtained from the flicker coefficient of a single turbine, 

( )kwind turbinec ψ : (316) 

( ) ( ) ( )k k k
1n turbine

wind wind wind
farm turbine turbinen farm

S
c N c c

S N
ψ ψ ψ= =  

IEC61400-21 also defines the flicker coefficient for 
continuous operation, ( )k, ac ψ υ , which is the 99% 
percentile of ( )kc ψ  and can be obtained also applying the 
1/ N  factor. 

In Table V, ( , )Coef T τ  has been adjusted with an even 
mesh of 198 points with blade period 0,5 1,5s T s≤ ≤  and 
characteristic rate 0,05 0,25s sτ≤ ≤ . 

 
TABLE V: APPROXIMATED TOWER SHADOW EFFECT ON FLICKER 

 1( , )Coef T τ  MSE 

Gaussian 0.100711
T0.0673857 τ0.218744  

3,4 10-5 

Triangular 0.251499τ0.0216745

T0.0607005  
4,3 10-6 

Rectangular 0.091558
T0.0698291 τ0.226092  

4,3 10-5 

C) Gaussian pulse 
The fitted model (with 3,4·10-5 mean square error ) of the 

flicker produced by Gaussian pulses of fictitious voltage (or 
power) is: 
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Fig. 72:  Flicker coefficient for a farm with Gaussian rotational effect. 
 

D) Rectangular pulse 
The fitted model (with 4,3·10-5 mean square error ) of the 

flicker produced by rectangular pulses of fictitious voltage (or 
power) is: 
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Fig. 73:  Flicker coefficient for a farm with rectangular rotational effect. 
 

E) Triangular pulse 
The fitted model (with 4,3·10-6 mean square error ) of the 

flicker produced by rectangular pulses of fictitious voltage (or 
power) is: 
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Fig. 74:  Flicker coefficient for a farm with triangular rotational effect. 
 

The lower percentiles 0,1% and 1% in the fifth functional 
block of the flickermeter are more dependent on the exact 
statistical distribution of instantaneous flicker. The non-linear 
behaviour of squaring blocks and the actual non-normal 
distribution of instantaneous flicker are supposed to be an 
important source of uncertainty. The authors plan to work 
further to asses the uncertainty introduced by the 
approximations used in this approach, comparing this model 
with the results of Monte Carlo simulations. 

5.4. Contribution of aperiodic 
components to Flicker 

5.4.1. Simplified PSD for flicker 
estimation 

Since very slow and DC components ( 0,05 Hzf � ) of 
PSD don’t influence flicker, the model (184) has been 
simplified for 0,05 35Hz f Hz< ≤ . In Fig. 205, the PSD 
shows a wide peak at blade frequency due to the varying 
amplitude and frequency with harmonics and sub-harmonics. 

Their effect on flicker depends on the product of sensitivity of 
flicker to that frequency ( )weightF f  defined in [209], times 
the power content of the frequency range (i.e., product of the 
width by the amplitude of the peak). 

Thus, the PSD can be approximated by the spectrum of a 
system of fractional order r  (1 1,75r≤ ≤ ), plus the tower 
shadow effect 0S  (a delta impulse 0δ  at frequency 0f ) and 
the noise floor 2S . In the frequencies of interest for flicker 
analysis, 0,05 35Hz f Hz< ≤ , the following approxima-
tions are valid:  

 ( )2 2
1 0 0 0 2( ) ( ) r

farmS f N S S f f f Sδ −≈ − + +  (320) 

 2 21
2( ) ( )farm farmf S fσ =  (321) 

 [ ]( ) 0, ( )farm farmS f N fσ
G

∼ ^  (322) 

 [ ]( ) ( )farm farmRayleighS f fσ∼  (323) 

Typical values for r , 0f , 0S , 1S  and 2S can be derived 
from the PSD (see Fig. 205 to Fig. 271) by regression 
analysis. 

TABLE VI: PARAMETERS OF THE PSD MODEL OF REAL POWER TURBINE 
OUTPUT (321) 

 Significance Range 

r  

System order of the turbine real power 
output excited by the wind turbulence (i.e., 
half the slope trend of PSD in a double 
logarithmic plot) 

1 ~ 1.7 

1
2

n

S
S

 Overall fluctuation level of the turbine (i.e., 
the PSD trend line at 1 Hz) in p.u. units 

10-4 

~10-2 

0S  Squared average of tower shadow power 
oscillation relative to 1S  5~100 

0f  Mean tower shadow frequency 0.5~2 
Hz 

2S  Squared noise level on power output 
relative to 1S  0~0.01 

nS  Nominal power of the turbine 0,3~5 
MW 

N  Number of equivalent turbines in the farm 1~50 
 
Notice that in general, harmonic peaks are narrow and their 

power content is low. Sub-harmonics can have noticeable 
power, but their flicker sensitivity is low. These terms can be 
added explicitly to (320) as delta impulses. Nevertheless, 
models more complex than (320) are also suitable. For the 
sake of simplicity, 0S can include not only tower shadow but 
also its harmonics and sub-harmonics approximate effect if 
the following estimation is used: 

2
8,8

2 2
0 2 20,05

1 0

( )1
( )

( )

Hz weightr
farmHz

weight

F f
S S f f S df

S F f

−
⎛ ⎞⎟⎜ ⎟= − − ≈⎜ ⎟⎜ ⎟⎜⎝ ⎠∫  

28,8
2 2

2 20,05
1 0

1
( )

Hz
r

farmHz

f
S f f S df

S f
−

⎛ ⎞⎟⎜ ⎟≈ − −⎜ ⎟⎜ ⎟⎜⎝ ⎠∫  (324) 

If PSD does not fit the model (320) at frequencies between 
8,8 Hz and 35 Hz, another delta impulse term 3S  at 
frequency 8,8 Hz < 3f < 35 Hz can be included in (320): 

2
35

2 2
3 2 328,8

1 3

( )1
( )
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Hz weightr
farmHz

weight

F f
S S f f S dfS

S F f

−
⎛ ⎞⎟⎜ ⎟= − − ≈⎜ ⎟⎜ ⎟⎜⎝ ⎠∫   
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335
2 2

2 38,8
1 3

1
( )

Hz
r

farmHz

f
S f f S df

S f

−
−

−

⎛ ⎞⎟⎜ ⎟≈ − −⎜ ⎟⎜ ⎟⎜⎝ ⎠∫  (325) 

Approximations (324) or (325) assume no correlation of 
fluctuations included in terms 0S or 3S . If this assumption 
does not hold, formulas must be modified accordingly. 

These formula indicate that the relative importance of 
fluctuations is proportional to 2f  up to 8,8 Hz and then 
proportional to 3f − . 

Spectrum angle ( )farm fϕ  is a random variable uniformly 
distributed in [ ],π π− + . Consequently, the complex phasor 

( )farmS f
JG

 is a complex Gaussian random variable of zero 
mean and standard deviation ( )farm fσ : 

 [ ]( ) 0, ( )farm farmNS f fσ^
JG

∼  (326) 

5.4.2. Flicker contribution from a 
parameterized PSD 

The computation of flicker from a PSD is analogous to the 
computation from Fourier Coefficients, except that the 
coefficient variances are replaced by spectral densities and 
some sums are transformed into integrals. Since the 
derivation of the linearized model has been carefully derived 
previously, only the main results are outlined. The PSD of 
the squaring demodulator (block 2) is: 

( )
2

2
3( ) 4 ( ) 2S blockf

PSD f PSD f F fβ π+ +≈G  (327) 

The average of the instantaneous flicker, 2
flickσ , can be 

computed integrating 
f

PSD+G : 
8,8

0,05
( )

Hz

flick fHz
PSD f dfμ +≈ ∫ G  (328) 

The PSD of the instantaneous flicker at low frequencies, 
0,10 Hz ≤ f ≤ 34,95 Hz, is: (329) 

( )
35

/2

2

4

( - )· ( ) ( - )· ( )

( ) 2 2 ·

     0,10 34,95

f Hz

f f f ff f

flick block

PSD f PSD d PSD f PSD d

PSD f F f

Hz f Hz

ϑ ϑ ϑ ϑ ϑ ϑ

π

+ + + +

+

+

≈
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∀ ≤ ≤

∫ ∫G G G G  

The PSD of the instantaneous flicker at higher frequencies, 
35,05 Hz ≤ f ≤ 70 Hz, is significantly smaller since block 4 
attenuates notably these frequencies: (330) 

( )
2 35

4 /2
( ) 2 2 ( - )· ( )

   35, 05 70

flick block f ff
PSD f F f PSD f PSD d

Hz f Hz

π ϑ ϑ ϑ+ + +≈

∀ ≤ ≤
∫ G G  

The variance of the instantaneous flicker, 2
flickσ , can be 

computed by integration: 
35 70

2 2

0,05 0,10
( ) ( )

Hz Hz

flick flickfHz Hz
PSD f df PSD fσ + +≈ +∫ ∫G  (331) 

Thus, thee flicker level can be estimated through (312) and 
another coefficient depending on r can be computed provided 
the tower shadow is computed separately and noise floor is 
small. 

 1 2( )stP S N Coef rβ=  (332) 

where 2
25, 06051 6,96771 2, 86( ) 515re rCo f r − +≈  

 

 
Fig. 75:  Flicker coefficient (332) for a farm with simple PSD 

5.4.3. Estimation of total flicker during 
continuous operation(periodic and 
aperiodic) 

A) Continuous operation 
Even though both periodic and aperiodic components are 

present in the fictitious power, both components are 
statistically independent. Assuming the linearization of the of 
quadratic block and second order statistics, the total flicker 
can be estimated from the individual components. 

The second order approximation for the instantaneous 
flicker is: 

 ( )2 2
,1 ,2 ,1 ,2( ) + , +contop flick flick flick flickflick t N μ μ σ σ∼  (333) 

Thus, the flicker level can be computed assuming 
normality and approximate sum of variances: 

,

2 2
,1 ,2 ,1 ,20,5096( + ) 0,6879 +

st contop

flick flick flick flick

P

ζ μ μ σ σ

≈

≈ +
 (334) 

where ζ  is a scaling factor added to fit the flickermeter tests. 
It is required to give a maximum perceptibility output of 1 for 
a ΔV/V of 0.25 % at a modulation frequency, fF of 8.8 Hz. 
(this is the modulation frequency at which we are most 
sensitive to flicker from an incandescent light bulb).  

The factor ζ  varies from 750 to 1850 depending on the 
applied calibration signal since this model is intended for 
stochastic input signals instead of deterministic ones. The 
accuracy can be increased if all filters are fully implemented 
since some filters in this model have been replaced with ideal 
filters for conceptual simplicity. However, a full 
implementation –non stochastic– of the frequential 
flickermeter is required to decrease notably the uncertainty in 

,st contopP  with deterministic signals. 
Since the linearization of quadratic block slightly 

underestimates the flicker, an assumable approximation, 
specially valid if one variance is significantly bigger than the 
other, is: 

 2 2
,1 ,2 ,1 ,2+ +flick flick flick flickσ σ σ σ1  (335) 

The former approximation is sensible since some 
assumptions made in this work may underestimate a little the 
flicker coefficient (independence of fluctuations, neglected 
terms in convolutions, and N>4). In fact, (335) assumes some 
correlation between periodic and aperiodic fluctuations: 
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,1 ,2 ,1 ,2, 0,5096( + ) 0,6879( + )flick flick flick flickst contopP μ μ σ σζ +≈ ≈

2 2
,1 ,2+st stP P≈   (336) 

Finally, the contribution from periodic and aperiodic sums 
quadratically assuming the upper bound  (335): 

2 2
, ,1 ,2

2
2 2

1 1 2

+

( , ) ( )

st contop st stP P P

N Coef T S Coef r
T

α
ζ β τ

≈ =

= +
 (337) 

According to (285) or (287), the actual sensitivity 
coefficient of voltage to power fluctuations β  can be 
expressed  in terms of SCR, power factor angle ϕ  and the 
network impedance angle kψ as: 

 k kcos( ) sin( )tan( )

· ·nSCRS N

ψ ψ ϕ
β

+
=  (338) 

Thus, the flicker level for continuous operation is: (339) 
2

k k 2 2
1 1 2,

cos( ) sin( ) tan( )
( , ) ( )

· n

st total Coef T S Coef r
TSCR S N

P
ψ ψ ϕ α

τζ
+

≈ +  

Assuming typical values for high voltage according to see 
Table XV and Spanish minimum value of SCR, the upper 
bound is: 

 

2
2 2

1 2
1

2 2

,

( , ) ( )

40

n n
st contop

Coef T Coef r
S T

N

S

S
P

α
τ

ζ

+

<  (340) 

B) Decreasing annoyance due to Flicker in turbine 
clusters 

Flicker levels can be eventually noticeable at nodes 
electrically close to wind turbines with stiff drivetrains and 
squirrel cage induction generators connected directly to very 
weak grids or in stand alone applications. But these 
conditions are not common and the flicker contribution of 
wind power is rarely an annoyance. 

On the one hand, actual turbines have massive inertias, 
relatively soft drivetrains and electronically controlled 
generators. Thus, the torque periodic components are trans-
formed in a kind of stochastic fluctuations in active and 
reactive power of lesser magnitude (i.e., real power fluctua-
tions from those turbines do no longer resemble pulses). 

On the other hand, grid codes usually require a minimum 
Short Circuit Ratio, SCR. It is the ratio of the short circuit 
power at the point of common coupling of the grid, Sk,PCC, to 
the installed wind power, N·Sn in a cluster of N turbines.  

 ,

·
k PCC

n

S
SCR

S N
=  (341) 

For example, the Spanish regulation [211] requires SCR 
≥20. In order to meet this requirement, big clusters of wind 
turbines are connected to high voltage nodes where Sk,PCC are 
bigger (see Table VII). 

TABLE VII: TYPICAL SHORT CIRCUIT VALUES (FROM [212]). 

Substation voltage Typical value of Sk,PCC 
400 kV 30.000 MVA 
150 kV 10.000 MVA 

70 kV 2.500 MVA 
30 kV 1.300 MVA 
15 kV 500 MVA 
10 kV 400 MVA 
400 V 16 MVA 

The short time wind farm flicker level can be obtained 
from the farm coefficient ( )kwind farmc ψ :  

k
,

st, k
k,

( )
·

( )
· ·

wind
turbinen windfarm n

PCC wind
farm PCC n

c
S S N

P c
S SCRS NN

ψ
ψ= = =  

k( )

·

wind
turbine

c

SCR N

ψ
=   (342) 

Since flicker coefficients for a single turbine 
( )kwind farmc ψ  are typically between 4 to 10 [205, 213] and 

typically SCR ≥20 in Spain, the flicker level in a farm is 
expected to be low:  

 st,
1

1
2

PCCP
N

≤ <  (343) 

Therefore, the flicker level during continuous operation at 
PCC is usually bellow unity and power fluctuations do not 
produce major irritating flicker. 

5.5. Spectrum of the eye output and the 
average instantaneous flicker 

The average instantaneous flicker level can be computed 
from (302) or (310). Taking into account that first three 
blocks are almost lineal and considering that the PSD has 
random phase, it is possible to estimate the contribution of 
each frequency to instantaneous flicker. In the following 
graphs, the blue lines are the PSD of the eye model output 
( )f t  and the red line is the area beneath the PSD from the 

left, which equates at the right μflick, the mean instantaneous 
flicker level. The frequencies that contribute more to flicker 
are where red line increases quickly. 

For the fixed speed, stall turbine the principal contribution 
to flicker is due to tower shadow (rotor and blade frequen-
cies). The contribution of frequencies 5-7,5 Hz is small. 

 
Fig. 76: PSD of  squared voltage variations f(t) and its integral 0g  (beta = 

0.001) for a SCIG (fixed speed, stall regulated) wind turbine. 

In the 600 kW Vestas opti-slip turbine (variable resistor 
induction generator with pitch control), the influence of tower 
shadow (rotor and blade frequencies) is negligible. The the 
flicker levels are the lower of the measured turbines and its 
due mainly to frequencies 4-12 Hz (see Fig. 77) 
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Fig. 77: PSD of  squared voltage variations f(t) and its integral 0g  (beta = 

0.001) for a VRIG (opti-slip) wind turbine. 

In the doubly fed induction generator, Fig. 78, pitch 
regulated turbine, the influence of tower shadow (rotor and 
blade frequencies) is small. The flicker is due mainly to 
frequencies 4-14 Hz. 

 
Fig. 78: PSD of  squared voltage variations f(t) and its integral 0g  (beta = 

0.001) for a DFIG (variable speed) wind turbine. 
 

 
Fig. 79: PSD of  squared voltage variations f(t) and its integral 0g  (beta = 

0.001) for Remolinos wind farm. 

The Remolinos wind farm, Fig. 79, shows a similar behav-
iour than the single turbine. The average instantaneous flicker 
level μflick, in the wind farm is approximately the value of 
measured wind turbine times the number of turbines in the 
wind farm (18). Since Pst is fairly proportional to flickμ , the 
flicker emission of the wind farm can be computed from 
measurements of single turbines: st, farm st, turbineP PN≈  

provided the short circuit powr is the same at the turbine and 
at the point of common coupling (PCC) of the farm. 

Actually, the short circuit power at the farm PPC is, to 
some extent, proportional to the number of turbines. In terms 
of the short circuit ratio (SCR), the farm flicker emission is: 

 , 
, 

·

st turbine
st farm

P
P

SCR N
≈  (344) 

In other words, the flicker emission of a farm is reduced 
typically in a factor √N respect the turbine emission. More-
over, the flicker is rarely a power quality problem in farms 
because the short circuit ratio is high due to transmission 
network requirements (SCR ≥ 20 habitually). 

5.6. Conclusions 
Power fluctuations in a farm are related to relative blade 

positions of the turbines and wind turbulence. The rotor can 
have any angle with approximately the same probability and 
turbulence is mostly uncorrelated for different wind turbines. 
Thus, the overall behaviour of a large number of wind 
turbines can be derived from the operation of a single turbine.  

Correlated fluctuations scales proportional to the number 
of turbines N  whereas linearly uncorrelated fluctuations 
cancel partially among turbines and they scale up typically in 
a factor √N. Oscillations from fractions of hertz to power 
supply frequency are mainly uncorrelated and their sum 
across a wind farm can be estimated using stochastic analysis 
commonly applied in other areas such as multipath fading in 
communication channels, clutter and target cross section in 
radars, interference in communication systems, etc. but its use 
in wind energy is novel. 

The distribution of power deviations, the speed of power 
output variations, the distribution of blade position in the 
turbines and the flicker emission due to blade position are 
estimated using analytic formulas and a few parameters of the 
turbines. The model can be completed with small-scale site 
models to extend its applicability and improve its accuracy.  

The flicker emission of a farm is reduced typically in a 
factor √N respect the turbine emission. Moreover, the flicker 
is rarely a power quality problem in farms because the short 
circuit ratio is high due to transmission network requirements. 

The wind farm oscillation amplitude due to uncorrelated 
sinusoidal turbine fluctuations is a Rayleigh random variable 
of with scale parameter √N times the uncorrelated fluctuation 
of a single turbine. The instantaneous fluctuation is distrib-
uted normally with standard deviation √N times the turbine 
uncorrelated fluctuation. The squared instantaneous fluctua-
tion shows a gamma distribution with unity shape factor.  

The power fluctuation when a blade passes in front of the 
tower can be represented by power dips. The number of 
simultaneous tower shadows happening at an instant is a 
binomial random variable. Tower shadow events are charac-
terized as a generalized Poisson process and its average 
frequency is N times the tower shadow frequency of a single 
turbine.  
 

 



6.1. Introduction 
he wind speed fluctuations are defined in this chapter as 
the deviation of the instantaneous wind speed in the 

longitudinal direction, ΔUwind, from the average value, 
〈Uwind〉, (usually computed averaging 5-60 minutes). The 
changes in the wind direction are not considered since the 
wind speed has a more steady behaviour than its module. 

Although the probability distributions of wind speed 
fluctuations, ΔUwind, fits a Normal distribution respect the 
average 〈Uwind〉 during periods shorter than one hour, the 
observed accelerations have wider distributions (‘longer 
tails’) in general [221]. 

In words, the probability of extreme accelerations is bigger 
in reality than the predicted by a normal model and the real 
sample distribution has bigger extreme values than a normal 
process with the same average and variance.  

Despite these deviations from the normal behaviour and 
because of the lack of a better description, the gust, defined as 
the maximum wind speed during a measurement period of 5-
60 minutes, is often calculated using a Gaussian process as an 
approximation and then a transformation is usually applied 
[223]. 

The characteristic shapes of gust events are described in 
[214, 215, 216]. For calculations of the mechanical loads on a 
wind turbine rotor, it is necessary to have detailed 
information about the spatial structure of the 3-D wind field. 
The Mann turbulence model [94] is actually preferred to the 
Veers model [217]. 

The interactive program EquiWind [218] for the generation 
of random samples of equivalent wind gust has been 
developed. Many of the graphs presented in this chapter have 
been obtained with this program. 

6.2. Statistical distribution of wind 
variations depending on turbulence 

mechanism 
On one hand, the approximating the equivalent wind as a 

Gaussian process is a reasonable estimation for small 
disturbances since small-scale turbulence is the outcome of 
many independent (considerably low correlated) 
contributions. On the other hand, big wind variations (big-
scale turbulence) are due to external forces which are 
correlated and hence, the experimental probability tails of 
extreme events are remarkably heavier than the ones from a 
Gaussian distribution. 

One of the key points in the probability theory is the 
Central Limit Theorem, that states that under quite general 
conditions, the distribution of the sum of many independent 
random variables converges to a Gaussian distribution. 
According to this theorem, the Gaussian distribution (also 
known as Normal distribution) is suitable for describing a 
wide range of experiments and experimental data [219]. 

The wind difference wind wind windU U UΔ = −  for lags of 
a few seconds is, according to [214], leptokurtic (positive 
excess kurtosis ranging from 0 to 3) and quite symmetric 
(skewness ranging from -0.4 to 0.3). For short time scales, a 
normal process is a reasonable approximation for small wind 
variations but it underestimates bigger gust by more than an 
order of magnitude comparing to real measures, especially at 
complex sites since wind deviations are leptokurtic.  

The measure of the frequency of occurrence of rare events 
requires long records, but these records are not customarily 
available and some assumptions must be made to guess a fair 
probability from limited data. 

Extreme weather conditions are due to the chaotic 
atmospheric behaviour. The statistical distribution of extreme 
wind variations depends on the prevailing mechanism 
involved in gusts: the macroscopic wind speed depends on 
microscopic system dynamics with strong interactions 
ranging from tiny to very large scales and this is a challenge 
for meteorologists and chaos theorists. Despite the abundant 
research done in atmospheric turbulence, this topic is far from 
concluded and it is out of the aim of this thesis. 

Notwithstanding these facts, normality could be a 
compromise between accuracy and traceability and a sensible 
choice for its remarkable theoretical properties. However, the 
estimation of extreme events should be corrected to account 
the real behaviour of the wind. 

In general, the normal approximation is an adequate 
estimate of the probability of the more frequent wind 
variations (deviations from the wind, in relative terms, less 
than two times the intensity of turbulence). However, 
experimental measurements have shown that the extreme 
variations of wind (|ΔUwind|/〈Uwind〉 > 2 σUwind) are 
underestimated by the normal distribution. The PDF of wind 
deviations during a few seconds is close to a broken line in 
logarithmic scale at larger deviations (i.e., double exponential 
tails) [220, 221, 222, 223, 224]. The probability density in a 
semilogarithmic-scale converges to two lines –typical of the 
Laplacian distribution, also called double exponential 
distribution – instead of converging to a parabola –Gaussian 
or normal distribution. 
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In the subsequent subsections, some turbulence mecha-
nisms are compared to the observed distribution of wind 
turbulence. A naïve analysis of the turbulence will be shown, 
where some mechanisms are negligible; others are important 
or even dominant at certain scales or in some events. 

6.2.1. Wind distributions in the 
literature 

The results of an extensive measuring campaign with a 
LIDAR sensor of wind between 40 m to 220 m above the roof 
of the Institute of Aeronautical Design at the University of 
Stuttgart can be seen in the report [225]. In Fig. 80, the 
distribution of wind speed variations ΔUwind respect the 
average at 120 m in intervals of duration T = 1,5 s, 4,5 s, 15 
s, 48 s y 162 s (graphs displaced from top to bottom) show 
that the average occurrence frequency resemble a broken line 
to two lines that meet at the average semi-logarithmic scale. 
To avoid overlapping charts, the graphs have been shifted 
downward. The points correspond to the measured occurrence 
frequency and the lines correspond to the fitted probability 
density function in [226]. According to Fig. 80, the wind 
speed variation ΔUwind follow a Laplacian distribution instead 
of a Gaussian distribution. 

 
Fig. 80: Measured and fitted probability density of instantaneous wind minus 
the instantaneous wind at T = 1,5 s, 4,5 s, 15 s, 48 s and 162 seconds before 
(from top to bottom). For great clarity, the plots are displaced downwards. 
Reproduced from M. Wächter et al. [225]. 
 

 
Fig. 81: Probability distribution of longitudinal wind variations (u) respect 
the average longitudinal velocity (U) in Oak Creek (California) at 80 m. The 
dark blue line corresponds to the actual probability density and the light pink 
line corresponds to the normal distribution fitted from data (the vertical axis 
is in logarithmic scale). Reproduced from G. C. Larsen,  [221]. 

The Fig. 81 shows the wind speed variations ΔUwind in Oak 
Creek (California) at 80 m above the surface. The wind speed 
variations ΔUwind are adequately characterized by the normal 
distribution up to |ΔUwind|/〈Uwind〉 < 2,8 σUwind, but bigger 
wind variations are underestimated by several orders of 
magnitude. 

The actual distribution of wind variations can be obtained 
transforming the normal process to other process with the 
target probability distribution. The simplest memory-less 
transformation is a continuous and strictly monotone function 
that maps each point of the actual distribution into a point of a 
normal process with the same mean and variance. 

The distribution of the lateral wind component in Fig. 82 
fits even better to a broken line than the longitudinal wind. 
Thus, the lateral wind has a Laplacian distribution, also called 
double exponential distribution. For example, the 
transformation (352) convert the normal process x(t) into the 
observed process y(t), which has a Laplacian Distribution, 
that some authors consider that belongs to the family of 
generalized Gaussian distributions [227]. 

 
Fig. 82: : Distribution of lateral wind variations (v) respect the average 
longitudinal velocity (U) in Oak Creek (California) at 80 m. The dark blue 
line corresponds to the measured probability density and the light pink line 
corresponds to the normal distribution fitted from data (the vertical axis is in 
logarithmic scale). Reproduced from G. C. Larsen, [221]. 

In fact, Fig. 83 from [228] shows a very good fit of power 
generated hourly in a wind farm and in Western Denmark to a 
double exponential distribution.  

 
Fig. 83: Changes in average generated output from wind farms, based on 
hourly averages. Reproduced from B. Fox et al. [228]. 

The data measured at the airport of Florence in [229, 230] 
also show a Laplacian distribution of ΔUlong. In those works, 
a model based on superstatistics was used (this term is used to 
refer to the stochastic properties of the statistical parameters). 
Those works present a generalized Boltzmann factor which 
fits a generalized q-exponential distribution from the 
measured quantiles. A Laplacian distribution has been added 
in the experimental distribution of Fig. 84 for comparison 
with the normal distribution and the q-exponential. 
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Other authors [231, 232, 233] have fitted the experimental 
data to a family of stable distributions. For instance, Fig. 85 
shows the wind speed deviations during a 58 day measuring 
campaign during the years 1998-1999 in the Dansk platform 
Roedsand at 30 m above the Baltic Sea.  

 
Fig. 84: Comparison of the experimental probability distribution of ΔUlong 
(circles), the Gaussian distribution (dashed red curve), the q-exponential 
distribution for q=1.42 (solid thick black curve) and the Laplacian 
distribution (a blue dot-dashed broken line) in the Florence Airport. 
Reproduced from S. Rizzo and A. Rapisarda [230]. 

 
Fig. 85: Measured and fitted probability density of instantaneous wind minus 
the instantaneous wind at T = 10,2 s, 10 s, 20 s, 200 s and 2000 seconds 
(from top to bottom). For great clarity, the plots are displaced downwards. 
Reproduced from F. Böttcher, St. Barth, and J. Peinke [231]. 

In a generic case, an adjustable distribution (such as the 
generalized Gaussian distribution, the q-exponential 
distribution, the Type IV Pearson distribution, stable 
distributions or the type I Gummbel distribution for extreme 
value) could be adapted reasonably well to the frequency of 
occurrence of wind variations in a pilot site. The 
transformation f of the normal process observed is obtained 
by equating the cumulative probability distribution of the 
adjusted observed process y(t) and the distribution standard 
process x(t): 

 ( ) ( )[ ( )] [ ( )] ( ) [ ( )]y t x tCDF y t CDF x t y t f x t= ∀ =  (345) 

In the following sections, some mechanisms involved in 
the turbulence will be analyzed to discern the complex 
relationships that emerge. To understand the atmospheric 
interactions, the main mechanisms will be compared, 
indicating their importance and scale of influence. 

6.2.2. Simplistic models based on energy 
or momentum transfer 

A) Wind distribution driven by geostrophic wind 
In the  free atmosphere (at 1 km or higher above the 

surface level), the geostrophic wind has a low vertical 
component and the influence of the orography is smaller. At 
higher levels of the atmosphere, the wind can be considered a 
2-D random vector ,wind freeatmosphereU

G
 and it can be modelled 

by a complex normal random variable, which has circular 
symmetry (all directions are equiprobable) and Rayleigh 
modulus distribution.  

The wind direction changes in the surface layer due to 
orography and Coriolis forces (Ekman spiral), resulting in 
some preferred wind directions. However, the modulus of the 
speed at the atmospheric boundary layer windU

G
= windU  can 

be considered a fraction of the speed at geostrophic layer due 
to the momentum transfer due to air viscosity. If the 
proportional factor is fairly constant, then the modulus of the 
wind speed at geostrophic and boundary layer has the same 
type of distribution, i.e., a Rayleigh distribution.  

Since the previous assumptions are oversimplifications, 
real wind modulus distribution at atmospheric surface layer is 
usually represented by a Weibull distribution, which is the 
generalization with one extra parameter of the Rayleigh 
distribution. The Rayleigh distribution is a particular case of 
the Weibull distribution with a shape factor k = 2, typical of 
the wind distribution in mild climates. 

B) Turbulence driven by momentum exchanges 
Notice that considering the wind a normal process is 

equivalent to assume that speed deviations in the considered 
direction are due primarily to random momentum exchanges 
(neither pressure differences nor energy exchanges). 

In laminar regime, friction governs the fluid and then the 
prevailing process is the momentum exchanges by viscous 
forces, which are proportional to relative velocity differences 
in the flow. Laminar regime happens at low wind speeds, 
stable meteorological conditions and low roughness surfaces. 
In such regime, flux speed is primarily the outcome of the 
sum of many momentum exchanges.  

The momentum exchanges can be in the same direction 
than the wind (longitudinal direction) or transversal (vertical 
or lateral). However, only the stream wise components 
produce noticeable effective turbulence, as aforementioned. 

Since momentum is proportional to wind speed and 
momentum frictional exchanges are proportional to wind 
speed curl (a linear operator on spatial speed differences), the 
central limit indicates that ΔUwind is approximately a 
Gaussian process if the momentum exchanges due to 
viscosity are uncorrelated. 

C) Turbulence driven by power exchanges or by static 
pressure changes 

In turbulent flux (typical of high wind speeds, gusty wind, 
unstable conditions or rough surfaces as brave sea and dense 
vegetation) the viscous forces decreases. In such situations, 
the fluid can be dominated by power exchanges and energy 
balance.  
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Since the mass density of the air near the ground surface is 
fairly constant and the wind speeds are much smaller than 
sound speed, then the air flow is fairly incompressible. Given 
that the viscous forces are small in comparison to inertial 
forces in the stream, then the viscosity of the flow can be 
neglected (inviscid flow). Then the energy per unit volume 
along a streamline is fairly constant provided there is no heat 
or energy contribution and the Bernoulli equation is 
applicable to any streamline in an Eulerian reference: 

2
1
2 air wind airp U g h energy per unit volumeρ ρ+ + ≈

G

 (346) 
where windU  is the speed measured in an Eulerian reference 
(i.e., the wind speed measured with an anemometer) and the 
static pressure is p.  

The air density airρ  is almost constant in the atmospheric 
boundary layer for short lapses. In a fixed reference, the 
height h and the gravity constant g in the anemometer are 
constant. However, the height h and the pressure p can 
change along the streamline and the streamline is not constant 
along the time. 

If there is a power or heat transfer in the flow, the 
volumetric density of power exchange can be computed 
deriving the former expression: 

 
21

2 air wind air

air wind air

Volumetric density of power exchange

d
p U g h

dt
dp dh

a U g
dt dt

ρ ρ

ρ ρ

≈
⎡ ⎤

≈ + + =⎢ ⎥
⎢ ⎥⎣ ⎦

= + +

G

G

 (347) 

where the modulus of the wind acceleration is 
/winda d U dt=

G
. 

The kinetic energy density is, expressed in the longitudinal, 
vertical and lateral components (see Fig. 86): 

 
2
/2air windUρ

G
= 2 2 2( )/2air long vertical lateralU U Uρ + +  (348)  

 
Fig. 86: Control volume laterally limited by stream lines upstream the 
turbine. 

The kinetic energy in terms of the wind components is: 

2( )windUΔ = 2 2
wind windU U− = 2 2 2 2

long vertical lateral windU U U U+ + −

 ≈ 2
longU – 2

longU + ξ , (349) 
where ξ  is the random variable ξ  = 2 2

vertical lateralU U+ +  
2 2
long windU U+ − . 

The kinetic energy density variations are due to potential 
energy density and local pressure deviations.  
• If the squared longitudinal wind component 2

longU  and 
the wind speed modulo 2( )windUΔ  could be considered 
the outcome of many uncorrelated contributions, 
including ξ , then 2

longU  and 2( )windUΔ could be 
considered a Gaussian process. In that case, longU  would 
be distributed as a non-central chi random variable. Since 

2 2( )long longU UΔ�  and 2 2( )wind windU UΔ� , the quadratic 
relationship can be linearized without much error and 
both longU  and windU  would be approximately normal 
processes. 

• However, for small relative changes in velocity, 
acceleration of the wind could be considered a normal 
process. Then, the acceleration integral, longU , would be 
also a normal process. 

The slight asymmetry of 2
longU  can be explained from 

energetic arguments. However, the general model of energy 
transfer is too complex for the purposes pursued in this work 
it would require a dynamic model of energy transfer and the 
estimation of parameters usually not available. 

D) Turbulence driven by dynamic pressure gradients 
respect the flow 

According to the Taylor’s Hypothesis, the total derivative 
of any conserved field variable is negligible in a Lagrangian 
framework. If the energy per unit volume is computed in a 
Lagrangian reference [234] moving at the average stream 
speed windU  respect an Eulerian reference, such as Fig. 86, 
then the energy per unit volume is: 

21
2

( )Uwind air wind air

energy per unit volume

p U g hρ ρ〈 〉

≈

≈ ± Δ +
 (350) 

The static pressure in such reference is Uwindp〈 〉 .The 
dynamic pressure is ±½ρΔUwind

2, where ΔUwind is the 
deviation from the average flow speed and ± is the shortened 
notation of Sign(ΔUwind). Even though total negative pressure 
must be always positive, negative dynamic pressures are 
possible. 

If the Bernoulli equation is applied in the Lagrangian 
reference assuming applicable the Taylor’s Hypothesis, the 
total energy (350) would be fairly constant –neglecting power 
transfers. In the new reference, the streamlines corresponds to 
eddies floating in the stream. If the vertical size of the eddies 
is small, the height influence is negligible. This is equivalent 
to assuming that the total pressure (the sum of static and 
dynamic pressure) is fairly constant along the stream lines. 
Under the Bernoulli assumptions, an increase in the static 
pressure would imply a decrease in dynamic pressure and 
vice versa. 

The dynamic pressure in the Lagrangian reference moving 
with mean flow speed  is 2( ) /2air windUρ± Δ , where the signed 
deviation from the mean speed, squared, is 

2( )windU±Δ = ( )wind windSign U U−  2( )wind windU U− . 
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The speed deviation from average flow, squared and 
projected in the longitudinal axis, 2cos( )( )windUϕ Δ  is 
expected to be proportional to the dynamic pressure 
imbalance streamwise respect the vicinity (i.e., the mean 
flow) in incompressible air. 

If dynamic pressure were the main driving mechanism in 
turbulence and this pressure were the sum of many random 
and independent contributions, then 2cos( )( )windUϕ Δ  could 
be approximated by a Gaussian process. In such case, the 
wind distribution might be interpreted as the signed squared 
root of a normal process corresponding to the dynamic 
pressure surplus (plus sign) or deficit (negative sign) respect 
the vicinity (i.e., the dynamic pressure computed from the 
flow speed in a Lagrangian reference moving at the mean 
flow rate).  

Fig. 87 shows that if 2cos( )( )windUϕ Δ  were normal, then 
extreme values of windUΔ  would have lower probability, 
contradicting the measurements. In other words, its 
probability tails would be lighter than those form a Gaussian 
distribution (i.e, extreme events would be even more 
underestimated!). In addition, the distribution would be 
bimodal, in contradiction with the real measures.  
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Fig. 87: PDF of a normal random variable X (solid blue line) and the 
distribution of ±X1/2 where X is normal (dashed purple line). Both 
distributions have unity variance and zero mean 

E) Distribution of windUΔ  assuming 1/2( )windU±Δ  is 
normal 

If the behaviour of 1/2( )windU±Δ  were normal, then the 
extreme deviations of the wind speed windUΔ  would be more 
probable (see Fig. 88). However, the distribution of windUΔ  
would be very leptokurtic, overestimating the probability of 
extreme events (the actual kurtosis [214] ranges from 0 to 3 
but the kurtosis of the rooted model is 8,67). In other words, 
the actual distribution of windUΔ  is not as sharp at the mode 
as the rooted model (purple dashed line in Fig. 88) neither as 
smooth as the normal distribution (blue solid line in Fig. 88). 

Therefore, the 1/2( )windU±Δ  model can represent the 
extreme wind deviations due to the linearly logarithmic 
asymptotic tail probability. However, this model does not 
represent adequately the small wind deviations, more related 
to the viscosity. 
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Fig. 88: PDF of a normal random variable X (solid blue line) and the 
distribution of ±X2 where X is normal (dashed purple line). Both 
distributions have unity variance and zero mean. 

6.2.3. Constant probability of 
acceleration direction change 

The speed in one direction has a maximum or local 
minimum whenever the acceleration changes its direction. 
The multiplicative process in the turbulence leads to a 
probability of acceleration reversal fairly constant. 

Moreover, if the acceleration component in one direction 
(e.g. longitudinal) has a constant probability of sign change, 
the velocity (its integral) will have a Laplacian or double 
exponential distribution. In other words, if the probability of 
having a maximum or minimum speed is constant, then the 
resulting distribution of the maxima and minima will be 
Laplacian. 

The small deviations related to small scale turbulence are 
not so leptokurtic [221]. The wind variations related to 
greater scales, such as the hourly wind differences usually 
have bigger kurtosis [228] and its probability is more similar 
to the Laplacian distribution. 

6.2.4. Multiplicative processes in 
turbulence due to energy cascade 

The difference of turbulence velocity is typically modelled 
as a multiplicative process, which is meant to capture the 
basic picture of energy cascade in turbulence. The turbulence 
have a multifractal nature due to the energy transfer involved 
in the eddies. Experimental studies have shown that the 
turbulence velocity field in the inertial range can be described 
reasonably by power law scaling [250].  

According to Tabeling [235], flows in the atmosphere and 
in the ocean develop in thin rotating stratified layers, and it is 
known that rotation, stratification and confinement are 
efficient vectors conveying two-dimensionality. In the 
simplest cases, pure two-dimensional equations must be 
amended by the addition of an extra-term, characterizing the 
effect of Coriolis forces, to represent physically relevant 
situations. This term generates waves which radiate energy, a 
mechanism absent in pure two-dimensional systems. In more 
realistic cases, topography, thermodynamics, stratification, 
must be incorporated in the analysis, and indeed full two-
dimensional approximation hardly encompasses the variety of 
phenomena generated by these additional terms. 
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Approximation in the form of homogeneous and isotropic 
turbulence is quite crude for describing many geophysical 
applications. Usually, there are two reasons why this 
approximation can be violated. One of them is a rapid daily 
rotation characterized by a small Rossby number, Ro « 1. 
This case is typical for problems of meteorology and physics 
of the ocean where its influence is principal [236]. 

The introduction of rotation leads to substantial rearranging 
of the flow, both in the physical and in the wave spaces. In 
spite of this, the Coriolis force itself does not produce work. It 
can redistribute the energy between the scales and lead to 
inverse cascades, which is known in direct numerical 
simulations (DNS) as an increase of the kinetic energy on 
large scales [237] predicted in the renormalization group 
theory [238]. As a result, the slope of the spectrum of the 
kinetic energy changes from −5/3 to −2 [239, 240]. This 
change is closely related to the break of the energy transfer 
over the spectrum [239]. 

Moreover, the addition of heat transfer leads to the 
transformation of cellular convection to the cyclonic 
convection. 

6.3. Conclusion on turbulence 
mechanisms 

Experimental studies have shown that the turbulence 
velocity field in the inertial range can be described reasonably 
by power law scaling [250] related to multiplicative 
processes.  

The flow rotation increases the kinetic energy on large 
scales [237] predicted in the renormalization group theory 
[238]. As a result, the slope of the spectrum of the kinetic 
energy changes from −5/3 to −2 [25, 240]. 

The atmosphere shows transitions between stable 
conditions that can last a few days. A normal process does not 
reflect the non-stationary wind behaviour during long 
intervals of time [247].  

In [241, 242], a model based on superstatistics and the 
generalized Boltzmann factor is derived, obtaining a q-
exponential curve distribution. In [243, 244, 245], a model to 
fit stable distributions is derived from wind variation data. In 
[246] extensive measures are performed.  

Some authors claim that a normal process scarcely reflects 
the non-stationary behaviour of the weather during long time 
spans, which shows transitions between stable meteorological 
conditions lasting a few days. Gusts also have an intermittent 
behaviour [247].  

In [247], a non-Gaussian wind model based on wind 
intermittency and continuous random walks has been 
proposed. This effect is due to weather dynamics and can be 
treated as a Markov process with state jumps [248]. 
Alternatively, a simulation method of inhomogeneous, non-
stationary and non-Gaussian turbulent winds is presented in 
[249] based in the coherence.  

The exponential behaviour of larger variations is a 
symptom of multiplicative processes, producing air 
acceleration direction changes fairly constant.  

Thus, a double exponential distribution will be used for the 
calculus of probability of extreme events. This distribution 
implies a multiplicative mechanism in the turbulence 

according to Eggers [250], leading to stable rates of change 
between accelerations and decelerations of the air.  

According to Eggers [250], if wind speed difference 
longUΔ  is computed subtracting the simultaneous 

measurements at two separate points, its statistical 
distribution slowly converges to Gaussian for distances 
greater than the turbulence length scale. Conversely, if wind 
speed difference is computed subtracting the measurements at 
two separate instants, its statistical distribution slowly 
converges to Gaussian for time gaps greater than the 
turbulence time scale. 

The second chapter of this thesis pointed out that the 
lengths and the times involved in turbulence in the 
atmospheric boundary layer can exceed 10 km and 250 s, 
respectively. The length and time scales involved in 
meteorology dynamics are even greater. Thus, the distribution 
of longUΔ  is more similar to the Laplacian than to the 
Gaussian in most practical cases.  

In the seventh chapter, the Laplacian process will be 
obtained using a Markov chain approximation to model the 
multiplicative stochastic dynamics. However, in this chapter 
the Laplacian process will be approximated through a 
memory-less transformation of the Gaussian process based on 
section 3.3 of [214]. 

The shape of the gusts will be estimated from the point-to-
point bijective transformation. Since the transformation is 
strictly monotone, the estimation of the gust probabilities is 
straightforward from the properties of the normal processes. 

The advantages of working with normal processes and, 
after all, transforming them into processes with the wind 
characteristics are: 
• You can take advantage of the substantial theoretical 

properties of the normal processes to deduce properties of 
the actual process. 

• The bijective and strictly monotone transformation from 
normal to real and vice versa is simple and numerically 
efficient. The transformation is derived from the 
probability distribution of longUΔ  in any site. 

• Larsen, Bierbooms et Al. have studied the average wind 
gust shapes in various locations in the excellent work 
[214]. They validated the overall approach of the normal 
process. However, the normal process are symmetric and 
the gust usually are slightly asymmetric (the front ramp is 
stepper than the down ramp). A memory-less 
transformation of a normal process cannot generate itself 
an asymmetric process and a filter can be used to mimic 
the actual behaviour. 

• The stochastic properties of the equivalent wind can be 
obtained with this approach. Instead of using the 
PSDUlong(f)of the actual wind, the PSDUeq(f) of the 
equivalent wind is employed to derive the characteristic of 
the equivalent wind gusts. 

• The PSDUeq(f) of the equivalent wind is obtained 
multiplying the PSDUlong(f) of the longitudinal component 
of the conventional wind by the squared modulo of the 
equivalent spatial filter of the rotor, 2

1
| ( )|H f  (see Chapter 3 

for more details). 
• Analogously, this approach can be extended for wind 

farms. The characteristics of the equivalent wind of a farm 
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can be computed from PSDUeq,farm(f). It is the power 
spectral density of the equivalent wind, PSDUeq(f), 
multiplied by the squared modulo of the spatial diversity 
smoothing filter, 2

3
| ( )|H f , defined at the end of the third 

chapter. 
• Moreover, this approach can be extended to derive the 

characteristic gusts of the equivalent wind of a 
geographical area. The power spectral density of the area, 
PSDUeq,area(f), can be obtained analogously to the wind 
farm case (see the end of Chapter 3 for more details). 

6.4. Memory-less transformation of the 
Gaussian process 

Several techniques have been suggested for simulation of 
non-Gaussian processes –see e.g. the review [251] or the 
book [252]. The bijective monotonic transformation has been 
selected for this work because it is a simple technique for 
achieving the required distribution of speed variations. 

Memoryless processes have the same properties if time is 
scanned forward or reverse. Therefore, if the rising time of 
gust is smaller than the decreasing time or if the process 
shows characteristic shapes or intermittency, a more 
advanced model should be used. Fortunately, even though the 
signal from separate turbines shows characteristic shapes, 
their sum tends to loose those features and they tends to a 
Gaussian process if the signals are not synchronised (Central 
Limit Theorem for the sum of independent processes). 

A) Static monotone transform 
The method used in this work is a memoryless 

transformation from an auxiliary Gaussian processes x(t) of 
mean μ and standard deviation σ (blue solid line in Fig. 91) to 
a double exponential y(t) of the same mean and standard 
deviation (purple long dashed line in Fig. 91). Imposing that 
the CDF of the normal is transformed into the CDF of a 
Laplace distribution (351), the following relation has been 
obtained:  

 ( ) ( )[ ( )] [ ( )] ( ) [ ( )]y t x tCDF y t CDF x t y t f x t= ∀ =  (351) 
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 (352) 

where Erf is the error function.  
Analogously, the auxiliary Gaussian process x(t) can be 

obtained from the measured wind speed y(t) applying the 
reverse transformation of (352): 
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Larsen proposed in [221] a signed quadratic 
transformation. The relationship for this transformation is: 
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 1[ ( )( ) ] [ ( ) ] 3 | ( ) |f y t Sigx t n y t y tμ μ σ μ− = += − −  (355) 

 
Fig. 89: Graph of the bijective transformation of the auxiliary Gaussian 
process x(t) into the real process y(t), with Laplacian distribution, compared 
to the identity transformation. 

 
Fig. 90: Graph of the bijective transformation of the auxiliary Gaussian 
process x(t) into the real process y(t), with signed Chi-Squared distribution, 
compared to the identity transformation  
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The probability of deviations smaller than 2 σ in absolute 
value are similar for the auxiliary Gaussian process x(t) and 
for the real process y(t) in Fig. 90: both processes stay within 
this limit around 96% of the time. But the differences are 
remarkable for extreme deviations (|x(t)| » 2 σ). The real 
process y(t) experience bigger probability of extreme 
deviations. 

This method can be applied to obtain any continuous 
distribution. If wind records measured at greater period than 
the average duration of wind gusts are available, the 
experimental distribution of wind variations can be obtained 
and a transformation can be fitted. The experimental 
distribution can be approximated to a suitable parametric 
distribution such as q-exponential, Pearson type IV, stable 
distribution or Gummbel type I for extreme values. 

For example, Fig. 91 shows other transformations of the 
normal distribution: the square of a normal random variable 
(brownish dot-dashed line) and the 1,2 power of a normal 
random variable (green dotted line). Generally, a power law 
transformation or a type IV Pearson distribution can be used 
to closely mimic measured distributions. 
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Fig. 91: PDF for different distributions (Normal: solid line; Laplacian: purple 
long dashed; X2 distribution where X is a zero mean normal: brownish dot-
dashed line; X6/5 distribution: green dotted line). All the distributions have 
been adjusted to unity variance and zero mean. 

The original and the transformed process have the same 
mean and variance (i.e. this is a second-order statistical 
approach of the real process). Hence, the remarkable 
properties of normal processes are used to make the problem 
tractable and finally, the non-linear transformation is applied 
to achieve a process with the target distribution.  

This transformation can be used to infer properties such of 
occurrence probability of analyzing extreme events from the 
properties of a Gaussian process.  

On the one hand, a normal distribution fit of wind speed 
represents accurately small deviations, it underestimates rare 
events. On the other hand, a Laplacian distribution fit of wind 
speed represents accurately rare events but it underestimates 
common events. 

In general, second order statistics will be used and 
normality will be assumed unless otherwise stated. For 
convenience, the effective wind speed in this chapter will be 
treated as a Gaussian process unless for the study of extreme 
events and gusts, where the memory-less transformation to a 
double exponential distribution will be applied. This is a 
conservative approach which makes the wind variations 

tractable and it tends to overestimate slightly rare events. Fig. 
92 represents the normalized distribution of the powers of 
equivalent turbulence using a double exponential model for 
the effective wind speed.  

-4 -2 0 2 4

1.000

0.500

0.100

0.050

0.010

0.005

0.001

Normalized powers of wind deviation, DUn êsn

No
rm

ali
ze

d
PD

F
of

wi
nd

de
vi

ati
on

po
we

rs

 
Fig. 92: Normalized PDF of windUΔ in blue solid line, 2( )eqUΔ  in purple 
dashed line and 3( )eqUΔ  in brownish dot-dashed line. The distribution of 

eqUΔ  is assumed to be Laplacian (double exponential) and the three PDFs 
have been scaled to have unity variance. 

B) Alternative dynamic models 
Other limitation of the memory-less model is that the 

transformed process cannot reproduce accurately the very 
slow dynamics of stable weather [253]. These patterns affect 
wide areas and their influence in power production is highly 
correlated. Therefore, the transformed process is valid only 
up to medium horizons. For longer horizons, other 
approaches as the stochastic differential equations (SDE) are 
more suitable. 

SDE can be approximated by Markov chains [254], and the 
properties of the process are usually obtained applying matrix 
algebra. The Markov process is indeed multiplicative and 
hence, it is suitable for modelling wind fluctuations, that 
exhibit this behaviour.  

In the following chapter, a simplified approach to account 
slow weather dynamics based on Markov chains will be 
presented. The Markov chains are strongly connected to 
exponential distributions and they are a tractable 
discretization of diffusive stochastic differential equations 
with jumps [255]. 

C) Conventions and assumptions in the rest of this 
chapter 

The experimental probability distribution of ΔUwind is 
primarily Lapacian [221, 223, 224] –a broken line in 
logarithmic probability scale–.Thus, the bijective 
transformation (352) and its inverse transformation (353) will 
be used, unless stated otherwise.  

The gusts of the real process y(t) are usually characterized 
in the time domain. Then, the equivalent parameters of the 
auxiliary Gaussian process x(t) are obtained from (353) in the 
time domain. Then,  the properties are determined from the 
power spectral density of x(t), PSDx(f), that is assumed to be 
similar to the PSDy(f) of y(t) (second order statistical 
approximation). 

This approximation is conservative, since it does not 
underestimate extreme events and the main characteristics of 
wind variations can be derived. 
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6.4.2. Maximum speed expected in a 
register of length T 

The maximum wind speed in an interval can be estimated 
from the theoretical properties of the stochastic processes. 
The stochastic theory related to local maximums has been 
extensively developed. The pioneering work of S.O. Rice in 
[256] initiated a new approach to characterize the extremes of 
a stochastic process. D.E. Cartwright enhanced the properties 
of the maximums of normal processes in [257]. 

The work of G.C. Larsen, W. Bierbooms y K.S. Larsen in 
[258] is focoused in the statistical properties of wind gusts, 
comparing the analytical results and the measurements in 
several sites of the database www.winddata.com [259]. 

A) Case I: the equivalent wind difference ΔUeq has a 
Gaussian distribution 

In this subsection, the equivalent wind Ueq(t) will be 
assumed stationary (the properties of Ueq(t) does not vary in 
time and therefore, the weather evolution will be neglected). 
It will be also assumed that Ueq(t) can be considered a 
broadband normal process since the spectrum of the wind 
have a wide range of frequency components. 

Under such assumptions, the expected maximum of 
ΔUeq(t) in a record of duration T0 is: 

 /0
max, 2

2
dUeq dt

Normal Ueq
Ueq

T
U Ln

σ
σ

π σ

⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (356) 

where the standard deviation of the equivalent wind speed, 
σUeq, and the standard deviation of the equivalent air 
acceleration, σdUeq/dt., can be computed from the equation (6) 
of [63]. 

In practice, σUeq and σdUeq/dt in (356) must be estimated 
from records of duration T0 and where there is not a 
significant weather change (the standard deviations increase 
with the interval duration because the variance due to the 
meteorological dynamics increases for longer durations).  

It should be noted also that the equivalent speed (referring 
to a single turbine rotor or a set of turbines) is filtered respect 
the wind that would be measured with an anemometer of 
instantaneous response. Therefore, the more smoothed is the 
equivalent wind, the smaller is the maximum expected 
deviation. 

Moreover, the instantaneous speed can contain a very brief 
maximum due to microturbulence. However, this ephemeral 
maximum correspond to a very small area of the rotor and 
this maximum does not have greater importance in our study 
nor could post due to the limitations of the real anemometers 
(they have a non-negligible inertia and they measure the 
speed of a certain air volume). 

In Fig. 32, the cut-off frequency is fcutoff = 0,0245 Hz for 
mean wind speeds 〈Uwind〉 = 10 m/s y and integral turbulent 
length scale AUwind = 1000 m and rotor radius R = 50 m. In 
Fig. 39, the cut-off frequency is fcutoff ≈〈Uwind〉 /(6R)  ≈  0,033 
Hz for β≈0 and  the same 〈Uwind〉  and R. This indicates that 
faster wind fluctuations than τvyt ≈ 1/fcut ~ 40 s are filtered due 
to the spatial structure of the turbulence and the size of the 
rotor. 

Experimental measures have shown that the wind 
turbulence is averaged along the rotor disk area and the actual 
filter order is r ~2. The fluctuations of the equivalent wind at 
10fcutoff, are attenuated 20 times respect the instantaneous 
wind speed measured with an ideal anemometer. 

Most meteorological anemometers and data loggers 
systems have a maximum frequency response fmax≤1 Hz. 
Thus, the quicker gust that can be considered is half cycle at 
the maximum frequency, τmin ≈ (2fmax)-1 > 0,5 s. In fact, the 
average gust duration of a turbine with R = 50 m and 〈Uwind〉 = 
10 m/s is many times τmin  (see Fig. 93). A synthesized 
equivalent gust for R = 50 m and 〈Uwind〉 = 10 m/s is shown in 
Fig. 93 (thick line) with the average shape (dot-dashed line) 
along its standard deviation (dashed lines). In average, the 
gust is inside the dotted range the 68,2 % of time. 

 
Fig. 93: Equivalent peak gust of ΔUeq =1 m/s, generated from PSDUeq(f). 

 
Thus, the standard deviation of the equivalent wind speed 

σUeq and the equivalent air acceleration σdUeq/dt must be 
estimated considering only the variations in the range from 
fmin = 1/T0 to fmax ≈ 0,5/τmin.  

 max

min

2 ( )d
f

Ueq Ueqf
PSD f fσ +=∫  (357) 

 max

min

2 2
/ (2 ) ( )d

f

dUeq dt Ueqf
f PSD f fσ π +=∫  (358) 

If fmax is infinite and the estimated PSDUeq(f) does not 
decrease quicker than f–2 at high frequencies, the integral 
(358) may not converge, as pointed in [223]. However, the air 
acceleration is bounded and physically σdUeq/dt is finite due to 
the air viscosity and compressibility. Since τmin is much 
smaller than the actual gust duration, the value fmax only has a 
residual effect in (356) to (358). 

 The expected maximum deviation of the longitudinal wind 
during a minute, measured with an ideal anemometer, is 
between 2 and 3 times its standard deviation: 
ΔUlong max,T, Normal/σUlong,T = 60 s ≈ 2,1 y 2,7. This value has 
been obtained for the usual wind spectra defined in the first 
chapter of this thesis. 

The equivalent wind speed is smoother and the ratio 
ΔUeq max,Normal /σUeq,T = 60 s  is typically between 1,4 y 1,9 for a 
multi megawatt turbine. 

Average 
equivalent 

gust ± 
standard 
deviation 
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The formula (356) is fair for the longitudinal wind 
difference in a point, ΔUlong. However, the expression (356) 
underestimates slightly the equivalent wind difference ΔUeq 
for periods smaller than one minute because the actual 
PSDUeq(f) does not correspond to a true broadband process in 
the frequency range between fmin= 1/60 Hz  and fmax (the 
frequency content is very biased towards the low frequency 
range). 

The probability of staying within a range corresponds to 
the normal distribution in a Gaussian process (see Fig. 94). 

The area shaded in pink corresponds to less than a standard 
deviation offsets respect the average. A normal process has a 
swing less than a standard the 68,2 % of the time (probability 
of the pink region: 34,1 % + 34,1 % = 68,2 %). The process 
stays within two standard deviations the 95,4 % of time (pink 
and beige regions: 13,6 % + 34,1 % + 34,1 % + 13,6 % = 95,4 
%). The process stays within three standard deviations the 
99,7 % of time (pink, beige and green regions). 
 

   
Fig. 94: PDF de la distribución normal. 

Finally, it should be noted that normal processes are 
symmetrical. Hence, the minimum value expected in an 
interval of duration T0 is ΔUmin= –ΔUmax. 

B) Case II: the equivalent wind difference ΔU’eq has a 
Laplacian distribution 

Since the transformation (352) is monotone rising, the 
expected value of the Laplacian process can be obtained from 
(352) and (356), substituting μ = 0 and σ = σUeq : 

max,
max, 1

2 2 

Ueq Normal
Laplacian

Ueq

U
U Ln Erf

σ

σ

⎡ ⎛ ⎞⎤Δ ⎟⎜⎢ ⎥⎟⎜ ⎟Δ = − − ⎜⎢ ⎥⎟⎜ ⎟⎟⎢ ⎥⎜⎝ ⎠⎣ ⎦
 (359) 
 ' '

, ,eq Laplacian eq eq LaplacianU U U= 〈 〉 + Δ  (360) 

 
The maximum equivalent speed deviation expected in a 

Laplacian process is similar to the Gaussian case since 
max,NormalUΔ / Ueqσ < 3 (see Fig. 90).  In fact, the expected 

value computed with (359) is an approximation because the 
transformation (352) is not linear and the actual distribution 
of wind must be estimated from real data. 

Fig. 95 shows the density of the Laplacian distribution. 
Compared to a normal with the same variance distribution, 

the probability is bigger very near the average and at the tails, 
maxUΔ / Ueqσ > 2. 

  
Fig. 95: Normalized PDF of the Laplacian distribution. 

It should be noted that the transformation (352) is 
symmetric. Hence, the minimum value expected in an interval 
of duration T0 is ΔUmin= –ΔUmax for the transformed process. 

C) Case III: ±ΔUeq
½ is a normal process 

Provided the signed squared root of the wind speed 
deviation ±ΔUeq

½(t) is stationary (the stochastic 
characteristics of ±ΔUeq

½(t) does not vary in the considered 
interval) and ±ΔUeq

½(t) can be considered a broadband 
normal process (the wind fluctuations do not present a narrow 
frequency band of fluctuations), then the maximum value of 
±ΔUeq

½(t)  expected during an interval of duration T0 is: 
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where ½
eqU

σ±Δ  is the standard deviation of the signed squared 
root of the wind deviation, ±ΔUeq

½(t), and ½( )/eqd U dt
σ ±Δ  is the 

standard deviation of the derivative of  ±ΔUeq
½(t). 

These standard deviations can be computed analogously to 
σUeq y σdUeq/dt after generating the process ±ΔUeq

½(t) from real 
data and estimating its PSD: 

 ½ ½
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2 ( )d
eq eq

f

U Uf
PSD f fσ +

±Δ ±Δ
=∫  (362) 
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d U dt d U dtf
f PSD f fσ π +

±Δ ±Δ
=∫  (363) 

or dividing the sampled process ±ΔUeq
½(t) in chunks of 

duration T0 and using the conventional estimation of the 
variance of samples in the framework of an ensemble of 
realizations of a stochastic process. 

Finally, the transformation necessary to obtain equivalent 
wind speed '' ( )eqU t from ±ΔUeq

½(t)  is: 

 
½

½
½

2

''
( )

( ) [ ( )]
3 

eq

eq
eq eq eq

U

U t
U t U Sign U t

σ±Δ

⎡ ⎤±Δ⎢ ⎥⎣ ⎦= 〈 〉 + ±Δ  (364) 

where '' ( )eqU t  has been normalized by ½3 
eqU

σ±Δ  to conserve 
the variance between the processes ½( )eqU t±Δ  and '' ( )eqU t .  
Therefore, the second order statistical approximations 

½
eqU

σ±Δ ≈ σUeq and  ½( )/eqd U dt
σ ±Δ ≈ σdUeq/dt can be used since the 

transformation (364) maintains the mean and variance of the 
equivalent wind. 
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Fig. 96 shows the density of the square-root-normal 
distribution. Compared to a normal or a Laplacian with the 
same variance distribution, the probability is bigger very near 
the average and at extreme values, maxUΔ / Ueqσ > 3. 

   
Fig. 96: Normalized PDF of '' ( )eqU t  (square-root-normal distribution). 

 

6.5. Unconditional generation of random 
samples 

6.5.1. Notation of sampled stochastic 
processes 

In the rest of the chapter, the continuous normal process 
x(t) would be sampled at time t = 0, Dt, 2Dt, ... , (N - 1) Dt . 
In other words, the continuous process x(t) is sampled evenly 
N times in the interval t ∈ [0, (N - 1) Dt] with a time step Δt 
and a total duration (N - 1) Dt between the first and the last 
sample. 

 For convenience, the following conventions will be used: 
• The signal duration is T0= N Dt,  
• The conventional frequency resolution is Δf = 1/T0,  
• The angular frequency resolution is 2 fω πΔ = Δ  
• N is even and N≥4. 
• The notation of the continuous process is x(t). 
• The notation of the discrete process is x[k] or xk at 

instants k = 0, 1,... , N-1. 
• Vectorial notation will be used to refer a realization of 

the stochastic process. 
The main properties of the Gaussian or normal processes 

can be found on most basic bibliografy on stochastic 
processes (e.g., chapter 8 of [260], the tutorial [261], the book 
[262] or chapter 13 of [263]).  

The Karhunen-Loève orthogonal decomposition of a 
normal process is its Fourier transform. The variance of a 
normal process in a frequency band does not depend on the 
signal duration T0. In fact, the Fourier transform of a discrete 
normal process is a vector of complex points and distributed 
normally. The points of the Fourier transform have zero mean 
and variance proportional to T0. Thus, a factor √T0 will be 
implicitly applied to the Fourier transform, denoted by F, for 
obtaining a spectral measure whose properties independent of 
the duration T0of the sample. 

The Fourier transform of a continuous stochastic signal 
x(t) of duration T0, divided by √T0, is called spectral density 
of the stochastic signal and its notation is , ( )TX fσ

G
: 
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T

x t X f
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∫
G
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FF

 (365) 

, ( )TX fσ

G
 will be referred as stochastic spectral phasor 

density or just (stochastic) phasor for short. When the 
duration T of the sample is not required, the notation of the 
stochastic spectral density , ( )TX fσ

G
 or , [ ]TX kσ

G
  will be 

simplified to ( )X f
G

 or to [ ]X k
G

. The units of , ( )TX fσ

G
 are the 

ones of x(t) per square root of Hertz (provided time t is 
measured in seconds). 

The stochastic spectral density , ( )TX fσ

G
 has been defined in 

(365) so that its variance is the two-sided power spectral 
density of the signal, 2

,| ( )|TX fσ

G
= ( )xPSD f . The power 

spectral density of the signal fully characterizes a normal 
process and it is independent of the signal duration. 

The Discrete Fourier Transform of the sampled process 
x[k] will be denoted by DFTx[k]. Analogous to the discrete 
case (365), the DFTx[k] is scaled to match the phasor 

, 0( / )TX f k Tσ =
G

: 
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 1 /2k N∀ ≤ ≤  

Thus, the discrete Fourier transform of the real vector x[k] 
of N samples is a vector of N/2+1 complex random variables 
because DFTx[k] has Hermitian symmetry. The elements 2 to 
N/2+1 of the vector DFTx[k] are independent random 
variables with complex normal distributions. The mean of 
DFTx[k] is zero and its variance is proportional to the two-
sided power spectral density of the signal, [ ]xVar DFT k⎡ ⎤

⎢ ⎥⎣ ⎦  = 
2| [ ]||DFT kx = 2 1

0 0( / )xN T PSD f k T− = . 
In meteorology, one-sided power density spectrums 

( )xPSD f+  are preferred to two-sided spectrums, ( )xPSD f . 
The variance of the Fourier transform, expressed in terms of  

( )xPSD f+  is: 
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Since the sampled signal x[k] is real vector, then its Fourier 
transform has Hermitian symmetry: 
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 ( ) ( )*
, ,T TX f X f fσ σ− = ∀

G G
 (371) 

The negative frequencies in the discrete Fourier transform 
correspond to the last N/2–1 elements of DFTx[k]. Thus, the 
last half elements are the conjugates of the first ones: 
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The original sequence can be obtained back through the 
inverse discrete transform: 

 
,

21  

,
0

1
[ ] [ ]

T

N j k i
N

TX
i

IDFT k X k e
Nσ

π

σ

−

=

= ∑G
G

 (373) 

 
{ }

,

21  

,
00

,
0 0

1
[ ] [ ]

[ ] [ ]
T

N j k i
N

T
i

T X

N
x k X k e

NT
N N

IDFT X k IDFT k
T T σ

π

σ

σ

−

=

= =

= =

∑

G

G

G  (374) 

6.5.2. Foundations of the unconstrained 
generation of random samples 

The synthesis of equivalent wind usually consists on the 
random generation of a signal with a desired mean level and 
the stochastic spectral density of a site [42, 50, 65,153,264]. 
The simplest method to generate a signal from its spectrum is, 
probably, the Shinozuka method [265, 266], which generates 
a random signal with a constant power spectrum. 

However, the wind shows a variable power spectrum and 
the approach used in this chapter will be consistent with the 
approach of Wim Bierbooms, Gunner Larsen, Poul Sorensen 
et Al. [46, 153, 177, 75, 81, 88, 89, 103, 214, 215, 217, 220, 
223, 224, 249, 264]. A simple introduction to the method is 
available in [177]. The main features of this method are 
summarized in this subsection. 

The equivalent wind can be synthesized from a random 
spectrum that satisfies (368). Applying the Karhunen-Loève 
orthogonal decomposition of a normal process, the sample is 
generated in the frequency domain, producing [ ]X k

G
 

randomly ∀ 1 ≤ k ≤ N/2. Then, the sample is obtained in the 
time domain through the inverse discrete Fourier transform of 

[ ]X k
G

.  
The phasors of positive frequencies, [ ]X k

G
 ∀ 1 ≤ k ≤ N/2, 

are complex random variables independent and normally 
distributed with zero mean and variance 0( / )xPSD f k T= . 
Since the real and imaginary part of each point [ ]X k

G
 are 

independent, they can be independently generated as real 
normal variables. The phasors corresponding to the negative 
frequencies are obtained through the Hermitian symmetry 
(372). Although the DC term [0]X

G
 can be sampled from a 

Weibull distribution, but [0]X
G

 is typically a datum because 
the average wind speed is usually considered a parameter. 

This process has been summarized in the block diagram of 
Fig. 97. Since the spectral variance of the equivalent 
wind, 0( / )UeqPSD f k T= , depends on the wind regime and 
turbine, a program has been developed for estimating it. The 
main parameters of the wind and the turbine rotational effects 
are adjusted in the tab pane shown in Fig. 98. 

The spectral generation is not practical for samples with 
many points (for example, for synthetic series of many hours 
with high resolution), because it implies computing and 
storing very long vectors. In that case, the series can be 
divided into portions, each portion can be generated 
independently in the frequency domain and they can be 
gathered in the time domain. Some overlap of the portions 
and a weighting window is required to produce a smooth joint 
of the signal portions, analogously to the spectrogram. A 
weighting with unity squared sum in the overlapped joints 
produces a series with uniformly distributed variance. Finally, 
the average wind is added to the signal. This technique only 
requires storing the adjacent portions and the portion duration 
should be longer than the slowest significant oscillations in 
the wind. 

A more conventional approach for long samples is to 
design a filter bank that can be applied to white noise [42, 50] 
to produce a signal with the target spectral variance 

0( / )xPSD f k T= .  

A) Estimation of the wind spectra  
The wind spectra at one site and at some atmospheric 

conditions can be estimated from high resolution wind 
measurements. The standard IEC 61400-1 provides some 
guidelines for selecting an adequate wind spectrum for 
structural purposes. In fact, the wind parameters shown in 
Fig. 98 evolve in time and indeed they can show great 
dispersion according to atmospheric conditions (e.g. stable, 
laminar or turbulent boundary layer). 

The wind smoothing due to the spatial diversity in the 
turbine rotor can be adjusted varying the rotor radius R and 
the turbulence length scale Λ1 in Fig. 98. The rotor filter is 
equivalent to a low pass filter with a cut-off frequency 
computed from the expressions obtained in chapter 3: 
• Spatial filter from Sørensen: 

 
2 2

2
0,9 0.0144wind

cut
Uwind

U A R
f

A R
= −

A
 (375) 

where UwindA  ≈ Λ1 and the decay constant A is between 5 
and 12. 
• Spatial filter from Wilkie, Leithead and Anderson: 

 fcut = 0,1224 〈Uwind〉/R (376) 
• Spatial filter from the turbulence averaged along the rotor 

disk area: 

 fcut 1 windU /(6R) (377) 

Sørensen, Wilkie, Leithead and Anderson modelled the 
rotor filter as a first order low pass filter but some actual 
measurements have suggested that the actual order is closer to 
a second order in a wind turbine of the megawatt class. In 
fact, the model of the turbulence averaged along the rotor disk 
area that the rotor filter order is bigger than 1,5, depending on 
the wind coherence. 

The rotational sampling can be included in the equivalent 
wind. This option is disabled by default in the program 
because the effect of the angle of the blades in the torque is 
represented more precisely with the method described in 
Annex A. Furthermore, this effect represents an almost 
cyclostationary feature that feeds mechanical vibrations, in 
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contrast to the bursts and wind gusts. However, the model can 
include spatial sampling in the equivalent wind to allow 
comparisons with other work because some authors have used 
this method to include the tower shadow and wind shear 
phenomenon. 

B) Unconstrained sample generation module 
A module for the generation of unconditional samples of 

equivalent wind have been integrated in the program 
EQWIGUST [218]. The average equivalent wind, the 
duration T0 and the discretization step Δt can be selected in 
the tab pane shown in Fig. 99. The average wind speed can be 
also modified in the module of the spectral features of the 
equivalent wind, since the spectral variance density is usually 
considered proportional to the wind speed. 

All modules that generate synthetic samples have a control 
to view a random sample from a set. This control selects 
different seeds in the random generator used in the random 
sample. Finally, this module also includes some options to 
modify the appearance of the graphics. 

6.6. Peak type gusts 
6.6.1. Gust concept 

A gust of wind can be defined as a wind speed deviation 
out of their usual range of oscillation. The most common 
measure of the normal fluctuation level in the wind is the 
turbulence intensity, defined as the ratio of  the standard 
deviation Uwindσ  to the average windU〈 〉of the wind speed. 
According to the IEC 61400-1 standard, the turbulence 
intensity usually lies between 12 % and 16 %. This standard 
also defines the most extreme gust during generating. 
However, some studies differ in shape and probability of the 
most extreme gust that can experience the turbine [214, 215, 
220]. 

In this chapter, the gust concept will be extended to the 
equivalent wind. The turbulence intensity concept will be also 
extended to the coefficient of variation of the equivalent 
wind, /Ueq eqUσ 〈 〉 . 

Generate another vector of N/2 random numbers 
with Gaussian distribution, zero mean and unity 

variance 

Multiply each element k by its standard 
deviation: 

0
0

1
( / )

2 Ueq
N

PSD f k T
T

+ =  

Lower imaginary part of spectrum (1≤k ≤N/2) 

Generate a vector of N/2 random numbers with 
Gaussian distribution, zero mean and unity 

variance 

Multiply each element k by its standard 
deviation: 

0
0

1
( / )

2 Ueq
N

PSD f k T
T

+ =  

Lower real part of the spectrum (1≤k ≤N/2) 

Complex spectrum for positive frequencies (1≤k ≤N/2) 

Obtain the spectrum of negative frequencies applying the 
Hermitic symmetry: 
( )[ ] [ ] /2Ueq UeqDFT k Conj DFT N k N k N= − ∀ < <  

Set the average wind speed: [0]Ueq eqDFT N U= 〈 〉  

Compute the inverse Fourier transform, neglecting the 
imaginary part due to round off errors. 

Equivalent wind 
Ueq[k] 

Apply the transformation between the normal process x(t) 
and the real process y(t) 

Fig. 97: Flowchart of the generation of unconditioned samples of equivalent wind. 
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Fig. 98: Module of selection of the equivalent wind spectrum characteristics. 
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Fig. 99: Module of visualization of unconditioned samples of equivalent wind. 
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The equivalent wind is closely related to the power output 
of a turbine, wind farm or region, depending on the 
viewpoint. Since the power curve is typically an almost 
monotone function with a non-increasing region and a non-
decreasing region, then a peak of the equivalent wind 
involves another edge of the power output. In the increasing 
region, a positive extreme in the equivalent wind produces a 
positive peak of the power output. In the decreasing region, 
the sign of the extremes are reversed. Therefore, the 
equivalent gusts produce extremes in the power output. 

The gusts are basically characterized by: 
• Its amplitude or the deviation from the average wind [225]. 
• Its shape [214, 215]. 
• Its characteristic time (its typical duration) [223]. 
• Its probability or their frequency of occurrence [258]. A 

similar parameter is the average time between gusts, which 
may be affected by episodes of gusts bursts. 
It should be noted that the value of the turbulence intensity 

and the power spectral density of the equivalent wind are not 
sufficient to estimate the likelihood of the less frequent gusts. 

In addition to the turbulence intensity and to the power 
spectral density of the equivalent wind, the distribution of the 
wind deviation should be also known for assessing the 
likelihood of the less frequent gusts. In a normal process, 
wind variations greater than three times the standard 
deviation, max/ UU σΔ  > 3, happen only 0.3 % of the time. If a 
process follows a Laplacian distribution, max/ UU σΔ  > 3 
happens only  1,6 % of the time (event is 5 times more likely 
than in the normal case). If the signed squared transformation 
(364) is applied to a normal process, then max/ UU σΔ  > 3 
happens only  2,2 % of the time (event is seven times more 
likely than the normal case). Apart from the probability 
distribution of the wind deviation EqUΔ , the probability of 
occurring a gust during a period T0 is influenced by the 
number of times the wind speed deviation and its acceleration 
crosses a certain threshold. The theoretical distribution of the 
extremes in normal processes can be found in [256, 257]. But 
since the wind behaviour differs from a normal process, the 
estimated probability of events should be considered with 
caution.  

6.6.2. Assessment of peak type gust 

The number of gusts in a time interval can be calculated by 
measuring: 
• The maximums exceeding the threshold Uth. 
• The umber of times that EqUΔ  crosses  up the threshold 

Uth. 
The movement of air has a "chaotic" behaviour due to the 

turbulence. The air is continuously accelerating and 
decelerating all the time (e.g., the sound is the succession of 
quick accelerations and decelerations of the air molecules). 
Moreover, the types of used Spectra (Kaimal, Karman, 
Davenport,...) do not take into account the dissipative 
processes occurring at high frequencies. This causes the wind 
signal to display a rough and noisy aspect, and many local 
maxima are present in the gusts (see Fig. 99 and Fig. 100). 

Since the gust characteristic time 〈τ〉 can be estimated from 
the autocorrelation function of the equivalent wind, ACFUeq, a 

low pass filter can be applied to diminish the likelihood of 
counting several events during a burst of local maxima or a 
burst of threshold crossings, without significantly altering the 
maximum speed in the gust and without hiding short gusts. 
For very low threshold, two consecutive gusts can happen 
during one period with only one level crossing (see Fig. 100). 

Therefore, a cut-off frequency fc filter is required to 
avoiding counting several level crossings or several local 
maxima in a single gust. This is particularly required for real 
wind, which has very high frequency content (typically, up to 
the sound frequencies). The equivalent wind of a farm or a 
region is quite smooth and filtering high frequencies is less 
necessary. 

Since the gust last an average time 〈τ〉, the cut-off 
frequency fc can be estimated as fc = k/〈τ〉, where k is an 
adjustable parameter. If k » 1, the number of gusts will be 
overestimated but the real extent of the gust would be less 
affected. If  k 11, the number of gusts will be underestimated 
because quick gusts will be filtered. Thus, the optimum value 
of k is a small number greater than one. 

 

 
Fig. 100: Difficulties involved in the measurement of gusts. 

6.6.3. Mean shape of a peak gust 

This subsection deal with the shape of an equivalent gust 
meeting or exceeding the level maxUΔ  in t=0 respect the 
average equivalent wind 〈U 〉 in t ∈ [-T0/2,T0/2]. For 
convenience, the time origin is in the expected gust peak. 
Since the process and the transformations have been assumed 
symmetrical, the minima have, theoretically, the analogous 
properties of a maxima. Thus, only maxima will be 
considered in this section for the sake of clarity. 

The mean shape of the gust can be computed according to 
Bierbooms [216, 267, 268]. In [216], the gust is defined 
mathematically as a local extreme (dU(t=0)/dt = 0 y 
d2U(t=0)/dt2 < 0) with the value U(t=0) = 〈U〉 + maxUΔ . 
This is equivalent to the following simultaneous conditions In 
the frequency domain: 
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The mean gust shape and a procedure to generate random 
gust can be derived from the theory of constrained stochastic 
simulation. 

The air is continuously accelerating and decelerating all the 
time (e.g., the sound is the succession of quick accelerations 
and decelerations of the air molecules). 

In the one hand, the wind is a wide spectrum process and 
the air is continuously accelerating and decelerating all the 
time at microscale level. The wind signal seems is noisy and 
rough and the wind presents many local maxima or minima in 
the surroundings of any instant. Thus, the local maximum 
condition in t=0 –equations (378), (379) and (380)– is 
pointless due to the fractal nature of the wind. 

The equivalent wind is low pass filtered with a strength 
dependent on the corresponding reference (a turbine, a wind 
farm or a geographical area). In some cases, the equivalent 
wind may contain enough high frequency components to 
make useless the local maximum condition.  

In fact, the condition U(t=0) = 〈U 〉 + maxUΔ  does neither 
imply that the global maximum of the interval t ∈ 
[-T0/2,T0/2] happens at t =0 nor the global maximum is 
〈U〉 + maxUΔ . Thus, the gust conditioned on a local 
maximum at t =0 –equations (378), (379) and (380)– would 
probably have a global maximum a bit higher than maxUΔ  
and at an instant near t =0. The higher is maxUΔ , the global 
maximum is closer (in average) to t =0 and its value is closer 
(in average) to maxUΔ . 

On the other hand, the conditional simulation of the global 
maximum of the considered interval, t ∈ [-T0/2,T0/2], is very 
complex due to the difficulties of expressing such condition 
in the frequency domain. The time instant where the global 
maximum happens is meaningless, since the sample can be 
centred at t =0 using the periodic extension of the samples. 

Taking into account the uncertainties and approximations 
of the equivalent wind process, the constrained simulation of 
extreme gust can be obtained imposing U(t=0) = 〈U 
〉 + maxUΔ  only. The algorithm used for constrained 
simulation is similar to the unconstrained simulation (the 
workflow is shown in Fig. 101). In fact, if only condition 
U(t=0) = 〈U 〉 + maxUΔ  is imposed, then the imaginary part 
of the spectrum is computed as in the unconstrained 
simulation. 

However, an intermediate solution easy to implement is 
that the smoothed process (with an ideal cut-off frequency fc) 
had a local maximum at t=0 while the original process fulfils 
U(t=0) = 〈U 〉 + maxUΔ . Thus, the equations (378) and (379) 
are transformed into: 
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where the maximum component considered in the smoothed 
signal is ks = Round(fcT0). In addition, the inequation (380) –
reject local minima and saddle point– can be substituted by 

checking that the smoothed process has a maximum at t=0 
before accepting the generated sample: 
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because 
2

2
( 0) 0smooth

d U
t
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If (383) fails, there is a saddle point or a local minimum in 
the smoothed signal and the global maximum is not exactly in 
t=0 and its value is higher than maxUΔ . But even in that case, 
the global maximum level and its instant can be near maxUΔ  
and t=0, respectively, provided maxUΔ > 0. Thus, the sample 
could even be accepted if (383) fails depending on the 
analysis viewpoint. In the program EQWIGUST [218], the 
rejection test (383) is not applied. 

A thorough compilation of the mathematical properties of 
normal processes near a local maximum can be find in 
Lindgren [269]. The mean and the variances of the discrete 
Fourier spectrum can be obtained from the conditions (381) y 
(382) with the procedure shown in [216]. 

For convenience, the equations (381) and (382) will be 
expressed in matrix from using the condition vector [y]2x1, the 
constant matrix [G]2xN and the vector of real random variables 
[x]Nx1 corresponding to the real and imaginary spectrum for 
positive frequencies. The matrix [G]2xN represents the 
influence of each random variable (elements of [x]Nx1) is the 
target conditions [y]2x1: 
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The angular frequency step 
0

2 2 /f Tω π πΔ = Δ =  has 
been used in (386) for notation compactness. The transpose of 
vectors and matrices is notated with the superscript tr for 
avoiding confusions with the sample duration, T0, or with the 
time step Δt. 

The vector [x]Nx1 defined in (387) contains first the real and 
after the imaginary spectrum for positive frequencies, 

[ ] 1 /2U k k N∀ ≤ ≤
G

. The mean value of the DC term in the 
spectrum is 

0
[0] /U U T= 〈 〉
G

 and it is a parameter of the 
constrained simulation. The Fourier coefficients [ ]UDFT k , 
defined in (366) according to the typical convention in signal 
processing, has been scaled to obtain the stochastic phasor 
density, 1

0[ ] [ ]UU k N T DFT k−≡
G

. This density is 
independent of the sample duration T0 and the time step Δt. 

In a Gaussian process, each discrete spectrum component 
[ ]U k
G

 is a random variable independent of the rest of 
frequencies. Thus, the covariance between [ ]U k

G
 and [ ]U l

G
 is 

zero l k∀ ≠ , 1 /2k N≤ ≤ , 1 /2l N≤ ≤ . Moreover, the 
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distribution of [ ]U k
G

 is a complex normal with zero mean. 
Thus, the real and imaginary parts of [ ]U k

G
 are independents 

and they have a conventional (real) normal distribution. 
Therefore, the covariance matrix of the variable array 

[x]Nx1 in a unconstrained simulation, notated as [M]NxN is a 
diagonal and non-singular matrix: 
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The average of the random variable vector [x]Nx1 
constrained to a gust of peak value 

max
UΔ  is [mc]Nx1 and its 

value can be derived from the Sherman-Morrison-Woodbury 
formula, sometimes referred as the matrix inversion lemma 
[270, 271]: 
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Where the covariance matrix of the condition vector [y]Nx1 for 
unconstrained simulation is notated as [Q]2x2 and its value is: 
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The covariance matrix of the variable vector [x]Nx1 
constrained to a gust of peak value 

max
UΔ  is [Mc]NxN: 
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The application of the previous formula yields a quasi-
diagonal matrix whose diagonal elements are the conditioned 
variances of a gust of peak value 

max
UΔ  and the elements 

outside the diagonal are the covariances. The diagonal ele-
ments in [Mc]NxN are the variances of the spectral 
components: 
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The elements outside the diagonal of [Mc]NxN are the co-
variances of the spectral components. The covariances among 
the real and imaginary parts are null (that is, the real and 
imaginary parts of the spectrum are statistical independents). 
However, the real components are negatively correlated at 
different frequencies (the negative components shows an 
analogue behaviour). The covariance between the random 
variables [x]i and [x]j is notated [Mc]i,j and its value is: 
• Covariance of real coefficients. 
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• Covariance of imaginary coefficients. 
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• Null covariance between imaginary and real coefficients. 
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The covariances have small values of the magnitude of 
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ρ = M M M . They are quite smaller in absolute 
value and negative (about -1/N for the real components and 
about -1/ks2 in the first ks imaginary coefficients). The ratio 
of the covariance to the variance product of the unconstrained 
components is: 
• Ratio for real coefficients: 
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• Ratio for imaginary coefficients. 

[ ] [ ]
( )( )( )

( ) ( )
( )( ) ( )( )

[ ]

0

2

1

2
,

1

2

2 2, ,

, ,
, ,

2
2 2 2 2

3 2
0 / , ,

4

16

smooth

ks
k
TUk

ks
k k

k

N N
c ci j i j

i i j jc ci i j j

N N N N

dU dt T N

i j

k PSD

i j i j

kT

ω

π

ω

σ

+

=

=

− −

Δ

− − − −

⎡ ⎤ ⎡ ⎤ Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦≈ = − =
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= − = −

∑

∑ M

M M

M M M M
 

 /2 , /2 ,N i ks N j ks i j∀ < ≤ < ≤ ≠  (400) 

where the variance of the equivalent wind is: 
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and the variance of the equivalent air acceleration is: 
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A square root of the matrix 
c

⎡ ⎤⎢ ⎥⎣ ⎦M  must be computed for 
generate the random vector [ ]

c
x  (for more details, see [273] 

or [274]). The constrained covariance matrix [Mc]NxN is 
symmetric and positive semidefinite, singular and its square 
root exist, although they are not unique. Since the conditions 
(381) and (382) have been imposed, the rank of the 
constrained covariance matrix [Mc]NxN has disminished from 
N to N-2. Therefore, [Mc]NxN is singular and its square root 

c
⎡ ⎤⎢ ⎥⎣ ⎦M  can not be computed using the efficient Cholesky 

decomposition because [Mc]NxN is non-invertible.  
However, the elements with index i=1 and i=1+N/2 can be 

eliminated from [Mc]NxN and [xc]Nx1 to obtain a invertible 
system with a reduced set of random variables, [M’c](N-2)x(N-2) 
and [x’c](N-2)x1 Then, the reduced matrix [M’c](N-2)x(N-2) is 
invertible and strictly positive definite and its square root, 

c
⎡ ⎤′⎢ ⎥⎣ ⎦M , can be computed through the usual Cholesky 

decomposition.  
Thus, the gust spectrum can be generated from the reduced 

set [x’c](N-2)x1 through the following matrix expression: 

 [ ]
c c c
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where ξ⎡ ⎤′⎢ ⎥⎣ ⎦  is a vector of N-2 independent random variables 
normally distributed of null average and unity variance. 
Finally, the elements xi =1 and xi =1+N/2, corresponding to the 
real and imaginary part of the fundamental sample component 
(k=1), can be obtained from the equations (381) and (382). 
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The main computational burden is calculating 
( 2) ( 2)c N N− × −

⎡ ⎤′⎢ ⎥⎣ ⎦M  in the formula (403). The generation of 
samples with a high number of points N requires the 
Cholesky decomposition of a big matrix. The computational 
burden can be divided by four if the real and the imaginary 

part are generated independently because [M’c](N-2)x(N-2) is 
block diagonal. 

Conclusions 
The turbulence can be considered a stochastic process with 

a multiplicative behaviour and the probability of a direction 
change is relatively stable. Thus, the extreme wind deviations 
relative to the wind average have a statistical distribution 
more similar to a Lapacian than to a Gaussian. In fact, the real 
distribution of wind variations depend on the site and the time 
lag and some authors use families of distributions or a 
distribution with many parameters to adjust the measured 
deviation to a model. 

The probability and the shape of extreme wind events 
heavily rely on its dynamics. The average wind shape has 
been estimated assuming a behaviour similar to a normal 
process, transformed with a memory-less conversion to obtain 
a Laplacian distribution of wind deviations. 

The constrained generation of gust is a valuable tool to 
obtain random samples of wind with some features. However, 
the accuracy of the shape and probability of the gust can be 
improved. Some measurements show that the front ramp of 
the gust are, on average, bigger than the tail ramp, but the 
predicted gust shapes are symmetrical. 

The physical concept of wind gust is extended to the 
equivalent wind of a turbine, a farm or a geographic region. 
The gusts of equivalent wind produce a change in the power 
of a turbine, farm or region. The equivalent wind model can 
be used to estimate structural lifetime, optimize controls or 
manage the grid. 

A simplified model for the generation of long samples of 
wind is provided. The errors introduced in this simplified 
model is comparable with the uncertainties of the 
assumptions made in the wind or in the equivalent wind 
behaviour. 

The program EQWIGUST [218] generate gusts of 
equivalent wind with some features and estimates their 
probabilities. 

 





7.1. Introduction to Markov Decision 
Processes 

arkov Decision Processes provide optimal policies on a 
stochastic basis for systems whose evolution depends 

on its history. Markov Chains of first order only takes into 
account previous state, but higher order Markov Chains and 
Hidden Markov Models can be used for more complex his-
tory dependence. As an instance, the state of a battery or a 
water reservoir depends on the charge/discharge history. 
Network topology, transformers tap changers and voltage 
boosters depend on previous voltage, previous load and pre-
vious generation, whose dynamics can be stochastically 
characterized. 

Markov Chains have been utilized in Power Systems usu-
ally as random generators in Monte Carlo Power Flows [275] 
or in reliability studies to account the availability of devices 
[276]. A new methodology to compute stochastic power 
flows is presented based on Markov Chain approximation 
[277] and fuzzy/probabilistic clustering [278]. It has the 
following advantages: 

— A huge reduction of the number of system states allows 
to compute systematically all feasible states and all feasible 
transitions between states. Increasing the number of states 
reduces the error in the steady-state representation but it also 
increases quadratically the uncertainty of the dynamics and 
the computational load. 

— Powerful algorithms can be used to accurately represent 
the interrelationship among random variables such as the load 
level at the different nodes. The patterns of solar and wind 
generation due to meteorology [279] are conveniently 
captured during the classification of measured data. Indeed, 
the non-linear relationship among variables is embedded in 
the classification, without requiring regression or linearization 
analysis 

— The uncertainty of load and generation forecasts and the 
generation failure probability for each pattern can be 
accounted.  

— Many state variables are continuous but these variables 
are discretized since the system is computed only in a small 
set of cases with state variables equal to the centroids of 
patterns. When the state variables do not coincide with a 
pattern centroid, the fuzzy (probabilistic) clustering process 
determines the membership level (the probability to belong to 
each pattern) and the properties of the intermediate cases are 
estimated using interpolation functions. In plain words, the 
system characteristics are computed in a reduced set of cases 

and they are interpolated elsewhere according to the case 
similarity in the rest of cases. 

— Since the number of states is small, all feasible states 
and transitions can be computed running regular power flows. 
Results are manipulated efficiently with matrix (or tensor) 
algebra to obtain statistics and state transitions.  

— Markov processes have remarkable theoretical 
properties and the dynamics of the system can be formulated 
as stochastic differential equations. Since data is logged 
periodically, the analogue continuous-time system is 
discretized using the framework of Markov Chain 
approximation [255]. 

— The optimal control of the non-linear system can be 
done conveniently through a Markov Decision Process, 
especially when managing discrete elements such as switches 
and transformer tap changers (conventional linear time-
invariant control theory is not intended for these devices).  

Most state variables in Power Systems are continuous. The 
evolution of continuously and smoothly varying variables is 
modelled in stochastic theory as a diffusion process and the 
evolution of discrete variables is modelled as a jump process.  

Markov Chains with continuous state space are intricate. 
Usually, they are discretized to use the efficient matrix 
algebra and the powerful properties of discrete time and 
discrete space Markov Chains.  

The discretization of continuous system with small 
discretization steps can induce a lot of states, leading to 
matrixes of high dimension. Therefore, a discretization 
methodology is presented in this work where the number of 
states is optimized. Some guides are given to balance 
accuracy of the model, data requirements to estimate system 
parameters and computation burden. 

The optimal control of a Markov system can be expressed 
as a policy, which gives the best decision or action to take for 
a given state, regardless of the prior history. Once a Markov 
Decision Process is combined with a policy, this fixes the 
action of the control for each state and the resulting 
combination behaves indeed like a Markov chain [280, 281]. 
Thus, the system is dimensioned for achieving the maximum 
expected outcome of the controlled system. 

7.2. Formulation 
7.2.1. Introduction to Markov chains 

Time Markov chains are a powerful tool to cope with states 
and transitions between states in time domain. The probability 
of maintain the system state (for example, power generated 
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by uncontrolled renewable sources or consumer load) can be 
easily computed. The probability of changing to full, null or 
any level of production or consumption for a given horizon 
can be also computed very easily. The probability can take 
into account the forecast of renewable energy resource along 
its accuracy. Moreover, Markov Decision Processes can be 
used for optimal stochastic control (for the example, to 
allocate the spinning reserve needed to compensate for 
eventual casual bulk decreases of renewable generation or 
load).  

The main disadvantage of Markov chains is the coarse 
discretization needed to make continuous systems tractable, 
which mask small fluctuations of the systems (for example, 
small variations and small cyclic oscillations of generated 
power). Therefore, spectral and time series approaches are 
complementary to Markov chains (spectral and time series 
represents quite well small and periodic variations for short 
horizons while Markov processes models better the non-linear 
and the long horizon behaviour of renewable generation) 

An introduction to Markov models with many examples 
and easy to read can be found in the book of S. M. Ross 
[345]. Other simple books are by B. Nelson [297] and by J. R. 
Norris [282] (in the later, there is a valuable introduction to 
measure theory, needed to understand advanced books on 
stochastic processes). Multivariate and higher order Markov 
chains can be reviewed in [283]. The book by V. G. Kulkarni 
[284] includes some chapters for optimal design and optimal 
control and it has numerical examples to work with a Matlab 
toolbox and data form the author webpage.  A more technical 
book by V. G. Kulkarni [335] treats also continuous time and 
continuous state system.  Stochastic processes are a fertile 
field of operational research with abundant literature. 
However, most books are targeted to mathematicians, 
requiring a solid background on statistical theory. 

The dynamics of a system such as a wind farm or a group 
of them are characterized through the transition probabilities 
from state i to state j, pi,j . Transition probabilities are 
arranged in the transition matrix P  = [pi,j], which are 
estimated from actual data. The probability of staying in the 
same state the next interval is pi,i.  The residence time in a 
state (time during the system is at state i) is distributed 
exponentially and its characteristic value can be derived from 
the transition matrix. 

If measures are not reliable or the state can not be 
determined directly from the measures, hidden Markov 
models can be used. An introductory tutorial can be found in 
[324]. A summary of multiresolution analysis with Hidden 
Markov Models can be reviewed in [311]. An advanced text 
can be found in [285]. In Hidden Markov Processes, the real 
state is not observable but it can be inferred from 
observations trough Viterbi algorithm and the emission 
matrix which relates measured parameters and unobservable 
states. In this work, the complexity of hidden Markov models 
are avoided since the variables of interest are measured or can 
be computed from the measures. 

7.2.2. Markov chain approximation for 
continuous systems 

A vast number of problems in renewable energy can be 
formulated as continuous-time, mixed state (continuous and 

discrete) stochastic control problems. This section focuses on 
the so-called Markov chain approximation, which is well-
documented [255, 286], simple to understand and implement. 
Markov chain approximation can be used to efficiently solve 
many stochastic control problems appearing in renewable 
energy generation with non-controlled sources. 

The basic idea of the Markov chain approximation 
approach is to discretize the entire control problem. The 
continuous-time, continuous-state state variables of the 
original problem are approximated by a discrete-time, 
discrete-state Markov chain in such a way that the value 
function corresponding to the Markov chain is a good 
approximation to the value function of the continuous-time 
control problem. In order to find the transition probabilities of 
the Markov chain, one can apply finite difference techniques 
related to the well-known numerical methods for linear partial 
differential equations. 

The Markov chain approximation method is described in 
[255]. The algorithms are robust; they are intuitively 
reasonable and have physical meaning because the 
approximating Markov chains represent systems similar to the 
one being approximated. The convergence theory is purely 
probabilistic, using methods of stochastic control, so that the 
analytical difficulties are avoided [286].  

A continuous stochastic variable ( )y t  constrained to range 
[ miny , maxy ] can be discretized into m states, similar to the 
histogram calculation using m bins. To decrease the 
discretization error, the number of states m can be increased. 
In this paper, the states are interpolated with a point of view 
similar to fuzzy Markov Chains [287, 288] to constrain the 
number of states whilst reducing the classification error  The 
actual system state and the actual event are compared to the 
discrete states, estimating their similarity degree to the 
discrete counterparts. The similarity degrees of actual states 
to the discrete approximations are interpreted as the 
probability of classification into discrete states or discrete 
events [289]. Markov chain approximation shares most 
properties of conventional Markov chains (except some 
features such as the estimation of transition probabilities and 
the sample generation).  

Markov chain approximation is based in conventional 
matrix algebra, instead of using the min-max matrix algebra 
associated with fuzzy probabilities [290]. Thus, Markov chain 
approximation has been selected as the optimization tool 
since it is numerically more efficient than Fuzzy Markov 
Chains.  

If the random variable ( )y t  is characterized through a fist 
order Markov Chain of m states, the number of parameters to 
estimate is 2m  (the elements of the transition probability 
matrix). Estimating a high number of parameters with low 
uncertainty requires long data series (along with higher 
computer resources). The system can be discretized with 
small steps at values where the dynamics are non-linear and 
coarser at linear zones. In fact, this is a very successful 
approach already used in finite elements and in mixture 
distributions.  

State interpolation allows reduces the required number of 
states and consequently, the parameters to be estimated. 

The behaviour of the continuous variable ( )y t  is modelled 
as the sum of some generalized functions (kernels), providing 
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a tractable representation of a continuous stochastic variable. 
After selecting the kernel, only numerical calculus with the 
discrete parameters are needed, reducing hugely the 
computational burden and increasing the accuracy of the 
model. 

The statistical measures based on averaging remains 
unchanged in the discrete and in the interpolated model. Since 
the system expected cost/benefit is the same if the system 
states are mutually exclusive (only one state can actually exist 
at a time) or can be interpreted as a fuzzy states (intermediate 
states do exist because the continuous system states have been 
discretized). 

The payoff of state interpolation approach is that the 
probability of non-adjacent states can represent two distinct 
and mutually exclusive states or the resemblance degree of 
the actual system to the discrete states. In the later case, the 
system shows features of the non-adjacent states and it 
behaves approximately as their interpolation.  

The interpretation of the state probability relies on the 
model derivation and it cannot be deduced from the Markov 
parameters. But the derivation should be clearly stated in the 
derivation since it can influence the estimation of the 
transition matrix and the state change cost. 

7.2.3. Time-Averaged vs Instantaneous 
Values 

Most SCADA, data loggers and energy metering devices 
record average power and other variables in five to fifteen 
minute intervals. The standard time interval is 10 minutes for 
power curves and flicker [291, 292] and 15 minutes for 
reactive power billing [293] (a suitable integrating period for 
both task is 5 minutes and its integer fractions). 

The moving average ( )y t  can be regarded as the 
convolution of the instantaneous power of the wind farm 
( )z t with a square pulse of width tΔ  (see  Fig. 104). 

Afterwards, the moving average ( )y t  is sampled [ ]y k with the 
same tΔ  period.  
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Fig. 103:  Model of the data logger of the wind farm. 

The continuous transfer function of the average power in 
an interval tΔ  is shown in Fig. 104, up to the logging 
frequency of the power analyzer, log 1/f t= Δ . For a zero 
order hold reconstruction kernel, the frequency response 

( )F f  due to moving average, sampling and reconstruction 
is: 

 ( ) 2(̂ ) sin
( )

( )
y f f t

F f
z f f t

π
π

Δ⎛ ⎞⎟⎜= = ⎟⎜ ⎟⎜⎝ ⎠Δ
 (478) 

The average change rate between two consecutive time 
intervals ( )/dz t dt can be estimated from recorded data: 

 ( ) ( ) [ ] [ ] [ 1]dz t dy t y k y k y k
dt dt t t

Δ − −
≈ ≈ =

Δ Δ
 (479) 

In Fig. 104, the frequency response ( )F f  indicate that the 
wattmeter behaves as a second order low pass filter of cut-off 
frequency 0.443/cutf t= Δ , a bit lower than the Nyquist 
frequency. The wattmeter also introduces an average time lag 
of /2tΔ  in the measures. 
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Fig. 104:  Plot of frequency response of the network analyzer with a zeroth 

order reconstruction filter.  

7.2.4. Reconstruction of continuous 
signal from logged values 

The stochastic variable ( )y t  is measured continuously and 
its average along time interval [ , ]t t t−Δ  is logged at instant 
t k t= Δ  as [ ]y k . The time step tΔ  is usually defined in 
standards and some usual values in renewable energy are 10 
minutes, 15 minutes and 1 hour. The value [ ]y k  usually varies 
according to its characteristic PSD (Power Spectral Density) 
or ACF (Auto Correlation Function) along the time step tΔ .  

In this work, each state of the Discrete Markov Chain 
corresponds to the average level of a parameter (such as wind, 
solar or storage power output, load demand, etc.) during tΔ  
time. The continuous value of the parameter can be estimated 
as the time interpolation of the adjacent discrete states. If the 
interpolation is lineal, the elementary signal is a triangular 
pulse of width tΔ  and height equal to the average value of 
the parameter, as in Fig. 105. 

 
Fig. 105:  Rectangular, triangular, Gaussian (minimum ripple and triangular 
approximation), and cosine kernels corresponding to analytical signals to 
interpolate discrete-time Markov Chain at ( 1) ( 1)k t t k t− Δ ≤ ≤ + Δ . 
 

The analytical signals shown in Fig. 105 produce 
interpolations of  zeroth order –the rectangular pulse in blue–, 
first order –the triangular pulse in red– and some smooth 
interpolations. The cosine kernel (in light blue in  Fig. 105) is 



104 Wind Power Variability in the Grid – Chapter 7  

constrained to domain [ , ]t t−Δ +Δ , but has the drawback that 
slope is always horizontal at points t k t= Δ  (see Fig. 108).  

Gaussian kernels provide a smooth interpolation and since 
they are not constrained to [ , ]t t−Δ +Δ , the slope at points 
t k t= Δ  is not required to be horizontal. Gaussian kernel 
has a Fourier Transform with very low high frequency 
content and it has also very good statistical properties. The 
standard deviation used for Gaussian pulses is 

/ 2tσ π=+ (in light grey in  Fig. 105). This value has 
been obtained minimizing the ripple of the continuous signal 
when the discrete variable [ ]y k  is constant (i.e. the standard 
deviation is optimized for minimum ripple of the interpolated 
signal). Also, the use of Gaussian kernel with standard 
derivation / 6tσ =+  (in pink in  Fig. 105, the same 
standard deviation of triangular pulse) has been considered 
but its use has been superseded since they introduce ripple in 
the estimation, as can be seen in Fig. 109. Recall that even 
though Gaussian function formally spreads from -∞ to +∞, it 
has significant values only in central and adjacent states: 
gauss, f ( ) 0k t ≈  [( 2) ,( 2) ]t k t k t∀ ∉ − Δ + Δ   (negligible 

compared to the uncertainty in the measure of [ ]y k ). 

kernel

1 1/2
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0 1/2

t
t

t
t
t
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t
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 (484) 

 The integral of the kernels is tΔ  for correct 
interpolation. If gauss, f ( )k t  is constrained to 

[ 2 , 2 ]t t t∈ − Δ + Δ  

kernel= f (t)Kernel Area dt t
+∞

−∞
= Δ∫  (485) 

 

 
Fig. 106:  Estimated continuous signal (̂ )y t  from sequence y[k]= {1, 0.4, 
0.2, 0.8, 1} using a rectangular kernel. Rectangular analytical signal is 
equivalent to order cero interpolation. This model is not realistic since the 
signals are not continuous. 

 

 
Fig. 107:  Estimated continuous signal (̂ )y t  from sequence y[k]= {1, 0.4, 
0.2, 0.8, 1} using triangular kernel. Triangular analytical signal is equivalent 
to order one interpolation. 

 
Fig. 108:  Estimated continuous signal (̂ )y t  from sequence y[k]= {1, 0.4, 
0.2, 0.8, 1} using cosine kernel. The continuous signal is smooth but the 
interpolation is not suitable due to the flat slope at the sequence points. 

 
Fig. 109:  Estimated continuous signal (̂ )y t  from sequence y[k]= {1, 0.4, 
0.2, 0.8, 1} using Gaussian kernel and the same standard deviation as the 
triangle ( / 6tσ =+ ). The continuous signal shows an undesirable 
oscillation at 1 < t < 2. 

 
Fig. 110:  Estimated continuous signal (̂ )y t  from sequence y[k]= {1, 0.4, 
0.2, 0.8, 1} using Gaussian kernel and the standard deviation of minimum 
ripple ( / 2tσ π=+ ). This estimation is the smoothest among all 
analyzed and it does not show induced oscillations. 
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For most applications, the linear interpolation is precise 

enough (triangular analytical signal). If a smooth 
interpolation is required or the interpolated signal must be 
infinitely derivable, the Gaussian pulse with / 2tσ π=+  
is more suitable. The estimated signal in the continuous time 
domain is: 

 pulse1
(̂ ) y[ ]f ( )

l

k
y t k t k t

=
= − Δ∑ �  (486) 

where y[ ]k�  is the kernel scale factor. 
The average lag /2tΔ  introduced by the logger measures 

respect to the instantaneous value ( )z t  can be compensated 
modifying the former formula: 

 pulse1
( ) y[ ]f ( ( 1/2) )

l

k
z t k t k t

=
= − + Δ∑� �  (487) 

 The kernel scale factor y[ ]k�  are equal to y[ ]k  for 
signals that vanishes at t t= ±Δ  (rectangular, triangular and 
cosine kernels). The multipliers of the Gaussian interpolation 
can be easily computed from the tridiagonal system with the 
Thomas algorithm [294] (forward and backward sequential 
substitution).  
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where pulsef (0)a = and pulsef ( )b t= Δ  
The continuous Fourier transform of an analytical signal is: 

{ }
max

single pulse pulse pulse

pulse
0

( ) f ( ) f ( )

2 f ( ) cos( )

j w t

t

even symmetry

F w t t e dt

t w t dt

∞ −

−∞
= = =

=

∫

∫

F
  

The continuous transforms of the triangular, rectangular 
and Gaussian shapes are: 

/2

 kernel
0

1 2
( ) 2 cos(2 ) sin

2
f t

F f f t dt
f

τ π
π

π
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For a non-causal Gaussian reconstruction filter with σ = 
/ 2t π+ as defined in (486), the frequency response ( )F f  

due to moving average, sampling and reconstruction is: 

 ( ) 3/2 2 2(̂ ) sin
( )

( )
f ty f f t

F f e
z f f t

ππ
π

− ΔΔ
= =

Δ
 (493) 

The overall cut frequency for a Gaussian reconstructor 
is 0, 309/cut Gaussf t= Δ , as can be seen in Fig. 111. The 
response above the Nyquist frequency can be though as 
introduced by the estimator and it is desirable for the 
frequency response to be as low as possible for 0,5/f t> Δ . 

Recall that the PSD of ( )z t�  will have notably less high 
frequency content than the PSD of ( )z t .  
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Fig. 111:  Plot of frequency response of the network analyzer with a 

Gaussian reconstruction filter.  

The frequency response above Nyquist frequency is 
notably higher with zeroth-order and first-order 
reconstruction filter than with the Gaussian filter. The cut-off 
frequency is a 43% higher, 0,443/cut rectf t= Δ  with 
rectangular pulse reconstruction compared to Gaussian pulse 

0, 309/cut Gaussf t= Δ . This indicates that Gaussian 
reconstruction Filter is preferably to the zeroth or first order. 
The first-order filter has better frequency response than 
zeroth-order but it does have more high frequency content 
than the Gaussian Filter.  

During continuous operation of a wind farm, the 
operational point is expected not to change appreciably in a 
time span of minutes and the system behaviour can be 
considered ergodic during such lapse. Thus, the PSD of ( )z t  
for frequencies above 0.001 Hz can be characterized for each 
operational condition from measures with a high sampling 
rate [295]. The PSD for very low frequencies (f <0.001 Hz) 
can be estimated for long data records but with a low 
sampling rate. Recall that results must be analyzed prudently 
at low frequencies since slow meteorological phenomena are 
not stationary (i.e., the system behaviour is history-dependent 
and there are analysis methods more accurate). 

7.2.5. Considerations on the state 
discretization 

Events have the inherent temporal ordering. Simple 
systems can be classified according to the value of a single 
parameter such as the generation level or the primary resource 
level. If the states correspond to a single numerical feature of 
the system, such as wind speed, solar radiation, stored energy 
or power output, the states have a natural order. 

In real applications, the state classification depends on 
many system variables. In a geographical region with various 
wind farms, the state depends on the vector of wind farm 
power outputs. The state of a single wind farm can be based 
on many parameters: wind speed and direction at 
meteorological mast, power output during last 15 minutes, 
average power during last hour and last day… 

Markov states in complex systems are not necessarily 
naturally structured. If states represent patterns or 
combinations of system parameters, the state order is not 
straightforward (some parameters can increase whereas other 
decrease, resulting in an arbitrary ordering). In such systems, 
the optimum interpolation and ordering depends on model 
purpose of the model and the interpolation weights must be 

(489) 
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computed according to some similarity measure regardless of 
the state numbering.  

The task of classification is to take a single observation, 
extract some useful features describing the observation and, 
based on these features, to classify the observation into one of 
a set of discrete classes. A probabilistic classifier gives the 
probability that the observation corresponds to each class; 
estimating the probability distribution over all classes. In 
multivariate systems, the fuzzy or probabilistic clustering 
algorithm used in the estimation of model parameters can be 
also used in the classification probability of the samples. 

7.2.6. Need for discretization of 
continuous random variables 

There are advances in the analytical solution of continuous 
state Markov Decision Processes [296], but they are quite 
intricate and few stochastic models are suitable for being 
solved analytically. Thus, this work use the more basic 
approach of Markov chain approximation [255]: the 
continuous variables are discretized, using kernels (pulse 
functions with normalized area and amplitude) to 
approximate the system to a conventional discrete time and 
discrete state Markov chain (MC). Discrete MC has 
remarkable theoretical and numerical properties and they are 
the basis of Markov Decision Processes, an efficient method 
for optimal stochastic control. 

7.3. Piecewise linear interpolation of 
system properties 

7.3.1. Triangular probability distribution 
of the sates from observations (i.e.) 

In this subsection, only the discretization of real-valued 
continuous random variables will be considered. Multivalued 
systems will not be analyzed since fuzzy or probabilistic 
clustering algorithms already compute the state probability. 

The probability distribution of states and observations y[ ]k  
are needed to perform many statistical operations (variance 
estimation, generation of random samples, solving MDP’s, 
etc). 

Any continuous state would be regarded as the mixture of 
the two adjacent discrete states. The similarity of the sample 
to the adjacent states would be estimated proportionally to the 
closeness (this procedure is analogue to the fuzzification of a 
crisp variable). From the mathematical theory of 
approximating functions, the state probability can be regarded 
as interpolating coefficients used to represent piecewise 
functions. 

Most Markov Models consider that only a state is possible 
at each instant. For example, the Viterbi algorithm computes 
the most probable state from the observations in HMM.  
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Fig. 112:  Conditional probability for the Markov states given the observation 
y, Pr(statei |y).  

 
 The similarity of adjacent states state depends on the 

discretization step and the physical dependence. The 
conditional probability (analogous to an interpolation 
function) can be fully constrained to adjacent states, Pr(statei 
|y) = 0 if y ∉ [ϕi-1, ϕi+1]. Thus, any points corresponding to 
the mode ϕi are classified as fully pertaining to the 
corresponding state i. These objectives are met (see Fig. 112) 
with triangular distributions (494) with modes  ϕi  and limits 
ϕi–1 and ϕi+1 (the first and the last distributions are 
degenerated triangular distributions with  ϕ0 = –∞ and 
ϕm+1 = +∞, respectively).  
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 (494) 

Moreover, triangular distributions can be unsymmetrical 
and the expected value y is simply computed as the dot 
product of state probability vector [ ]kx

G  by the state centroid 
vector γ

G . 
Symmetrical distributions such as the Gaussian are not 

straightforward applicable since discretization step is not 
even. Since the state ordering is (somewhat) arbitrary in 
complex systems and states can have very different costs and 
other properties, it is conservative to use narrow kernels that 
weight just the adjacent states. Thus, unsymmetrical narrow 
distributions as the triangular kernel presented in this section 
are preferred over wider kernels such as the Gaussians. 

7.3.2. Distribution of observations from 
state probabilities 

According to the linear discretization used here, the 
probability density distribution can be computed as a mixture 
of triangular distributions. The cumulative distribution 
function can be easily computed from the probability density 
function. 

A) Conditional and marginal probability of observations 
The conditional distribution of observation y conditioned to 

state i is: 
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or, equivalently:  (496) 
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The stationary state probability is (494): 
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(497) 
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If pdfy(y) is approximately piecewise constant, the integral 
can be computed approximately by: 
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 (498) 

As a result, the state probability can be approximately 
computed from the cumulative distribution function: 
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If pdfy(y) is approximately piecewise constant, the 
conditional distribution of the observation y conditioned to 
the state i (496)  can be also simplified using the stationary 
state probability (499)  
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The marginal probability density function of y , pdfy(y), 
can be computed as the mixture of distributions of y 
conditioned to the states: 
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The typical use of this formula is the estimation of pdfy(y) 
when the state probability is known at instant k, 
Pr( ) [ ]i istate k= x : 
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For the ith region ( ϕi-1<y <ϕi),  (502) is equivalent to: 
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In other words, pdfy(y) is a piecewise interpolation among 
points ( )1 12 [ ]/i i ik ϕ ϕ+ −−x , 1 ≤ i ≤m  (see Fig. 113). 
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Fig. 113:  pdfy(y) given the state probability , Pr(statei |y) from (503).  

B) Cumulative marginal probability 
The marginal cumulative distribution function of the 

observation, cdfy(y), can be computed integrating pdfy(y) 
respect y. Since pdfy(y) is piecewise, the integration is trivial 
at the modes of the states y = ϕi: (504) 
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Thus, cdfy(y) at y = ϕi given the state probability [ ]kx  is: 
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For the ith interval (ϕi-1< y <ϕi),  the term of partial 
integration must be added:   
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Thus, the cumulative density function of the observation, 
cdfy(y), given the state probability [ ]kx  can be computed: 
1) Find the ith interval where the observation is: ϕi-1 < y ≤ ϕi   
2) With the value i found before, compute: 
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7.3.3. Estimation of state centroids γ
G  

In general, the conditional probabilities Pr(statei |y) are not 
symmetrical with respect to the mode ϕi unless the state 
discretization is uniform. Moreover, the state range [ϕi-1, ϕi+1] 
can be notably wide or it can contain special features (like the 
full or null production) that can highlight the mode and 
centroid difference. Therefore, the centroid of the state iγ  
can differ notably from the mode ϕi. Since most criteria to 
decide optimum action or policy are based on expected 
values, the state centroid must be computed adequately, as in 
(508)  
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For the first state:   (509) 
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For the last state:   (510) 
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For the remaining states with triangular conditional 
probability (1 i m< < ):   (511) 
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If pdfy(y) is approximately piecewise constant, the 
centroids can be approximately computed as:  (512) 

1 1 1 1 1 1

1 1

2 ) ( ) ( ) ( ) ( 2 ) ( )(

3 ( ) 3 ( )

i i y i i i y i i i y i

y i y i
i

cdf cdf cdf

cdf cdf

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
γ

− − + − + +

− +

+ + − − +

−
=  

The output of fuzzy or probabilistic clustering usually 
encompass the cluster centroids and includes a summary with 
the standard deviation of each cluster. 

7.3.4. Expected observation from state 
probabilities 

The expected value of the sample can be easily computed 
from state probabilities according to the next formula:  (513) 
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1 1
Pr( ) | Pr( )

m m
i i i ii i

y state y state stateγ
= =

= =∑ ∑   

At the instant k, the expected observed value y[ ]k = 
( )y k tΔ  can be written as a dot product of state probability 

vector [ ] [ [ ]]ik k=x x
G  and the centroid vector [ ]iγ γ=

G : 
 y[ ] [ ]·k k γ= x

G G  (514) 

For example, if state probability vector [ ]kx
G  is known at 

instant k, the expected observed value n instants later ŷ[ ]k m+  
can be computed with the transition probability matrix. 
 ŷ[ ] [ ]· [ ] mk m k m kγ γ+ = + =x x P

G G G GF  (515) 

7.4. Systems with multiple observations 
at time k 

7.4.1. Estimation of P  from 
conventional clustering. 

P̂  is an estimate of the transition matrix P . If the output 
of the classification algorithm for each sample k is just the 
state number s[k], one can find the transition occurrence Fij in 
the sequence by counting the number of transitions from state 
i to state j  in one step.  
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Then the one-step transition matrix P can be estimate as 
follows: 
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 (518) 

The elements of ˆ ˆ[ ]ijp=P can be computed according to 
6.4.2 in [297]: 

observed transitions from state  to 
ˆ

ocurrences of state 
ij

ij
i

Fi j
p

i F
= = (519) 

If state i is not present in the samples (Fi = 0), probability 
transition is undefined. If state is unfeasible, it should be 
eliminated. But the absence of occurrences can due to the 
combination of low probability and scarce sample data. In 
such cases, the more suitable assumption depends on the 
meaning of the state and the study aim: jump probability 
equal to stationary probability ( îj jp π≈ ), jump to any state 
equally likely ( ˆ 1/ijp m≈ ) or absorbing state ( ˆ 1ijp ≈  if 
i=j; otherwise 0). 

Since states represent typical operational conditions, all 
states eventually occur in the sample set (Fi > 0). 

For observed transitions (Fij > 0), the standard error of îjp  
is approximately: 

 l ( )ˆ ˆ1ij ij

i

p p
se

F
−

=  (520) 

The unobserved transitions (Fij = 0) can be due to real 
transition unfeasibility or to the limited available data. If Fij = 
0, the transition probability îjp  is bound to 
[0, ( )

1
1 1 iFclβ− − ) with confidence level βcl (Fij is 

binomially distributed). In part II of this paper, the estimation 
of rare events will be revised. 

7.4.2. Improving state estimation 

A further refinement is to quantify the similarity of real 
data to each cluster. For example, fuzzy classification 
computes the similarity of each observation with each state 
and the fuzzy membership degree can be interpreted as the 
probabilities that the measures corresponds to the states of the 
Markov model [298]. This approach improves the 
performance of the Markov Model since samples are often 
continuous random variables and there is not a definite 
division or separation between clusters. 

There are powerful clustering algorithms where any real 
observation is classified into a group with an error that can be 
controlled. Since Markov Chains poses a probabilistic 
discretization into states and the cluster boundary is blur in 
wind characterization [299], fuzzy c-means clustering is a 
suitable clustering algorithm. In fuzzy clustering, each datum 
has a degree of belonging to clusters, as in fuzzy logic, rather 
than belonging completely to just one cluster [300]. Thus, 
data on the boundary of a cluster may be in the cluster to a 
lesser degree than points near the centroid. For each vector 
observation y[k]=[y1[k], y2[k], …, ys[k]]

T (for example, the 
vector of s wind farm outputs at instant k) we have m 
coefficients xi(y[k]) giving the degree of membership to the 
ith cluster (1 ≤ i ≤ m). Usually, the sum of those coefficients 
is defined to be 1, ( )1x [ ] 1m

i i k=Σ =y , so that xi(y[k]) denotes 
a probability of belonging to ith cluster and x[k]=[x1(y[k]), 
x2(y[k]), …, xm(y[k])]T is the probability vector. Since fuzzy 
classification is unity normalized, some authors call it 
probabilistic clustering. 

If system is significantly influenced by external factors, 
those features can be included in the classification process 
although this increases the data requirements. In the example 
of the group of wind farms, each state can be classified 
mainly by its power output and secondary, by other 
parameters such as average wind direction, meteorological 
stability or wind prediction for a given horizon. 

At a given time, the best classification of a big system into 
a reduced set of states can be challenging. The best procedure 
for estimating the system state depends of available data and 
aim of the analysis.  

Consider the following example: near cut-off wind speeds, 
some turbines are stopped whereas others remain at full 
power. The overall situation will correspond to full generation 
in a portion and no generation in the rest. That intermediate 
situation can be represented by the probability of pertaining to 
full and no generation states (if the number of generating and 
installed turbines are known, the probability of full generation 
status can be interpreted as their ratio –frequentist 
interpretation of probability–). Using the Bayesian 
interpretation of statistics, the probability of full or no 
generation is the degree of belief that the real situation 
corresponds to each state. Using the interpretation of fuzzy 
logic, the possibility of each state is the membership grade to 
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a fuzzy set. From the mathematical theory of approximating 
functions, the state probability can be regarded as 
interpolating coefficients used to represent piecewise 
functions such as expected values and voltage or power flow 
profiles at some nodes. 

The clusters implicitly model the relationship among 
random variables whereas its probability is computed from 
occurrence frequency of real data. If individual observations 
yi[k] at instant k show patterns, the number of clusters m to 
obtain a low classification error is proportional to s, the 
number of individual observations yi[k]. If individual 
observations are statistically independent m is proportional to 
s2. Note that if observations can be classified in independent 
groups statistically independent, system can modelled more 
efficiently if it is spited into groups (for example, consumer 
load and wind power is very weakly related). 

7.4.3. Estimation of P  from fuzzy 
clustering. 

The instantaneous output can vary inside the time interval 
and the output of the classification process, based on 
averaged observations, is stochastic. If the classification of 
two consecutive observations is the same, the system would 
be regarded as “continuing” in the same state (although the 
actual process is more complex).  

On one level, the average power at an interval can be near 
the classification boundary of two states and the 
instantaneous state could be considered as a partially 
corresponding to adjacent states. On another level, if the 
states are very similar, a fuzzy classification is required to 
avoid overestimating transitions due to sharp cluster 
boundaries. In [301, 302], conventional discretization could 
be the reason of the mismatch of some higher order models. 

 If the wind power is observed at a single location, 
the classification of states according can be done according to 
(494) and Fig. 112. But when wind power is measured at 
several locations or the state includes not only present 
observation but also average value during last 24 h, a fuzzy or 
probabilistic clustering algorithm is required to classify 
observations with similar characteristics with a minimum 
classification error. Additionally, The fuzzy clustering 
algorithm computes a similarity measure of an observation to 
each state or class (in fuzzy jargon, the level of state 
membership and in statistical jargon, the state probability). 
The probability of state i given the observation, Pr(statei | 
xi[k]), is xi(y[k]) = xi[k]. 

The output of the classification algorithm is normalized, 
therefore: 
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i
i
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=∑  (521) 

where m is the number of states in the system. Since the 
membership degree totals unity, fuzzy classification is 
sometimes referred as probabilistic classification. 

In either case, the state estimation x[k] = [x1(y[k]), 
x2(y[k]), …,  xm(y[k])] from observation y[k] is equivalent to 
the Bayesian interpretation of probability of the occurrence of 
state i in observation y[k].  

The probability of having observed a transition from state i 
to j at instant k is aij[k], i.e. Pr(i→ j). The probability of 

having observed a permanence in state i at instant k is aii[k], 
i.e. Pr(i→ i). The estimation of transitions from state i to j is 
not unique.  In this work, P̂  will be estimated to minimize 
state transitions as follows: 

1) First, estimate the probability of continuing in the same 
state at instant k, Pr(i→ i). 
 ( )[ ] min x [ ], x [ 1] 1ii i ia k k k i m= + ∀ ≤ ≤  (522) 

2) Then, the probability of jumping to a different state at 
instant k  is estimated as the ratio of state probability variation 
in contiguous instants to the probability of not continuing in 
the previous state: 
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Assuming that the permanence in states i and j are 
independent for i j≠ , (523) transforms into: 
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Interpreting the probabilities of not continuing in states i 
and j,  (524) transforms into the following expression: 
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1 1i j i m j m∀ ≠ ∧ ∀ ≤ ≤ ∧ ∀ ≤ ≤  

3) Finally, estimate ˆ ˆ[ ]ijp=P  from observations: 
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If the states are not directly observable, the Viterbi 
algorithm should be modified to estimate the most probable 
hidden states based on the fuzzy classification. 

7.4.4. Generation of interpolated 
samples 

The inverse CDF technique can be used to generate 
continuous random observations y[k] from some state 
probability [ ] [x [ ]]ik k=x . This technique has been already 
used in [301, 302] interpolating the cumulative probability 
transition matrix. This technique is also valid for probabilistic 
clustering if is (527) is computed vectorially. 

Since state probability would contain several non-null 
states, the cumulative distribution function cdfy(y) from (505) 
and (507) must be used instead of the cumulative probability 
transition matrix. The algorithm in pseudocode is: 
1) Generate an uniform variable u in range [0,1]. 
2) Find the value i that makes cdfy(ϕi-1) ≤ u ≤ cdfy(ϕi) 

from (505). 
3) Solve y from the equation cdfy(y) = u using (507) and 

realizing that ϕi-1≤ y ≤ϕi. For linearly interpolated states, 
the solution is: 
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4) Update the state probabilities from the observable value y  
using (494): 

 [ 1] Pr( | ) 1i ik state y i m+ = ∀ < <x  (528) 

7.5. Autocorrelation function of Markov 
Chains 

The ACF and the PSD of the MC are very informative, 
showing its main features. This is very important for selecting 
the suitable order of the chains to obtain a chain with 
approximately the same PSD or ACF characteristics as the 
original series. 

The autocorrelation function can be computed from the 
transition matrix according to [303]: 
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 (530) 

The former relation can be expressed in canonical basis of 
an ergodic Markov Chain: 
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where: 
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G F  is the vector of the product 
whose elements are the state centroids iγ  multiplied by 
the stationary state probability iπ . 

Therefore, the ACF of regular Markov chains is 
monotically decreasing, following a mixture of exponentials 
[304, Ch. 8]. The decrease ratio is fixed by the eigenvalues λi.  

The normalized autocorrelation (i.e., the autocorrelation 
coefficient) can be computed as: 
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7.5.1. Power Spectral Density of 
discrete Markov chains 

The power spectral density (PSD) is the Fourier transform 
of ACF.  In [305, Chapter 2], a formulation is presented for 
calculating the power spectral density of a generalized M-ary 
Markov data source, which is characterized by one of signals 
(referred to as elementary signals) transmitted in each tΔ  
interval with given a priori probabilities (called stationary 
probabilities) and given transition probabilities, i.e., the 
probability that a particular elementary signal is transmitted 
after the occurrence of another elementary signal. This 
formulation was originally described in [306] and it is further 
explained in [307] for irreducible Markov Chains. [308] 
derives the formula for irreducible periodic Markov Chains. 

7.5.2. Further considerations on the 
PSD of continuous MC 

The former subsections refer to the computation of the 
ACF and PSD of discrete MC. Those formulas are also good 
approximations for the case of continuously generated 
samples [̂ ]ky . Since y[k] is not discretized, its PSD has more 
low-frequency and less high-frequency content than the 
discrete MC.  

Due to actual computational power, it can be simpler and 
more precise to estimate the spectrum from Monte Carlo 
Markov Chain with the algorithm of continuous sample 
generation (527). 

The elementary signals can contain the PSD of the signal 
z(t) inside time intervals Δt, providing an effective way to 
construct the full PSD from quickly sampled records –high 
frequency spectrum– and from the PSD of low-sampled long-
time historic data –low frequency spectrum–. 

7.6. Addition of long-lasting memory 
feature 

Experimentally, state transition is dependent on previous 
observed value y[ ]k , but the wind ACF shows a noticeable 
peak at 24 h lag and its multiples. In [301, 302, 309], the 
followed approach has been using higher order Markov 
chains, but to reproduce the 24 h lag peak in ACF, a non-
ergodic chain should be used (for example, with a periodic 
model that exploit diurnal wind or solar dependence). 

If the hour is included in the state, there will be a transition 
matrix for each hour and the number of parameters to be 
estimated will multiply by 24, which is excessive for the 
limited information that the hour adds. A more efficient intra-
day classification will be based on the observed diurnal pat-
tern in each location. In wind power systems, an hourly clas-
sification based on the average increase or decrease of wind 
power can be enough. The transition from one state to the 
other can be gradual and deterministic (on the hour), to ac-
count continuous change of daily weather patterns. If diurnal 
dependence is modeled, the eigenvalues λi[k] depend on the 
lag k and the ACF[k] can show peaks at multiples of 24 h. 

A multiresolution approach with several time-scales is 
suitable to model the long-lasting memory and the strong and 
weak interactions [310, 311]. Therefore, the average value of  
y[ ]k  during last 24 h is an important parameter to define 
system status. Other parameters that can be included in sys-
tem status are the average rate of change during last hours. 
The discretization of the last 24 h average and its average 
change should be determined according to the supplementary 
information added to the model. The simplest way to choose a 
good classification is to use a fuzzy clustering algorithm 
where the classification error or the number of clusters can be 
selected. 

Recall that only representative parameters must be consid-
ered since the number of states and estimates increases 
exponentially. 
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7.6.1. Hourly, daily, weekly and seasonal 
dependence 

The hour, the day of the week (weekdays, Saturdays and 
Bank Holydays) and the season of the year can be modeled as 
different time states of the system. Wind and solar generation 
depend on the hour of the day and the season. Therefore, the 
transition matrix of solar and wind generation is different 
depending on the hour and season state (wind dependence on 
hour is usually small, but hourly dependence of solar 
radiation must be considered in any case).  

Notice that time evolution is deterministic. Moreover, time 
n steps forward from k = m can be computed easier with 
time equation k = m + n and a calendar than with the 
deterministic transition matrix. An approximate stochastic 
model is introduced to model fuzzy time classification (even 
though time evolution is deterministic, system behaviour 
depends stochastically on the time and a stochastic model of 
time is sensible). A stochastic time model can speed up a 
discounted Markov Decision Process with infinite horizon 
with enough accuracy and improve the transition matrix 
estimation. 

A) Hourly patterns 
The transition diagram for hour state with time 

discretization step tΔ = 1 h can be seen in Fig. 114. 

 
Fig. 114: Deterministic transition diagram of hour state. The behaviour is 
purely periodic since transitions are deterministic (probability = 100%). 

 The inclusion of hour state allows to use different 
transition rates for load and non-controllable generation each 
time step tΔ . The transition rates for each hour can be 
obtained from historical data. If the model time step tΔ  is 
smaller that load and generation data or the data set is small, 
transition rates can be estimated hourly and then interpolated 
and scaled down to time step tΔ . To reduce memory 
requirements, the number of day time steps can be decreased 
and interpolation can be disused. 

B) Weekly patterns 
Load can be forecasted with high accuracy in a big power 

system whereas the uncertainty is higher in small systems. 
Basically, load consumption depends mainly on the hour, day 
of the week and temperature. In a first approach, load level 
can be classified as high (typically, weekdays), medium 
(typically, Saturdays) and low (typically, Sundays and Bank 
Holydays). Each time the hour state jumps to 0:00, the 
classification of the day can change according to Fig. 115 
(transition probability computed for a standard year). Take 
into account that a more accurate model will distinguish 
between full load, mid load and low load for each season 
instead of weekday classification. 

 
Fig. 115: Stochastic transition diagram of type of day (at the end of each 
day). Time transitions are stochastic (probability < 100%) except for the 

Saturday to Sunday/Bank Holyday transition. 

Fig. 115 shows a probabilistic transition diagram. This 
implies that the weekday probability will evolve to the static 
probability in a few days (the fraction of weekdays, Saturdays 
and Sundays / Bank Holydays in a whole year). If the cyclic 
behaviour during one or several weeks is studied, the model 
of Fig. 116 is more suitable. Notice that the model of Fig. 116 
only represents pure periodic weekly patterns and the 
Holydays should be modeled with this approach as yearly 
patterns. 

 
Fig. 116: Deterministic transition diagram of the week day. 

C) Yearly patterns 
If the horizon is longer than one season, the model should 

encompass the different characteristics of load, generation 
and reservoir dynamics along the year. Each day of the year, 
from January 1st to December 31st must be modelled as a state 
to use actually periodic Markov chain of Fig. 117. This model 
can account bank holydays patterns in load, but the estimation 
of the transition probabilities for each day of the year requires 
long data records and detrend the weekly patterns. 

 
Fig. 117: Cyclic transition diagram of the year state. 

A season last 91 days approximately, and the weather 
average characteristics vary gradually inside that period. If 
the scope of optimization is shorter than a whole season, each 
day can be classified in a state up to a certain degree (for 
example, March 21st can be classified as 50% winter and 50% 
spring). Thus, the seasonal approximated model is the 
stochastic transition diagram shown in Fig. 118 (note that the 
number of states has reduced from 365 days to 4 seasons). 

 

 
Fig. 118: Stochastic transition diagram of the approximate seasonal model. 

Season transitions are stochastic (probability = 1/91 a day). 

Monday Tuesda Wednesd Friday Saturday SundayTuesday 

Jan 1st Jan 2nd Jan 3rd Dec29th Dec30th Dec31st… 

Spring Summer Autum Winter
1/91 1/91 1/91 

1/91 

0:00 1:00 2:00 21:00 22:00 23:00…

1/7 

Weekday Saturday Bank Holyday 
or Sunday 

1 

8/365 

60/62
1/62 1/624/5
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7.7. Interpolation among basic periodic 
states  

7.7.1. Introduction 

Periodic chains needs to include a state for each time step, 
generating huge transition matrixes. On the other hand, 
periodic chains are deterministic and they can be handled 
much more effectively and naturally taking time as an input 
of the model and then computing with basic formulas the 
state of the periodic chain. 

Since we are used to seasonal and daily classification of 
time, the stochastic model can be understood as a reduced 
transition matrix for each season and for each daily period, 
conforming the global transition matrix. Moreover, the 
transition matrix can be also expressed in tensor form (a 
reduced transition matrix for each season and for each daily 
period). The interpretation and analysis of the results is 
simpler due to the reduced dimensions of each basic transition 
matrix. 

Even though the whole model is yearly periodic, many 
states are similar and they can be aggregated [312], making 
the model tractable. In this work, the evolution of seasons, 
hours… is handled by periodic interpolation. The periodic 
interpolation depends on time, but since time is now an input 
of the model, it can be estimated deterministically. Therefore, 
the transition matrix depends on a small subset of states (the 
basic periodic states and the output states), decreasing hugely 
the computation burden. 

A full-year periodic complete model with time 
discretization step tΔ = 1 h will include 8760 states for each 
of the 8760 h in a year. It is not reasonable to estimate a 
transition probability for each hour, since: 

− It would require meteorological records from many 
years and available data rarely covers more than a 
few years, if any. 

− Cyclic weather patterns show a general tendency. 
The seasonal weather patterns can occur with a lag 
of some weeks, depending on weather dynamics in 
each year. Therefore, a seasonal model with a bigger 
temporal resolution is non effective. 

− There is a trade-off between temporal resolution and 
uncertainty in transition probability estimation, 
especially for short data records. 

− The discounted optimum control for long horizons is 
less sensitive to the periodic patterns in the remote 
future. Thus, the stochastic transition models are 
more computationally efficient when calculating 
optimality with average or discounted average cost 
(or value) functions. 

7.7.2. Periodic interpolation approach as 
a multivariate Markov chain. 

The use of loose periodic patterns reduces notably the 
number of states and the computational burden. The 
advantages of estimating a transition matrix only for each 
combination of season, type of day and intraday period are: 

− Since seasonal and hourly weather patterns are 
gradual tendencies, a progressive and probabilistic 
classification is desirable.  

For example, the day of vernal equinox will be 
classified as winter and spring with equal 
probability. In other words, March 21st (the end of 
winter and the beginning of the spring) have climatic 
characteristics of winter and spring with 50% 
probability. 

− The expected climatic parameters at an instant k are 
a mixture of similar seasonal, weekly and hourly 
patterns. 

− Periodic weights and conditioned transition matrixes 
can be expressed as periodic Markov chains [313, 
Ch. 9]. If time step tΔ = 1 h, the interpolation can 
be described as a deterministic periodic sparse 
transition matrix of dimension 8760×8760. This fact 
can be used to derive theoretical properties of the 
Markov chain.  

− The season, the day and the hour classification can 
be considered an observed state of the model (i.e., 
they are inputs of the model).  
o A model with 4 seasons, 3 types of day and 6 

intraday periods have 4×3×6 = 72 basic 
transition matrixes (one for each combination 
of season, day and intraday) instead of 8760 
basic transition matrixes (one for each hour of 
the year).  

o Not all parameters do depend on season, day 
and hour (for example, wind and sun are not 
correlated with the day of the week). 
Additional economy can be obtained if 
intraday or seasonal resolution can be lowered 
(for example, wind behaviour can be classified 
according to half year and half day periods and 
two days period –four basic transition 
matrixes–).  

o The features of basic transition matrixes are 
glimpsed in density plots where each pixel has 
a color according to the matrix element 
logarithm. 

− The functions season(n1,k), weekDay(n2,k) and 
hourlyPeriod(n3,k) will be used for simplicity to 
obtain the probability of each time classification, 
where n1, n2 and n3 are the classification periods and 
k is the hour from the start of the year (January 1st ).  
o Season numbering: according to the order 

shown in Fig. 118, n1=1 for spring, n1=2 for 
summer, n1 =3 for autumn, n1=4 for winter. 

o Day of the week numbering: according to the 
order shown in Fig. 115, n2=1 for weekday, 
n2=2 for Saturday, n2 =3 for Sunday or Bank 
Holiday. 

o Numbering of period of the day: according to 
the order shown in Fig. 114, the numbering 
starts from n3=1 after midnight (00:00). The 
number of intraday classes depends on the 
hourly resolution required for the application:  

− The division of a day into two classes can be enough 
for wind applications since diurnal dependence of 
wind is small [314, 315, 316, 317, 318]. The 
optimum time centroids are the periods with 
maximum and minimum wind average change rate 
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(time of the day with maximum average increase and 
decrease of wind, respectively). 

− Solar applications need a more detailed model. Time 
classification can be based on clear-sky solar 
insolation on collector, starting from zero (night) to 
maximum insolation at noon. Moreover, the clear-
sky power output can be computed from time if the 
characteristics [319] of the collector are defined (i.e., 
not a parameter to optimize in MDP). Thus, time can 
be classified according to the clear-sky power 
output, from zero to the maximum output. 

− Hourly load profile can be classified according to the 
load level and the average rate of change. Since 
diurnal load dependence is high and quite 
predictable [320, 321], a clustering algorithm can be 
used to optimize classification given the desired 
number of periods. Usually, the gradual division of 
day into eight periods is precise enough [322]. 
o If each parameter affects the system 

independently of rest of parameters, the joint 
transition matrix can be factored as: 

 
1 2 3 1 2 3, , , , , ,| | · | · |i j n n n i j n i j n i j np a b c≈   (533)  

Thus, only 
1

|nA , 
2

|nB and 
3

|nC matrixes  must be 
estimated minimizing the approximation error and 
fixing an scale (for example, 

11,1|na =1 and 
21,1|nb =1 

∀n1, ∀n2). Provided factors and joint probabilities are 
not null, (533) can be transformed into a linear 
minimization problem: (534) 

1 2 3 1 2 3, , , , , ,ln( | ) ln( | ) ln( | ) ln( | ) 0i j n n n i j n i j n i j np a b c− − − ≈  
− Therefore, a factored model with n1 = 4 seasons, 

n2 = 3 types of day and n3 =6 intraday periods have 
n1+n2+n3 = 13 basic factor matrixes: 

1 1|n =A , 
1 2|n =A , ..., 

1 4|n =A ,
2 1|n =B ,… and 

3 6|n =C . 
A model for multivariate Markov chains with reduced 

number of parameters can be found in [283]. This approach 
can be valuable if data is scarce or the number of states is big. 
However, the number of classes of the models presented here 
is low enough for using a conventional approach to 
multivariate Markov chains. 

7.7.3. Comparison of linear, cosine and 
Gaussian periodic interpolation 

This subsection compares the characteristics of periodic 
interpolation. Since it is an interpolation in time domain, its 
main features has been already discussed. 

7.7.4. Periodic linear interpolation 

For most applications, the linear interpolation is precise 
enough (triangular conditional probability). This conditional 
probability is analogue to the fuzzy classification of the day 
with triangular seasonal membership functions (see Fig. 119). 
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where Mod stands for modulo function (remainder of the first 
argument divided by the second). 
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Fig. 119:  Seasonal pattern Conditional probability given the day estimated  
using linear interpolation, Pr(Seasonal Pattern |day). 

 
Linear interpolation is piecewise linear, as can be seen in 

Fig. 107. Since weather patterns vary smoothly and 
characteristic times are big, a smoother interpolation such as 
Fig. 110 is more suitable to model this smooth behaviour. 

A) Periodic Gaussian interpolation 
If a smooth conditional probability density function is 

required, the Gaussian PDF is quite suitable. The standard 
deviation to make the sum of conditional probabilities closest 
to unity is 1 1( , )/ 8i i iMod Tσ ϕ ϕ π+ −= − . If the same 
transformation of (536) is applied, the PDF is (537) and the 
individual conditional probabilities and its sum can be viewed 
in Fig. 120. 
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Fig. 120:  Seasonal pattern Conditional probability given the day estimated 
using the original normal interpolation, Pr(Seasonal Pattern |day). 

 
The normal probability is not restrained to adjacent states. 

This conditional probability makes that an infrequent event 
that have happen in one season can happen in other periods 
with smaller probability. In most applications, this 
generalization is desired since long data records are not 
usually available (the estimation of extreme events has high 
uncertainty) and such infrequent events can have special 
consequences in the system. 
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The sum of normal probabilities has a maximum error of 
1,5%. If (537) is scaled to sum unity, the conditional 
probability is: 
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 Recall that Elliptic Theta function can be replaced by 
the sum of all the numerators of (538) ∀ i. Alternatively, 
approximation (539) can be used if 0,15% scale error is 
admissible (both approximations are visually 
indistinguishable and they correspond to Fig. 121). 

season | , normal' 2

0.7166
f ( ) 

4 ( )
1

2+

i k i
i

t
Sinh t

e π
π

′
′

−

≈
+

 (539) 

V
er

na
l e

qu
in

ox
 

M
ar

ch
 2

1st
  

Su
m

m
er

 so
ls

tic
e 

Ju
ne

 2
1st

  

A
ut

um
na

l e
qu

in
ox

 
Se

pt
em

br
22

nd
  

W
in

te
r s

ol
st

ic
e 

D
ec

em
be

r 2
2nd

 

Fe
br

ua
ry

 4
th

 

M
ay

 6
th

 

A
ug

us
t 6

th
 

N
ov

em
ve

r 6
th

  

W
in

te
r 

Sp
rin

g 

Su
m

m
er

 

A
ut

um
n 

W
in

te
r 

 
Fig. 121:  Seasonal pattern Conditional probability given the day estimated 
using Gaussian interpolation, Pr(Seasonal Pattern |day). 

B) Periodic Cosine  interpolation 
The two-state deterministic periodic system shown in Fig. 

122 has the following transition matrix and rate diagram: 
  

(540)

 
Fig. 122: Rate diagram and transition matrix of a periodic system with two 
states. 

The evolution of state probability can be computed from 
Markov property: 
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For non-integer time instant k, the probability [ ]kx
G  is 

complex [323]. If only real part of [ ]kx
G is considered as 

meaningful, (541) transforms into:  
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Therefore, the evolution of intermediate states is 
trigonometric for systems with two states, as can be seen in 
Fig. 123. Sine and cosine functions have inherent periodic 
behaviour and they are the basis of frequency analysis. In 
many fields, periodic behaviour is represented by phasors. 

Moreover, the sum of this type of conditional probability is 
unity (no additional factor must be included). 

 
Fig. 123:  Conditional probability of a two state periodic Markov chain 
computed using cosine formula (542). 

For systems with more than two periodic states, the state 
probability at non-integer time instant k is not bounded to 
[0,1] and shows complex trigonometric relations. Therefore, 
the former interpretation of complex probability is not longer 
valid. Notwithstanding this fact, the conditional probability 
can be defined analogously as a cosine pulse: 
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 (543) 

The non-null probability is constrained only to adjacent 
states. This can be an advantage when modelling systems 
with behaviour very dissimilar for different states. Gaussian 
interpolation (538) is very similar except the amplitude of the 
cosine is halved (see Fig. 124). Therefore, the behaviour is 
more similar at either state with normal assumption (the 
probability of behaving as the other state is, at least, ¼).  

 
Fig. 124:  Conditional probability of a two state periodic Markov chain 
computed using Gaussian formula (538). 

The application of cosine interpolation to chains with more 
than two states is similar to triangular conditional probability 
(compare Fig. 125, Fig. 121 and Fig. 119). One disadvantage 
of this model is that the interpolated behaviour shows 
inflexion points at the state centroids, as can be seen in Fig. 
108.  

In sum, normal interpolation is preferred for weather 
systems where the behaviour at adjacent states is similar and 
its generalization makes less critical data scarceness. 
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Fig. 125:  Seasonal pattern Conditional probability given the day estimated 
using cosine interpolation, Pr(Seasonal Pattern |day). 

 

7.7.5. Benefits from discrete 
approximation of continuous time and 

state Markov models  

• Continuous time and state Markov models are very 
difficult to solve and require algebraic manipulation, more 
restrictive than numerical calculus. 

• Algebraic manipulations are avoided with the discrete 
approximation. The powerful theoretical background for 
Discrete Time Markov Chains can be used. 

• Even though state and time interpolation can be formulated 
as HMM, the interpolation approach is more simple and 
leads to a more simple and intuitive model. The states are 
observable because all measures are supposed to be reliable 
and the states are defined by the measures. Moreover, the 
overhead of Forward, Viterbi, Baum-Welch algorithms 
[324] for HMM is avoided using regular MC. 

• Regular MC have more theoretical properties than HMM 
and the parameters are more informative. For example, the 
PSD of a Markov Chain can be computed theoretically 
from parameters without using MCMC. 

• MDP are formulated easier in MC than in HMM. 

7.8. Application Example I: 
Characterization of wind power 
variability with Markov Chains 

A novel technique to account wind variability is presented 
based on Markov Chains and classification of observations. 
This approach is different from the usual generation of wind 
series in Monte Carlo analysis through Markov Chains.  

This model describes the power system status through 
combination of cases or “snapshots of the network” obtained 
from the clustering of observations and the probability (or 
observed occurrences) of transitions from one case to other 
with Markov Chains. This powerful approach is able to model 
not only the non-linear conventional behavior of the farms but 
also infrequent events that have a high impact in system 
reliability and stability (such as sudden disconnection of 
generators due to grid perturbations, swift change in wind 
during storms, etc). 

This powerful combination just requires to run only so 
many power flows as states has the system. Each grid 
snapshot is computed using a regular power flow with a full 

model of the grid (instead of linear models). Intermediate 
cases are interpolated using fuzzy clustering, reducing 
remarkably the required number of cases considered for a 
given accuracy.  

The probability of events which can harness power system 
security can be derived easily and rigorously using the 
properties of Markov Chains. Moreover, Markov Decision 
Processes can be applied to optimize the regulation of 
spinning reserve, the reactive control and the optimal sizing 
of isolated systems. 

To explain adequately the foundations and to show the 
potential applications of this approach, this work has been 
divided in three parts. In this part, the theoretical foundations 
and an overview of the method are presented. The second part 
shows the estimation of Markov Parameters for a system with 
three wind farms. The third part illustrates the stochastic 
power flow of the three wind farms and introduces the 
possible optimization through Markov Decision Processes. 

7.8.1. Introduction 
Wind speed fluctuations are usually analyzed through 

linear mathematical tools such as frequency spectrum and 
time series. The Van der Hoven’s wind spectra [325] show a 
gap between 3 minutes/cycle and 5 hours/cycle that separates 
fast fluctuations from slow fluctuations. Nevertheless, this 
division is not so clear at some locations [326, 327, 328].  

On the one hand, slow fluctuations are mainly due to 
meteorological dynamics and they are widely correlated 
spatially and temporally. Slow fluctuations in power output of 
near farms are quite correlated and wind forecast models try 
to predict them to optimize power dispatch. On the other 
hand, fast wind speed fluctuations are mainly due to 
turbulence and microsite dynamics [329].  

 
Fig. 126: Van der Hoven’s spectral model (from [78]). 

7.8.2. Step changes in Power Output 
Wind turbines can cause a periodic behavior if they 

experience repetitive connection and disconnections due to 
difficult operating conditions (wind speed near cut-in or cut-
out, high temperatures, high turbulence, etc.). In Fig. 127, the 
active power output of a single turbine has extreme variations 
due to a combination of high ambient temperature and high 
wind, yielding to high temperature alarms at gearbox oil. In 
that situation, the power output of the farm is not so abrupt 
because even though this behavior was common to many 
turbines, the disconnection and connections of the turbines 
were not synchronized. 

The repetitive connection and disconnection of up to two 
turbines is a reduced portion of the total active wind farm 
power output expressed in p.u. (see Fig. 128).  

The sudden wind change can also cause variations in power 
output of the farm in minutes, as can be seen at Fig. 129. At 
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17:25, the power output of a farm was 0.21 p.u. and ten 
minutes later was 0.96 p.u. due to a storm. 
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Fig. 127:  Power output of a single turbine experiencing 24 repetitive stops 
due to over temperature in 20/07/1998 (24 h). 

In general, power variations as extreme as Fig. 129 are 
smoothed in the total generation of a bigger area. However, 
even in a wide area such as Spain with 16 740 MW of wind 
power installed at the end of 2008 [330], a variation rate of 
1000 MW/hour approximately can be seen in Fig. 130 [331]. 
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Fig. 128:  Active power output of a wind farm with 26 turbines experiencing 
repetitive connection and disconnection of up to two turbines due to internal 
errors in 7/02/1999 (mean speed at meteorological mast was around 14 m/s). 
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Fig. 129:  Active power output of a wind farm experiencing high variability 
in 9/02/1999 due to a sudden change in the weather at 17:30. 

The worse case is when the circuit breaker disconnects a 
wind farm. The Spanish Ministerial Order of 5-9-1985 [332] 
ordered that the protection relays of wind substations were 
adjusted very strictly (for example, instantaneous trip for 
voltages under 0,85 p.u. or over 1,1 p.u.). This caused a 
number of unjustified disconnection of wind farms at network 

contingencies. In Fig. 131, recovering normal production 
from wind farm energization lasted three minutes (with 
Vestas Opti-Slip 600 kW turbines). Nowadays, the relays are 
adjusted more selectively and the turbines are rewarded for 
fault riding capabilities (even though [332] hasn’t formally 
repealed, up to now).  

 

 
Fig. 130:  Active power output (MW) of Spanish wind farms experiencing 
high increase in 18/01/2005 between 12:00 and 15:00. 

To sum up, some events in the wind farm produce step 
changes in the output and they are very difficult to model 
using frequency or time series analysis. 
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Fig. 131:  Active power output of a wind farm experiencing a disconnection 
in 3/02/1999 due to a trip of the homopolar protection relay between 
21:05:24 and 21:10:55. Three minutes later, the output reached normal 
values. 

7.8.3. Statistical Approach to Variability 
Linear stochastic tools such as time series or frequency 

analysis are very popular for characterizing the farm output 
despite casual individual turbine disconnections. However, 
Markov chains will be used in this work since: 
– The behavior at low or high wind is very different from 

middle wind. Such behavior is highly non-linear. 
– Some stochastic models do not model adequately that 

power output is constrained from zero to full generation 
(0 to 1 p.u.). The long run probability of the power output 
is bimodal, showing more steady operation at full 
generation or at no generation [333]. The output can vary 
suddenly from 0 to 100% in wind park switching events. 

– Grid disturbances can trip a great amount of wind power, 
which can be hardly characterized with stochastic linear 
models based on time series or frequency analysis. Big 
fluctuations such as disconnection of a whole park or a 
group of farms are not suited for spectrum neither time 
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series analysis because abrupt changes involve high 
components in all frequencies. In contrast, the probability 
of a sudden change can be modelled easily with Markov 
Chains. 

– The linearized model of an electrical system is not 
adequate for severe perturbations. 

This work will focus in a non-linear stochastic 
characterization of power output through a finite number of 
states.  

Markov chains have been chosen for this work due to its 
simple mathematical treatment and its superior theoretical 
properties for stochastic dynamics. This model is also well 
suited for stochastic power flows and for understanding 
system dynamics. 

 A stochastic process can be modelled by a Markov 
model if the evolution of the system is only dependent of the 
present. In other words, a Markov model implies considering 
the process memoryless. The utilization of regular Markov 
Chains imply that the permanence of the system in a state is 
distributed statistically exponentially (or geometrically in the 
case time is discretized). To override the memoryless 
characteristic, the tendency of the system during the last 
hours or the wind forecast for a given horizon can be included 
as another parameter of the states (at the cost of a bigger 
number of states). 

7.8.4. Characterization of Power 
Variability of Wind Generation with 

Markov Chains 
Markov chains have been used in modelling physical, 

biological, social, and engineering system such as population 
dynamics, queuing networks and manufacturing systems. One 
of the main advantages of using Markovian models is that 
they are general enough to capture the dominant factors of 
system uncertainty and, in the meantime, it is mathematically 
tractable. 

Most dynamic systems in the real world such as 
meteorology are inevitably large and complex, mainly due to 
their interactions with numerous subsystems. Since exact or 
closed-form solutions to such large systems are difficult to 
obtain and they would require extensive measures, one often 
has to be contented with approximate solutions. Take the 
optimal control of a dynamic system such as spinning reserve 
in a power system due to wind power. Because the precise 
mathematical models are difficult to establish, near-optimal 
controls often become a viable, and sometimes the only 
alternative. Such near optimality requires much less 
computational effort and often results in more robust policy to 
attenuate unwanted disturbances [334]. 

Wind power show different prevailing dynamics when it is 
analyzed for a few milliseconds or for a daily horizon. It can 
be thought that electromechanical dynamics used different 
time scale from the weather evolution.  

The division between fast and slow dynamics makes easier 
large-scale optimization of wind energy. If all the important 
factors are included in a Markov Model, it would lead to a 
large state space with many parameters to estimate and an 
exhaustive and extensive measuring system. To reduce the 
complexity, a hierarchical approach is suggested, which leads 
to a multi-resolution formulation. The hierarchical approach 
relies on decomposing the states of the Markov chains (all the 
possible combination of power output of wind farms) into 
several recurrent classes (typical patterns of generation 

observed in power output of wind farms). The essence is that 
within each recurrent class the interactions are strong and 
among different recurrent classes the interactions are weak. 

Traditionally, Markov chains have been applied in 
Electrical Engineering for the study of queues [335] and 
power system reliability given rate of failure and reposition 
times of its components. In Markov Chain Monte Carlo 
(MCMC) simulations, Markov Chains are employed as 
random number generators with particular characteristics 
[336], not in the way they are utilized in this paper. 

7.8.5. State selection 
In this proposed methodology, each Markov state can be 

seen as a case that characterizes a typical operational mode of 
the wind farm (or a group of wind farms). Full generation, no 
generation and partial generation are candidates for Markov 
states. If partial operation near cut-in wind speed is notably 
different from partial operation near rated wind speed, they 
should be considered as distinct Markov states. Fig. 132 
shows this discretization and the arrows indicate a transition 
from a state to another one. 

Fig. 132 is a priori arrangement, but the election of states 
can be optimized using a clustering algorithm which 
minimizes the classifying error and selects the optimum 
number of states [337, 338]. This is crucial when classifying 
data from several wind farms. Therefore, the clustering is 
used as a mathematical tool to transform a continuous 
multivariate space s\ (the active power output of s wind 
farms) into a discrete and finite (numbered in ` ) state space 
to use Discrete Time Markov Chains with convenient matrix 
algebra instead of functional analysis. 

 
Fig. 132:  Discretization of power output of one wind farm into a number of 
states (four in this figure). Only transitions from states 1 and 2 are shown for 
clarity. 

The use of different states allows to use a full model of the 
grid (instead of the classical small-signal model) and the state 
weighting describe intermediate cases reducing the required 
number of states, m. The combination of matrix algebra and 
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state probability imply the (linear) interpolation between the 
centroids of the states for describing intermediate cases. 

7.8.6. Considerations on P̂ . 
Since the probability of state transitions is estimated from 

real data, this approach can handle abrupt behavior of the 
farms along with events that rarely happens but that they have 
a high impact in system reliability and stability (sudden 
disconnection of generators due to grid perturbations, swift 
change in wind during storms, etc). 

The obtained Markov Chain is irreducible because starting 
from any state i, it is possible to enter state j in finite number 
of transitions. This property will be assumed in the following 
sections. Moreover, if all transitions îjp  have non-null 
probability, the Markov chain is said also regular. 

7.9. Experimental Validation of Case 
Study I 

The classification of states can be based on power output, 
“unperturbed wind speed” and wind speed prediction, 
depending on available data and aim of the wind farm model. 
The performance matrix in Standard IEC 61400-12-3 can be 
used as emission matrix to relate wind and power in a wind 
farm using a Hidden Markov Model. The wind farm model 
can be used also as time interpolation between horizons of 
wind prediction or to account switching events such as 
sudden disconnection of the farm. The basic workflow to 
compute a stochastic power flow based in Markov Model is 
presented. A simplified, steady state, quadratic model of the 
wind farm is shown for justifying the approximation of 
networks to PQ nodes and the interpolation between states. 
This quadratic model can be used also to estimate the reactive 
power for steady state. 

7.9.1. Markov Model Based on Wind 
Parameters 

The consideration of wind speed and direction along with 
wind power output can give further insight in wind farm 
dynamics than using only power output. However, it is usual 
to have only limited data (only wind parameters or only 
power generation). 

Power Flows require the active and reactive power of all 
generation and consumption nodes. This subsection discusses 
the modifications needed to use a Markov Model based on 
wind and power parameters or only wind characteristics. 

If the aim of the Markov model is to work with wind 
forecast, the state number can be defined based on mean wind 
speed and direction at the wind farm. The power output can 
be derived from the conditional probability of power output 
given wind speed and direction. 

Standard IEC 61400-12-3 [339] shows a detailed method to 
compute the wind farm power output from “unperturbed wind 
speed” of the wind farm. The wind farm power curve consists 
of performance matrix M indicating the expected power 
output from wind speed and wind direction values. In Markov 
jargon, the state space can be built from wind speed and 
direction. The emission probability matrix can be the 
performance matrix M if the bins of IEC 61400-12-3 are 
elected as Markov states. 

Moreover, Hidden Markov Models (HMM) can cope with 

more complex dynamics when system state is not directly 
observable (for example, if important information like turbine 
malfunctions and maintenance work are not available). 

A model should be simple enough to avoid over-fitting or 
over-fluctuations. Even more, the use of very complex 
models with many parameters need big amounts of data to be 
adjusted and its interpretation becomes tougher. 

 
Fig. 133:  Schematic relationship between measures (observations) and 
estimated states when they can not be derived straightforward from measures 
(adapted from [340]). 

7.9.2. Improving Markov model with 
weather forecast 

Weather forecast is a widespread tool to characterize wind 
farm power trend from 6 hours ahead.  Meteorological 
physical models are much more precise for assessing power 
evolution for long horizons, whereas Markov Chains are more 
adequate for assessing power variability for short and 
medium horizons and for optimize network policy. Therefore, 
a model that combines weather forecast and a Markov Model 
is more suitable than just trying to use a more complex 
statistical distribution (a semi-Markov model has fewer 
theoretical properties, it increases model complexity and it 
does not account the complex weather dynamics).  

The influence of meteorological dynamics can be 
incorporated using the weather forecast as another parameter. 
If weather forecast is not available, a Hidden Markov Chain 
(HMC) can be used for accounting the meteorological 
stability (an unobservable parameter). Other approach is the 
inclusion of the weather forecast and the farm availability in 
the classification process. 

To sum up, if the time span of the estimation is bigger than 
6 hours, weather forecast must be used to increase the 
accuracy of the wind power variability model. 

7.9.3. Discerning switching events from 
continuous operation 

Switching events are difficult to detect if there are no 
meteorological data available. Switching events can be 
guessed during high wind with a statistical hypothesis test 
based on maximum change of wind. If power has changed 
above the confidence level for the previous power output, the 
operation is not continuous up to a significance level.  

Moreover, if the variability of power output during normal 
operation is characterized through a Hidden Markov Model, 
the Viterbi algorithm can be adapted to estimate the most 
likely sequence of states from measures. 

Wind speed and 

Wind farm output 

M

Power state 

Wind state 
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The effect of switching events range from voltage 
variations to frequency drifts in smalls systems or tie line 
overloads in big systems [341]. For example, the sudden 
disconnection of big amounts of wind power in Spain can 
overload tie lines with France [342]. The sudden 
disconnection of such big amounts can be due only to severe 
network disturbances that are spread along the grid. These 
events are unpredictable. 

The disconnection due to extreme weather is more gradual 
because of geographical diversity of turbines. Some wind 
farms will experience greater wind speeds. Inside a wind 
farm, the more exposed turbines would shut down first. 
Moreover, extreme wind can be forecasted with some 
accuracy and the spinning reserve can be appropriately 
increased [343, 344]. Sometimes, the maximum and 
minimum power in the interval is also measured. This extra 
information is very valuable to discern switching events from 
very fast changes in wind. 

7.9.4. Stochastic time interpolation 

Sometimes, wind or power forecast is given only at some 
time horizons and the power output should be computed at 
intermediate instants between actual data and forecasted 
value. Time interpolation can be performed using maximum a 
posteriori probability criterion according to a Markov Model. 

The sequence of power output or wind speed and direction 
analyzed “as time goes by” is called the forward Markov 
process and it has a probability transition matrix usually 
denoted by P and its elements pij, the transition probabilities 
from state i to state j. However, the sequence ordered in 
reverse time direction is another Markov process [335] with 
backward transition probability matrix P�  and its elements, 

ijp� the reverse transition probabilities from subsequent state i 
to the preceding state j: 
 /ij j ji ip pπ π=�  (544) 

where iπ is the stationary distribution of the models and can 
be computed as the eigenvector for the unity eigenvalue of 
matrix P  (or P� ) or alternatively, as any row of the limiting 
distribution for long time horizons, lim N

N→∞
P . 

7.9.5. Input data 

x[0] = [x1[0], x2[0], …, xm[0]] = row vector of initial 
probabilities of all m states. 
xforecasted[N] = [x1[N], x2[N], …, xm[N]] =  forecasted 
probabilities of all states for time horizon N. 
[̂ ]=Expected value of [ ] = E( [ ]) = 

= Probability(X[ ] [ ])· [0]·

Probability(X[ ] [ ])· [ ]
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7.9.6. Estimation of the state sequence  

The expected system evolution is the weighted sum of a 
forward and a backward Markov Process. In absence of 
relevant information, the weighting of the forward and 

backward process at point k can be proportional to the 
distance to the initial and end of the time interval. 
Accordingly, the following formulae expressing the 
probability of each state ( P�  is supposed invertible in wind 
power applications):  (546) 
[̂ ]=Expected value of [ ], 0  = E( [ ]) = 

= Probability(X[ ] [0]· )· [0]·
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 The latter formula can be expressed more compact as: 

( )[̂ ]= [0] [ ] [0]cl N k
forecastedk k N

N
β⎡ ⎤+ −⎢ ⎥

⎣ ⎦
x x x P x P�  (548) 

 If the interpolation between the measured and the 
forecasted values is done geometrically instead of 
arithmetically, a similar formula can be derived. 

The probability of any sequence of generation states can be 
computed as in chapter 7 of [345] (for example, probability of 
the sequence: full generation to no generation and then to full 
generation in successive time intervals). 

7.10. Stochastic power flows 
Probabilistic power flow is a term that refers to power flow 

analysis methods that directly treat the uncertainty of electric 
load, generation and grid parameters. 

Classical approaches usually rely on simplifications such 
as linearization and independence of random variables. In 
many algorithms, the loads at each bus are assumed inde-
pendent and normally distributed [346], which is quite 
unrealistic for renewable energy and consumer loads. How-
ever, dependence of system parameters should be identified 
by principal component analysis and correlated random vari-
ables can be transformed into independent variables. Some 
authors [347, 348] proposed a linear approach with a 
rotational transformation to convert variables correlated into 
uncorrelated.  

In Monte Carlo time simulation, a large number of power 
flows should be run to achieve a good precision. The system 
optimization (spinning reserve, reactive power, optimal 
planning,…) usually requires an lengthy iterative process. 

7.10.1. Markov chains in stochastic 
power flow 

One important contribution of this article is the use of cases 
for describing distributed generators with non discrete 
operational states. In wind or solar energy, it is not practical 
to take into account each single wind turbine in the simulation 
of a big power system. The use of cases along with its 
frequency of occurrence is a compact way to condense the 
information of turbines’ operational point due to an 
uncontrollable primary energy, geographically related.  

(545)

(547)
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Markov chains are very adequate for handling transitions 
between states (for example, the change from available to 
unavailable operational state and vice versa). The main 
drawback of using only a reduced number of cases is that they 
must be chosen so that all significant operational states are 
included in the set. Some cases must be included because they 
happen very frequently (states with high probability) whereas 
others can be rare but they can harness system stability. 
Therefore, no-generation and full generation should be 
included as states. 

 Each combination of system states can be solved with a 
regular power flow and its probability and time variability can 
be obtained from the DTMC (Discrete Time Markov Chain). 
If the final grid state is dependent on the previous state, a 
continuation power flow should be run for each realizable 
state transition (squaring the number of required power 
flows). 

 
Fig. 134: Work flow for the proposed model. 

The joint probability distribution of random variables is 
implicit in transition matrix P, which is estimated from real 
data or from physical models. This is a desirable feature, 
since many statistical grid methodologies [349] suppose that 
random variables are not correlated (independent variables) 
whereas renewable generation is quite correlated in small 
geographic areas and loads are also quite correlated. 

If each load and generator are discretized, for instance, into 
four states, the number of combinations are 4n, where n is the 
number of stochastic variables considered. If the number of 
stochastic variables n is big, grouping highly related 
observations is necessary. 

The combined use of discretization and cluster analysis 
allow to reduce the number of power flow runs compared to 
standard Monte Carlo Simulation [350]. The discretization 
and classification errors decrease considering more states. 

Some statistical computer packages select the number of 
cases comparing the decrease ratio of the classification error 
when the number of states m are increased (i.e., including a 
new group in the data clustering process) [351]. Therefore, 
the number of states can be selected depending on the desired 
classification precision, the non-linear behavior of the electric 
grid (plausible topological changes in the grid, voltage 
collapse) and the data available to adjust the model 
parameters. 

If there is enough data, the system state can encompass 
load and generation. Load is very weakly correlated with 
wind and wind generation and load can be regarded as 
independent random variables. The load is dependent of 
daylight and therefore, solar power is partially correlated to 
load. In the example of the following part, load and 
generation would be modelled as non-related Markov Chains 
and classified independently. The possible combinations of 
load and wind generation states are Nload·Nwind and tensor 
algebra can be used to compute efficiently the properties of 
the total system (see chapter 9 of [352]). Note that if load and 
generation are expressed in their respective canonical basis, 
the combined matrix is a diagonal with the eigenvalues of 
load and generation. Since P̂  is the matrix P estimated from 
data, the probability of P̂  having two or more eigenvalues 
exactly the same tends to zero for increasing sets of data. 
Therefore, P̂  is diagonalizable in practice. Thus, the space 
requirements are proportional to the number of states and the 
matrix operations are trivial. 

Since states of power generation are treated as Markov 
Chains, the variability of the load will be modelled with 
Markov States also. Therefore, the generation and 
consumption patterns are classified in a limited number of 
states, which are equivalent to transform a multidimensional 
continuous system into a discrete one. This makes the system 
tractable and it allows to obtain not only the probability 
density functions, but also the time variability. Therefore, it is 
possible to estimate the number of changes in tap changers, in 
capacitor banks and in the topology of the network. 

To sum up, this model requires running just as many power 
flows as states has the system and it allows to derive easily 
and rigorously the probability of events. Each case can be 
solved with a standard power flow, considering non linear 
elements such as topological changes in the grid that depend 
on the system loads and generators. 

The moments of random variables such as line power flow, 
generation and voltages can be computed directly from the 
probabilities of the cases. The continuous distribution of the 
network can be easily obtained from the cumulative density, 
adjusting an interpolating function to the case points (the 
probability density function is the derivative of the 
interpolating function). 
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Moreover, the allocation of spinning reserve due to wind 
power can be done using a Markov Decision Process. These 
processes can compute the optimum spinning reserve policy 
from the probability of wind generation variation, the cost of 
running the reserves and the eventual cost of insufficient 
reserve.  

7.10.2. Simplified model of a wind farm 
to account active and reactive losses 

The wind farm model employed in this section is based in 
[353, 354], where a fourth-pole equivalent representation is 
obtained from the electrical elements, the distributed layout of 
the turbines, the stochastic nature of power output and small-
signal analysis of the grid.   

In this section, an approximate representation with a shunt 
admittance and series impedance will be used to simplify the 
analytic expressions . 
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Fig. 135: Original and concentrated model of a MV circuit in a wind farm. 
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Fig. 136: Model of the farm using a fourth pole realization. 

In the analyzed wind farms, the wind turbines are operated 
at a constant leading angle near ϕ0 ~ 0 at low voltage (LV) 
side to increase reactive bonus. Therefore, the reactive power 
Q show a quadratic relationship with active power P due to 
series inductances and shunt stray capacitance of cables. 
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Where  
Σ PWT = sum of active power of all turbines (positive when 

generating) 
Σ QWT = sum of active power of all turbines (positive if 

generators behave inductively) 
PPCC = Active power injected at PCC 
PPCC = Reactive power injected at PCC 

Rseries and Xseries are the real and imaginary part of Zseries, i.e. 
the resistance and reactance of the series equivalent. 

Gshunt and Bshunt are the real and imaginary part of Yshunt, i.e. 
the shunt conductance and susceptance. 

For instance, Fig. 137 shows the quadratic PQ relationship 
for a wind farm during one year (15 minutes measures). Its 
series inductance is about 16 % p.u. due to cable impedances 
and turbine (Ucc=5,8 %) and farm transformers (Ucc=7,5 %). 
The graph is scattered since UPCC was variable and the value 
of ϕ0 was adjusted at the end of each month to obtain the 
maximum reactive bonus according to Spanish tariff. The 
other two wind farms show similar relationships.  

 
Fig. 137: PQ relationship of a wind farm at 220 kV node during one year 

Even though the voltage inside the farm varies, it is ex-
pected to be near to assigned value at normal operation 
(Uturbine ~ 1 p.u.). This simplification is only a small source of 
uncertainty of the model since Zseries  are expected small p.u. 
(around 0.12 p.u.) and Yshunt is expected to be big (at least 20 
p.u.). Standard UNE 206005 [355] assess the reactive power 
ability of wind farms at Uturbine = 0,95, 1 and 1,05 p.u.  

The parameters Rseries, Xseries, Gshunt and Bshunt of  (549) and 
(550) can be derived from measures or from simulations at 
calm (PWT = 0, QWT = 0) and full power with unity power 
(PWT = 1 p.u., QWT = 0) with 1 p.u. voltage at PCC: 
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 (551) 

Taking into account the lines that connect the wind farms 
and the present unity power factor regulation at low voltage 
generator output, the reactive power of the three wind farms 
at PCC is: 

2
2

2
0, 008 0.0057 0.1537 WT

PCC PCC WT

PCC

P
Q U P

U

Σ
≈ − + Σ +  (552) 

where Σ PWT  is the average per unit power of the wind 
turbines of the three farms. Note that (552) is estimated from 
nominal values of wind farm project whereas Fig. 137 (and 
similar graphs for the other two wind farms) are measured. 
The discrepancies are due to differences on real parameters 
compared to the values assumed, voltage at nodes of the wind 
farm bellow 1 p.u., operation of wind turbines with power 
factor below unity and model approximations. 

Stand-by losses are smaller than the resolution of a 
standard power meter, making it difficult to guest from 

(549)

(550)
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measures. Therefore, active losses are computed from 
network and transformers parameters. 

2 2
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 In this case, the equivalent parameters of the wind farm 
interior network are: 
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7.10.3. Essence of the new approach to 
probabilistic power flow 

In essence, stochastic load-flow (SLF) studies assumes that 
the long-term nodal generation and load vector varies about 
an expected operating point. The SLF algorithm is easily built 
from existing state-estimator algorithms [356], but the 
drawback of the SLF is that it handles only Gaussian  nodal 
probability density function (PDF) data for practical system 
sizes. 

Another approach, commonly referred to as the 
probabilistic load-flow (PLF) algorithm, uses linear or 
quadratic approximations of the network behaviour. For 
realistic system sizes, independence of nodal power injections 
must be assumed in order to be able to apply convolution 
techniques [349]. 

The new approach proposed in this paper does not rely on 
convolution, independence of random variables or linear 
behavior of the power system. The new method does rely on 
the fact that power injections are (highly) related and some 
patterns can be noticed. 

The parameters that affect demand curve are well 
established (week day or bank holyday, season, time of the 
day, weather temperature, type of consumers, …). Wind 
generation and other types of dispersed generation show 
strong links due to geographical and meteorological links. 
Therefore, the load and the disperse generation can be 
classified into a (reduced) set of behaviour patterns. 

Each combination of load and generation patterns 
represents the typical operation of the power system during 
some periods. Therefore, a standard (deterministic) power 
flow can be employed to solve each typical operation. 
Afterwards, a statistical analysis can be carried out to 
measure system performance and to optimize the control or 
the design of the system. 

The essence of this new method is a Monte Carlo analysis 
where the cases are not randomly generated. First, data is 
classified to select the most representative cases to be 
simulated, giving further insight in the relationship of the 
players of the power system (i.e. data mining). Then, a 
conventional power flow is run with the values of the center 
of the class (if the previous state of the network is influential, 
a continuation power flow can be run for each pattern 
transition). Finally, the results of the simulation are 
statistically analyzed (usually, to optimize the design or the 
operation of the network). 

Since there are very powerful classification algorithms that 
can handle efficiently very large amounts of data, the number 
of time-consuming power flow runs are highly decreased, 
resulting in an important reduction of computing burden 
compared to conventional Monte Carlo. Usually, the number 
of patterns is small enough for all cases to be simulated. 

Other advantage of the proposed method is that electrical 
engineers are used to the simulation of cases (worst scenario, 
typical seasonal scenario,…). Therefore, this analysis is more 
familiar to them. 

If the generation is not correlated at all, the procedure is 
still valid but the computing savings decrease. The number of 
cases to represent the operation of N generators with a given 
accuracy when they are not related is proportional to N2 and 
the method degenerate in conventional Monte Carlo. Recall 
that if the random variables were independent and the system 
behaviour were sufficiently linear (no parameter violations, 
bottlenecks or topological changes in the network are 
expected) techniques such as convolution and two point 
estimates would be preferable [348]. 

The modelization of the system variability through Markov 
chains allows to obtain not only the static system performance 
but also its slow-dynamic behaviour (slow enough for the 
algebraic power flow equations to remain valid).  

Markov chains, in the way they are applied in this paper, 
can be thought as a system of stochastic differential equations 
which mimics the measured evolution of loads and 
generators. The network response to loads and generation 
evolution is computed based on the power flow equations. 

In fact, accounting the previous system state makes 
possible to include the system operator action, provided it can 
be specified mathematically (for example, with a set of fuzzy 
rules based on expert knowledge). 

7.10.4. Description of the group of wind 
farms 

A system with three wind farms will be employed to test 
the model described in previous subsections. The model is 
adjusted from one year data and some measures of the 
goodness of the fit are estimated. In particular, the 
exponential distribution of the permanence time in states is 
contrasted with real data. The uncertainty of the transition 
probabilities and the estimation of uncommon events are also 
studied. Some theoretical properties obtained from the model 
are also checked with experimental data. 

Six wind farms totalling 251,3 MW are connected to a 
PCC at transmission level (220 kV). However, only data from 
2/3 of the wind generation was available for this study. 
Therefore, short-circuit impedances at PCC have been scaled 
proportionally to account that the other farms at PCC will 
probably have an output similar to the measured ones (per 
unit short circuit impedance at PCC is computed based on 
installed wind power instead of measured wind power). The 
equivalent layout is shown in Fig. 138.  

The effect of wind power variability is investigated on the 
voltage and the number of tap changes at the main 
transformer. The only available data is the active and reactive 
power output of the wind farm at connection buses. In case 
reactive power is not available or it is a parameter to be 
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optimized, it can be derived from a wind farm model.  

farm 3

farm 2farm 1

Slack Bus

PPC

Bus3

 
Fig. 138: PSAT model for the tree wind farms, modelled as PQ nodes 

connected to the PCC 

7.10.5. Markov model obtained from 
conventional clustering 

Fig. 139 shows the array of all the bivariate scatterplots 
between active power of the tree farms, along with a 
univariate histogram for each active power. The classification 
of each point is codified with different colors in the 
scaterplots. Fig. 139 show the values of the centroids of each 
group (i.e., their mass center). Due to the fact that the wind 
farm power output is highly correlated, only eight states have 
been used in the clustering algorithm obtaining 0.011 p.u. 
average classification error.  This example shows that 
if there is a high degree of correlation between variables, 
clustering can decrease notably the number of states to be 
considered (compare 8 to 43=64 estates). In [357], an example 
of  power classification of 14 wind farms in an area of about 
100 km of diameter is shown.  

The input of the clustering process can be only the active 
power or also the reactive power of the wind farms. 
Generally, the inclusion of the wind farm reactive power Q 
does not decrease the performance of the clustering process 
since P and Q are usually highly related. For a fixed power 
factor regulation, the reactive power Q can be computed from 
the active power P with acceptable precision. 

If Q is controlled according to network parameters or a 
scheduled planning, a suitable approach is to model such 
relationships directly in the power flow run. Occasionally, Q 
can depend greatly on unmeasured parameters or unknown 
control policies and it must be statistically characterized. In 
those situations both P and Q are the inputs of the clustering 
process at the cost of increasing the number of groups to 
maintain the classification error. 

 
Fig. 139: Scatterplots between active farm power P and their histogram 
(classes are shown in blue, green, magenta, red, black and dark blue). 

 

Table VIII is the result of a conventional clustering 
algorithm whose inputs are the active P and reactive Q 
powers measured at the billing meter of three wind farms. If 
only active powers are used for the clustering process, the 
output is very similar because P and Q are highly related in 
this case. 
 

TABLE VIII: CENTROIDS OF  P AND Q VALUES P.U. OF  THREE WIND FARMS 
# P1 Q1 P2 Q2 P3 Q3 Freq. 

1 0.0112 -0.0036 0.0119 -0.0100 0.0124 0.0009 37.9%

2 0.1092 -0.0061 0.1083 -0.0205 0.1156 0.0040 15.14%

3 0.2385 0.0024 0.2199 -0.0154 0.2402 0.0114 10.12%

4 0.4026 0.0206 0.3621 -0.0045 0.3995 0.0280 8.00%

5 0.5409 0.0435 0.5641 0.0203 0.5850 0.0587 5.97%

6 0.8152 0.1012 0.3269 -0.0035 0.6356 0.0702 1.77%

7 0.7624 0.0922 0.7238 0.0465 0.7711 0.1011 6.74%

8 0.9199 0.1354 0.8941 0.0781 0.9268 0.1437 14.37%
 

 
Fig. 140: Color graph of centroids of  P and Q powers of table I. 

Fig. 140 is a color graph representation of the centroids of 
the eight patterns obtained from the clustering process.  

Fig. 141 is the histogram of the eight patterns obtained 
from the clustering process from data of a year measured 
every 15 minutes. The no-load and low load states are the 
more frequent (37.9% and 15.14%) followed by full load 
(14.37%). This is typical of low wind resource wind farms. 
The clustering algorithm has selected the pattern #6, which 
corresponds to high generation at the first one, low generation 
at the second wind farm and middle generation at the third 
one. The selection of this pattern decrease the total 
classification error, even though it represents only 1,77 % of 
time operation. 

 

     P1               Q1             P2             Q2               P3             Q3 (p.u) 
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Fig. 141: Histogram of the states in data from a whole year operation. 
 

 The study of the transition rates for 15 minutes 
interval data reveals that the more stable states are the first 
and the last (full and no generation), whereas a transition to 
immediately upper or lower states are noticeable. However, 
transitions to non-adjacent states are very low except in states 
6 and 7 (these states correspond to different wind directions, 
which are very steady in the zone).  

The probability transition matrix P̂  is estimated from real 
data in Table IX. Fig. 142 shows that transitions with 
immediately upper and lower states are relatively frequent 
(light gray), but jumps to far states are scarcely probable 
(shades of white). Note that the rows correspond to the initial 
state and the columns correspond to the state of the next 
interval. Thus, the probability of going from state 5 to state 7 
in one step is stored in row number 5 and column number 7. 

State 6 reflects the operation of farm #2 at unusual low 
power (only 1,77 % of occurrences from Fig. 141). The 
probability transition matrix shows that jumps between states 
5 and 7 states are more probable than jumping to the adjacent 
state 6 (unusual low power at wind farm 2 and high power at 
farm 1).  

The unobserved transitions from state i to j of Table IX, 
Fij = 0, can be due to real unfeasibility or to the limited 
available data (for example, infrequent transitions of sporadic 
states). An improved estimation can be employed if 
unobserved transitions are feasible even though they have not 
been observed because they are very rare events and data 
record, short. 

 
Fig. 142: Color map representation of transition matrix P̂ . 

TABLE IX: INITIAL PROBABILITY TRANSITION MATRIX P̂  
to 
 

From 
state 

1 2 3 4 5 6 7 8 

1 0.9510 0.0472 0.0015 0.0001 0.0002 0 0 0 

2 0.1201 0.7646 0.1074 0.0064 0.0006 0.0006 0.0004 0 

3 0.0025 0.1693 0.7004 0.1156 0.0068 0.0034 0.0014 0.0006

4 0.0011 0.0057 0.1565 0.6899 0.1216 0.0181 0.0057 0.0014

5 0.0005 0.0005 0.0110 0.1760 0.6419 0.0324 0.1359 0.0019

6 0 0.0016 0.0144 0.0674 0.1124 0.6116 0.1541 0.0385

7 0 0.0017 0.0008 0.0051 0.1284 0.0363 0.6755 0.1521

8 0 0 0 0.0004 0.0010 0.0044 0.0721 0.9221
 

If Fij = 0, the transition probability îjp  is bound to [0,1–
( )

1
1 iFclβ− ) with confidence level βcl (Fij is binomially 

distributed) [297]. Thus, the null elements of îjp could be 

substituted by a value in the interval [0, ( )
1

1 1 iFclβ− − ) and 
the rest of the elements rearranged to make 1ˆ 1m

j ijp=Σ = . 
However, the use of a random point in the interval introduces 
bias in the estimation (usually, pessimistic overestimation of 
extreme variability).  

The unbiased estimation of  îjp  is zero for unobserved 
transitions, but its uncertainty is inversely proportional to the 
number of occurrences of state Fi because their transition 
probability îjp  is bound to [0, ( )

1
1 1 iFclβ− − ) ≈ 

[0, ( )1 1i clF Ln β−− − ) with confidence level βcl .  
Characteristic times of the system (eigenvalues of P̂ ) and 

limiting distribution of states are continuous functions of 
matrix elements and the effect of almost zero elements are not 
important. But a rare transition can have very high cost 
associated in the optimization algorithm (for example, a 
sudden loss of all wind generation which can cause a blackout 
in an island). Therefore, a rare transition might dominate 
optimization. 

There is a tradeoff between the number of classification 
states and the uncertainty of transition matrix. The use of a 
bigger number of states decreases classification error but 
increases uncertainty of infrequent transitions. 

If there is a bottleneck or an important topological change 
when an atypical generation pattern occurs, then a big number 
of states is advisable because increasing the uncertainty in P̂  
is acceptable. If there are no bottlenecks or violations out of 
the ordinary and the main purpose of the study is the effects 
of exceptional events (for example, assessment of 
contingencies, optimization of the spinning reserve 
allocation,…), then a reduced set of states can be enough.  

The unobserved transitions are in italics in Table IX and 
Table X. Their bounds range from 16p̂ ∈ [0, 2·10-4) to 61p̂ ∈  
[0, 48·10-4)  for 95% confidence level. For a better estimation 
of such uncommon events, similar transitions can be joined 
(for example, estimate together the transition form low power 
–states 1 or 2– to high power –states 6, 7 or 8–). Therefore, 
transition probability from states {1, 2} to {6, 7, 8} would be 
assumed to be the same. The transitions which are similar can 
be inferred from the cluster dendrogram. Note that the 
numbers in italics are estimates of unobserved transitions 
based in available knowledge and some other elements have 
been adjusted for each row to sum 1. 

TABLE X: PROBABILITY TRANSITION MATRIX P̂   
(ADJUSTED JOINING SIMILAR INFREQUENT TRANSITIONS) 

to 
 

From
state

1 2 3 4 5 6 7 8 

1 0.9510 0.0472 0.0013 0.0001 0.0001 0.0001 0.0001 0.0001

2 0.1201 0.7643 0.1074 0.0064 0.0006 0.0006 0.0003 0.0001

3 0.0025 0.1693 0.7004 0.1156 0.0068 0.0034 0.0014 0.0006

4 0.0011 0.0057 0.1565 0.6899 0.1216 0.0181 0.0057 0.0014

5 0.0005 0.0005 0.0110 0.1760 0.6418 0.0324 0.1359 0.0019

6 0.0001 0.0015 0.0144 0.0674 0.1124 0.6116 0.1541 0.0385

7 0.0003 0.0015 0.0008 0.0051 0.1284 0.0363 0.6755 0.1521

8 0.0001 0.0001 0.0001 0.0002 0.0010 0.0044 0.0720 0.9221

7.10.6. System dynamics and equivalent 
stochastic differential equations 

The use of Discrete Time Markov Chains, (DTMC) implies 
that the permanence time in a state is distributed 
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geometrically or as an exponential random variable if the time 
is considered continuous (Continuous Time Markov Chains, 
CTMC).  

For DTMC, the probability of being in state i during k 
measuring intervals before changing to other state is a 
geometric random variable with parameter p = 1 - pi,i , where 
pi,i is the i diagonal element of the probability transition 
matrix P̂  of Table X. The number of intervals k in a time 
interval t is k = t·f, where f  is the frequency of the recorded 
data. 

The probability of permanence in state i more than k 
measuring intervals (k = t·f) is the complementary 
cumulative density function of a geometric random variable: 

/
, ,Pr ( X[ ] , 0,..., | X[0] ) itk t f

i i i ij i j k i p p e τ−= = = = = = (554) 

,

1= 
 ln( )i

i i

characteristic or decay time of  state i 
f p

τ −
=   

 
Fig. 143:  Probability of permanence more than a given time in each state 
(complementary cumulative distribution function of permanency time) 
(x axis scaled to the characteristic time iτ = 1/ln(pii) ). 

The average permanency time iμ  in state i can be 
computed using (555)  
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Wind power measures are the average value during a time 
interval. But if instantaneous wind power is considered, wind 
power and time are continuous variables. Therefore, the mean 
value computed with continuous time is  (555)  
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The characteristic time iτ  can be seen as the average time 
spent in a state i before leaving it or, alternatively, as the time 
where the probability of remaining in state i  at time t = iτ  is 
1/e = 36,79%. 

( ) ( )1
, , , ,

=Pr (X[ ] ; X[ ] , 0,..., 1 | X[0] )

· 1 · 1/ 1k k
i i i i i i i i

Probability (staying exactly k intervals in state i)
k i j i j k i

p p p p−

=
≠ = = − = =

= − = −

 (557) 

The expression (557) can be rewritten approximately in 
terms of characteristic time of the state iτ  

( ), ,
1· 1 / 1 exp exp 1k

i i i i
i i

Probability (staying exactly k intervals in state i)
kp p

f fτ τ

=
⎡ ⎤⎛ ⎞ ⎛ ⎞

= − = − − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (558) 

1exp ln exp 1
i i

k
f fτ τ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − + −⎢ ⎥⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

  

Therefore, the graph of the relative occurrences of staying 
k intervals in state i is a straight line in a semi-logarithmic 
plot with slope ,1/ ln( )i ip−  and intercept with vertical axis 

,1/ 1i ip −  . In order to check the goodness of the fit, Fig. 144 
shows the probability mass distribution of permanency time 
in each state with the horizontal axis is scaled by ,1/ ln( )i ip−  
and with the relatives occurrence scaled by ,1/ 1i ip − . In Fig. 
144, the exp(-t) function (a straight dashed line) has been 
included to compare experimental data with theoretical 
distribution. Since states 1 and 8 have long characteristic 
times and experimental data is limited to one year, the 
occurrence of long periods with the same states is scarce and 
it shows a high variability (for example, the permanence 
during exactly 80 quarters of hour in state 1 can happen from 
0 to 3 times in a year). 

 
Fig. 144:  Probability mass distribution of permanency time in each state 
(x axis scaled to 1/ln(pii) and y axis scaled to 1/pii-1). 

P̂  contains much more information than just the 
distribution of time permanence in states. The rest of this 
section will look into the dynamics of the system. Note that 
states are not sharply defined and time is not discrete because 
wind farm power output is a continuous varying property.   
 In the discrete case, a DMTC corresponds to the 
forward m order difference equation (559) with the initial 
probability distribution x(0) = [x1(0), x2(0), …, xm(0)] as 
initial condition. P is the one-step transition probability 
matrix [345]. 
 ( 1) ( )k k+ =x x P  (559) 
 Therefore, the probability distribution k instants later 
can be computed as: 
 ( ) (0) kk =x x P  (560) 

The stochastic matrix P has a dominant eigenvalue λ1= 1 
and it is irreducible, recurrent and acyclic in wind farm 
characterization. Since P̂  is the matrix P estimated from 
data, the probability of P̂  having two or more eigenvalues 
exactly the same tends to zero for increasing sets of data 
(eigenvalues are continuous functions of matrix elements). 
Therefore, P̂  is diagonalizable in practice.  

(555)

(556)
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 The solution (560) can be easily expressed in the 
coordinates specified by the left eigenvectors Y of 

1ˆ ˆ( )idiag λ−=P Y Y , where ˆ( )idiag λ is the diagonal matrix 
containing the eigenvalues îλ of P̂ .  The first eigenvalue is 

1̂λ = 1 and the rest are smaller.  
If the state probabilities are expressed in the canonical 

coordinates specified by basis Y : ( ) ( )k k=v x Y , then the 
dynamics of the system are much simpler: 

[ ]1 2(0), (0), ..., (0)ˆ ˆ( ) (0) ( ) ( )m

k k
i iv v vk diag diagλ λ⎡ ⎤= =⎣ ⎦v v  (561) 

 In other words, the dynamics in these coordinates can be 
expressed in independent scalar equations corresponding to 
first order systems of characteristic time îτ  : 

 ˆ ˆ ˆ( ) (0) (0) (0)·exp( / )k t f
i i i i i i iv k v v v tλ λ τ= = = −  (562) 

 1ˆ ˆlni
if

τ
λ

−
=  (563) 

The first row of Y  is the limiting probability, 1π  or just 
π  (eigenvector corresponding to unity eigenvalue). When the 
initial probability distribution is 1π , the distribution doesn’t 
change in time ( ˆ 1/ 0iτ = = ∞ ). The rest of distributions iπ  
decay with characteristic time îτ  (at ˆ3· it τ= , the probability 
distribution iπ  has faded away to 5% of the initial value). 

The forward equations of a CMTC correspond to the 
Chapman-Kolmogorov Nth order differential equation (564). 
Q is the generator matrix of the CMTC. Q can be estimated as 
Q̂  = f ln( P̂ ) ∼ f ( P̂ -I), ln is the matrix natural logarithm, I 
is the identity matrix and f  is the frequency of recorded data. 

 ( ) ( )d t t
dt

=x x Q  (564) 

Its solution is ·( ) (0) (0)t f tt e= =Qx x x P , where teQ  is the 
exponential of matrix Q t. If P̂  is diagonalizable, Q̂  is also 
diagonalizable and it has eigenvalues ˆ ˆln 1/i if λ τ=  and the 
same eigenvectors than P̂ . Therefore, the equations of 
continuous time dynamics in the canonical coordinates of Q̂  
(565) are equivalent to (562), the discrete case [335].  
 ˆ ˆ( ) (0)·exp( ln ) (0)·exp( / )i i i iv t v t f v tλ τ= − = −  (565) 

Therefore, DMTC and CMTC are equivalent. The 
computational burden is smaller for DMTC and discrete data 
is better suited for P̂  estimation. CMTC gives deeper insight 
on system dynamics, mimics better its continuous behavior 
and it can be used to derive easier some properties of the 
system. Moreover, CMTC approach is more familiar for 
control engineers.  

Note that other numerical approaches (different from 
eigenvalue calculus) can be computational more efficient in 
some applications [358]. 

7.10.7. Permanence time in a state 
The use of Markov Chains implies that the permanence 

time in a state is distributed geometrically if time is 
discretized or, equivalently, as an exponential random 
variable if the time is a continuous variable.  

Fig. 145 confirms the assumption that a Markov Chain can 
approximately model the behavior of the system since the 
distribution of permanency time in one state approximately 
corresponds to a geometric random variable (for DMTC) or 
exponential random variable (for CMTC). This can be 
checked in Fig. 145, where the probabilities of remaining in 
the same state versus time shows an exponential relationship 
(i.e. distribution is approximately a straight line in a semi-log 

plot whose slope corresponds to the inverse of the standard 
characteristic time).  

 
Fig. 145:  Probability mass distribution of permanency time in each state 

(normalized scalfing time by state characteristic time). 
 

The main discrepancies are at the distribution tail in rare 
long-lasting periods at full or no generation (states 1 or 8) due 
to very stable meteorological situations. For example, period 
of almost 7 days in state 1 (calm) have occurred in one year 
data. These outliers caused states 1 (calm) and 8 (full 
generation) have overestimated characteristic time. 

The geometrical distribution is a special case of negative 
binomial distribution with parameter r = 1. A negative 
binomial distribution has been adjusted and parameter r 
ranges from 0,5 to 3,5, depending on the state number (the 
95% confidence interval did not include r = 1). The negative 
binomial distribution is an alternative to the geometric 
distribution when the occurrence frequency (or transition 
probability) varies in time.  

The deviation of permanence time from geometrical 
distribution is due to: 
o The state transition rates depend physically on 

meteorological conditions and on wind farm availability. 
For example, meteorological stable conditions at calm or 
high winds can eventually last long periods. 

o The “hard” classification of a measurement into a solo 
state increases observed transitions in the state, especially 
if the measurement is near two cluster borders. This can 
explain that permanence times of states 2 to 7 decrease 
steeper than exponential model (r ranges from 2 to 3). 

o The estimation of system characteristic times with 
formulas (557) to (554) is an oversimplification. In fact, 
the Markov Chains are “centrifugal” in the sense that 
when the system is at partial generation, the system tends 
to evolve to the first (calm) or last (full power) states. 
This can explain why the first and last states show a 
slower decrease of permanence times compared to 
exponential (geometrical) distribution.  

o The permanence time in a state is a concept easy to 
visualize but it does not correspond to the physical 
behavior: the power output of the farms is continuously 
evolving. Fig. 145 shows the time that power output is 
bound to cluster area, but system dynamics is more 
complex. 

o The concept of permanence time is not straightforward in 
fuzzy clustering. The membership level of an observation 
to a state can increase or decrease from an instant to the 
next. Therefore, the system can be though to stay in the 
state with probability equal to the minimum of the pre 
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and post membership levels. Thus, a consistent stochastic 
measure of time permanence must be defined (for 
example, the time interval where the membership is 
above a threshold level can be considered the 
permanence time with probability equal to the mean 
value of the membership to that state).  

o An adequate test to check if Markov Chain is a suitable 
model must employ full dynamics, not only the 
permanence in a state that is physically evolving. 

 
TABLE XI: AVERAGE PERMANENCE IN STATES (IN HOURS) 

St
at

e 

Maximum 
likelihood 
estimation 

Lower 95% 
confidence 

interval 

Upper 95% 
confidence 

interval 

Equation 
(555) 

( ),

1
1 i ip f−

Equation 
(558) 

1 5.1066 4.7362 5.5224 5.1066 5.3839 
2 1.0621 1.0056 1.1235 1.0621 1.1834 
3 0.8345 0.7866 0.8870 0.8345 0.9544 
4 0.8065 0.7555 0.8628 0.8062 0.9276 
5 0.6981 0.6507 0.7508 0.6981 0.8122 
6 0.6436 0.5696 0.7331 0.6436 0.7357 
7 0.7705 0.7188 0.8280 0.7705 0.8838 
8 3.2029 2.9084 3.5448 3.2112 3.4453 
 

An alternative to check model accuracy valid for “hard” 
clustering is to compare the theoretical and observed 
distribution starting from each state for various time spans 
(the error measure can be the mean squared difference of 
theoretical and observed histograms). When fuzzy clustering 
is used, each time the system is in a combination of states up 
to a certain degree and there is not possible to compute 
histograms in the usual way.  

A measure of fit goodness that works even with fuzzy 
clustering is to compare the transition matrix for a time span 
of k measuring intervals computed from the one-step 
transition matrix P̂  power k times and estimating a new 
matrix mkP  based on transitions from initial states to states k 
intervals forward. The measure error can be 

m ˆ| ( ) |/k
k s−P P   

However, the system stays occasionally long time in full or 
no generation due to stable meteorological conditions which 
are maintained for long time. Moreover, if the wind farm is 
unavailable for long time, it can distort the distribution of no 
generation. This is the reason that the actual permanence 
times are somewhat different from the times computed from 
transition matrix. 

 
Fig. 146: Average permanency time in each state (in hours) from (555).  

Fig. 146 shows the residence times, where it can be seen 
that zero and full generation are the most stables states. In 
fact, the permanency time in such estate is computed as it 
were a Poisson process (permanency time exponentially 
statistically distributed). This is characteristic of the Markov 
chain approach used to characterize wind variability. 

Application example II:  
Isolated system with storage 

The optimal stochastic control of load consumption of an 
isolated system with solar and wind generation and storage 
should include cost of not being able to supply demand and 
the ageing due to depth of discharge of batteries. The main 
energy sources (solar radiation and wind speed) are not 
controllable and some loads can be deferred or even not 
supplied in case of energy shortage. The control must weight 
the probability of not supplying critical loads; the efficiency 
of supplying energy from the storage and the aging of the 
storage system. 

7.10.8. Battery State of Charge 

The evolution of the battery state of charge (SOC ) can be 
modeled with the Ah model [359]. In this model, the battery 
is recharged and discharged at gross powers chargeP  and 

dischP . The efficiency of the process is chargeη  and 
dischη respectively, which depend on the current. The auto-

discharge is proportional to SOC  at rate batδ . Thus, the 
differential equation of the battery dynamics is (566). 

 ·bat bat
d

SOC SOC
dt

λ δ= −  (566) 

where the SOC variation rate due to charge or discharge is, 
in Ah units: 

( )
( )

,
,charge

disch

disch
bat charge charge

disch
I

I

I
I SOC

SOC
λ η

η
= + (567) 

 
TABLE XII: PARAMETERS OF THE BATTERY IN THE AH MODEL 

Variable Significance Range 

SOC  State Of Charge of the Battery (in Ah 
units) 

100~2000 Ah 

batλ  Instantaneous rate of variation of SOC  
due to charge or discharge 

 

batδ  Auto-discharge rate per time unit (about 
3-10 % per month) 

4·10-5~10-4 hour-1 

chargeP  
Gross input power into converter at AC 
terminals when charging the battery. Sign 
convention: positive. 

0~ 

max

min

bat

charge

SOC U
t

chargeP ′  Power at battery terminals while charging. 
Sign convention: positive. 

 

dischP  
Gross output power from converter at AC 
terminals when discharging the battery. 
Sign convention: negative. 

0~ 

max

min

bat

discharge

SOC U
t

dischP ′  Power output from battery terminals while 
discharging. Sign convention: negative. 

 

converterη  Efficiency of the system composed by the 
inverter and charge regulator. 

0.9~0.95 

chargeη  Efficiency of the battery during charge 0.7~0.9 
dischη  Efficiency of the battery during discharge 0.7~0.9 

batteryU  Voltage at battery terminals 1.7 ~ 2.3 V  
per cell 

chargeI  Current pumped into the battery while 
charging. Sign convention: positive. 

0~1000 A 

dischargeI  Current drawn from the battery at 
discharge. Sign convention: negative. 

0~-1000 A 
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The electrical power at battery terminals can be computed 
from absorbed power of converter/charger and its efficiency: 
 ' ( )charge charge converter chargeP P Pη=  (568) 

 / ( )disch disch converter dischP P Pη′ =  (569) 
Thus, the currents at battery terminals when charging or 

discharging are, respectively: 

 
( , )

charge
charge

battery charge

P
I

U SOC P

′
=

′
 (570) 

 
( , )

disch
disch

battery disch

P
I

U SOC P

′
=

′
 (571) 

Since the battery charging and discharging is relatively 
slow, the Ah model is accurate enough in hybrid power 
systems [360]. However, if the batteries are quickly charged 
and discharged, other models such as the Kinetic Battery 
Model (KiBaM) are more accurate. A very simple example of 
battery control with Markov Decision Process (MDP) can be 
found in [361]. 

7.10.9. Probabilistic discretized model of 
SOC 

A stochastic model of the state of charge is suitable for the 
optimal control of the battery with MDP since the primary 
energy source is random, the battery model can have 
uncertainties and can suffer from aging. 

In the approach of this paper, the battery status is classified 
in N  states. Each state 1i =  to N  is characterized by a 
SOC  in ascending order,  1 1i i isoc soc soc− +< < . The first 
state is the minimum battery charge without severe lifespan 
loss ( 1 minimum allowedsoc soc= ) and the last state corresponds 
to full charge ( 1 p.u.Nsoc = ). 

The probability that SOC  is in bin isoc  is denoted by 
Pr( )bat

i ix SOC soc= = , where Pr(·)  stands for probability. 
The row vector of probabilities of all battery states is denoted 
by 1 2[ , ,..., ]bat bat bat bat

Nx x x=x . The derivative of the 
probability row vector is 1 2[ , ,...,bat bat batd d d

dt dt dtx x=x  ]batd
Ndt x . 

The forward equation of a continuous time Markov chain 
corresponds to the Chapman-Kolmogorov Nth order 
stochastic differential equation. In matrix notation, the 
dynamics of the stochastic system can be expressed in form 
of the generator matrix of the underlying Markov chain. 
 bat bat batd

dt =x x Q  (572) 

,[ ]bat bat
i jq=Q  is the generator matrix of the CMTC and it 

can be inferred from system dynamics (566). To transform 
the deterministic formulation (566) into probabilistic 
formulation  (573), the value of deterministic variables are 
substituted by the averages of the corresponding random 
variables, denoted by brackets · .  

 ·1 ·bat bat
d

SOC SOC
dt

λ δ= − −  (573) 

The sum of probabilities of all states sum unity, 
1 1N bat

i ix=Σ = , and  the expected value of SOC  is 
1

N bat
i i iSOC soc x== Σ . The fact that all state probabilities 

sum unity also implies: 
 1 11 0N bat N batd

i i i idtx x= =Σ = ⇒ Σ =  (574) 

Therefore, (573)  expressed in function of the probabilities 
of all the states bat

ix  is (575). For convenience, the 
independent constant batλ  is multiplied by 1

N bat
i ix=Σ  to match 

expression (573) in matrix form (572) and to allow batλ  be 
dependent on isoc . 
 ( )

1 1
·

N Nbat batd
i i bat bat i idti i

soc x soc xλ δ
= =

= − −∑ ∑  (575) 

Since the parameters batλ  and batδ  can depend on SOC , 
the following notation will be used to remark parameter 
dependences on state number. 
 ( )1 1

·
N Nbat bat bat batd

i i i i i idti i
soc x soc xλ δ

= =
= − −∑ ∑  (576) 

where ( , , )bat
i bat i charge dischargesoc I Iλ λ=  and ( )bat

i bat isocδ δ=  

The battery charges gradually and thus, SOC can only 
change in a infinitesimal time span from state i  to the 
adjacent state 1i − (battery discharge from state i ) or 1i +  
(battery charge from state i ). Thus, the process is equivalent 
to a birth and death stochastic process [335]. The rate diagram 
of an intermediate state is shown in Fig. 147. 

 
Fig. 147: Rate diagram of an intermediate state 

 
The value of , 1

bat
i iq −  and , 1

bat
i iq +  can be easily obtained from 

(575) for the special case where 1bat
ix =  and 

0bat
kx k i= ∀ ≠ . 

1 1 1 1 ·bat bat bat bat batd d d
i i i i i i i i idt dt dtsoc x soc x soc x socλ δ− − + ++ + =− −  (577) 

Since the state probabilities must sum unity, its derivative 
is null, i.e. 1 1 1 0bat bat batd d d

i i idt dt dtx x x− − −+ + = , (577) transforms 
into: 

1 1 1 1 1( ) ( )

·

bat batd d
i i i i i i idt dt

bat bat
i i i

soc soc x soc soc soc x

socλ δ

− − + + +− + − =

= − −
 (578) 

Since the battery can be at state i  only chemically 
charging or discharging but not both,  , 1

bat
i iq −  or , 1

bat
i iq +  must be 

zero. Thus, matrix elements of batQ  are: 

 , 1
1

·
0, 1

bat bat
i i ibat

i i
i i

soc
q Max i N

soc soc
λ δ

−
−

⎡ ⎤− −⎢ ⎥= ∀ < ≤
⎢ ⎥−⎣ ⎦

(579) 

and , 1
1

·
0, 1

bat bat
i i ibat

i i
i i

soc
q Max i N

soc soc
λ δ

+
+

⎡ ⎤− −⎢ ⎥= ∀ ≤ <
⎢ ⎥−⎣ ⎦

(580) 

Notice that batQ  is a tridiagonal matrix, with diagonal 
elements , , 1 , 1

bat bat bat
i i i i i iq q q− += − −  in order to each row sum 

zero. Moreover, the subdiagonal elements are null if the 
system is charging at any state (conversely, the superdiagonal 
elements are null if the battery is discharging at any state) and 
the eigenvalues are the diagonal elements ,

bat
i iq .  

If the charging current is between the autodischarge current 
of a flat and a fully charged battery, the battery will charge at 
some states i k≤ and discharge at states i k> . In that case, 
the eigenvalues are ,

bat
i iq  for { }, +1i k k≠ , cero and , +bat

k kq  
1, 1

bat
k kq + + . 
In any case, the eigenvectors can be easily and efficiently 

computed with Thomas algorithm –forward and backward 
substitution–. Therefore, the storage and computation burden 
for the tridiagonal matrixes are proportional to the number of 
states N  –instead of 2N for a regular matrix–. Special 
savings are achieved using the canonical basis. 

1,
bat
i iq −

State 1i −  
1iSOC soc −=

State i  
iSOC soc=  

State 1i +  
1iSOC soc −=

, 1
bat
i iq +  1, 2

bat
i iq + +

2, 1
bat
i iq + −

2, 1
bat
i iq − −  

1, 2
bat
i iq − −

, 1
bat
i iq − 1,

bat
i iq +  
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Thus, the non-linear system is approximated by a system of 
order -1N  with the eigenvalues as characteristic times and 
the normalized eigenvectors are the distributions that decay 
with characteristic times, forming a canonical basis to express 
the system dynamics.  

A) First-order battery model (N =2 states) 
The simplest battery model is the lineal model where the 

accumulator charges at rate 1,2
batq  and discharges at rate 2,1

batq . 
In lead-acid batteries, the discharge is only allowed up to 

minsoc , otherwise the accumulator lifetime is seriously 
curtailed. Ni-Cad and Ni-MH batteries suffer from memory 
effect, which can be modeled increasing minsoc  with battery 
partial cycles. 

 
Fig. 148: Rate diagram of the model with two states (lineal model) 

The infinitesimal rates of charge and discharge are: 

min min

1,2

min

min

, ,
0,

( ) ( )·
1

charge discharge

bat

bat batsoc I I soc
q Max

soc
soc

λ δ

⎡= ⎢⎣
+ ⎤

⎥−
− ⎥⎦

 (581) 

max max

max

2,1

max

min

, ,
0,

( ) ( )·charge discharge

bat

bat batsoc I I soc

soc

q Max
soc

soc
λ δ

⎡= ⎢⎣
+ ⎤

⎥
− ⎥⎦

 (582) 

Thus, the infinitesimal generator matrix is: 

 
1,2 1,2

2,1 2,1

bat bat

bat bat bat

q q
Q

q q

⎛ ⎞− ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠
 (583) 

Solar, wind and load data are integrating in intervals of 
length tΔ . The model discretized for tΔ  time steps is 
shown in Fig. 149: 

 
Fig. 149: Transition diagram of the model with two states (lineal model) 

 
 The transition matrix batP  can be obtained from the 
model in continuous time: 

 ( )
1,2 1,2

2,1 2,1

1

1

bat bat

bat bat bat bat

p p
P Exp Q t

p p

⎛ ⎞− ⎟⎜ ⎟⎜= Δ = ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠
 (584) 

Where ( )1,2 2,1( )1,2
1,2

1,2 2,1
1

bat batbat
t q qbat

bat bat

q
p e

q q
−Δ += −

+
 (585) 

and ( )1,2 2,1( )2,1
2,1

1,2 2,1
1

bat batbat
t q qbat

bat bat

q
p e

q q
−Δ += −

+
 (586) 

B) Higher order approximation of non-linear behaviour 
(N >2 states) 

The number of battery states can be increased to represent 
more accurately non linear behaviour. Moreover, cost 
optimization can indicate the maximum discharge depth of 
lead-acid batteries depending on expected cost of non-
supplied load.  

The memory effect of Ni-Cd batteries can be also modelled 
introducing a new state variable accounting for the effective 
loss of capacity due to shallow-cycles (and the capacity 
recuperation after a full discharge and full charge cycle). 

7.10.10. Model of Water Reservoir 
Storage 

The model of a reservoir with pump/turbine is analogue to 
the Ah battery model (566). The parameter significance for 
pumped storage is in Table XIII. For Markov models of 
pumped storage with several reservoirs, consult chapter 17 of 
[362]. 

 
TABLE XIII: PARAMETER EQUIVALENCE OF THE PUMPED STORAGE AND 

AH BATTERY MODEL. 
Variable Significance 
SOC  Stored water mass in reservoir  

batλ  

Instantaneous rate of variation of SOC . If there is an 
external water injection into the reservoir or dam (such a river 
or rain contribution), it can be modeled as an additional term 
in batλ . 

batδ  Relative rate of water loss (evaporation, leakage, external 
water consumption, etc).  

chargeP  Gross input power at pumping facility when recharging the 
reservoir. 

chargeP ′  Mechanical power at pump shaft. 

dischP  Gross output power from turbine facility when discharging the 
reservoir. 

dischP ′  Mechanical power at turbine shaft. 

converterη  
Electrical efficiency of the system composed by the electric 
generator/motor which drives the turbine/pump, including 
consumption of auxiliary and ancillary devices. 

chargeη  Efficiency of the system composed by the pump and the 
conduits from the water intake to the reservoir outlet. 

dischη  Efficiency of the system composed by the turbine and the 
conduits from the reservoir intake to the water outlet. 

batteryU  Difference of gravitational potential between the reservoir and 
water outlet surfaces, i.e. intake outletg hρ −Δ  

chargeI  Water mass flow (i.e. water current) at pump 
dischargeI  Water mass flow (i.e. water current) at turbine 

 

Conclusions 
 The variability of wind speed can be modelled during 

short intervals with the classical theory of stationary normal 
processes, which has been presented in the previous chapters. 
However, the weather is a non-stationary process and this 
cannot be neglected for horizons longer than some hours. The 
evolution of wind power can be described in the time domain 
by stochastic differential equations where the Numerical 
Weather Prediction (NWP) models the physics of 
meteorological dynamics. Wind speed is customarily 
transformed into generated power with a power curve or or 
with a model output statistics (MOS).  

Since the wind variations show a fairly multiplicative 
behaviour, the Markov Approximation Method is suitable for 
modelling the non-linear stochastic behaviour of the wind. 

p1,2 

p2,1 

State 1 
Discharged 

minSOC soc=

State 2 
Charged 

SOC =1 p.u.
p1,1= 
1- p1,2 

p2,2= 
1- p2,1 

1,2
batq

State 1: Minimum 
allowed charge 

minSOC soc=  

State 2: 
Fully charged 

maxSOC soc= = 1 p.u. 

2,1
batq
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This technique is analogous to the finite difference 
approximation in deterministic differential equations and it is 
a powerful tool to optimally size and control the system, 
especially if numerical weather predictions are available.  

Indeed, if numerical weather predictions are unattainable, 
the Markov chain can be used for generate a basic 
probabilistic forecast based on the system behaviour 
previously observed. In that case, the probability transition 
matrix among the states models the non-statiorarity of wind, 
present in long time spans.  

The optimal control of a Markov system can be expressed 
as a policy, which gives the best decision or action to take for 
a given state, regardless of the prior history. Once a Markov 
decision process is combined with a policy, this fixes the 
action of the control for each state and the resulting 
combination behaves indeed like a Markov chain. Thus, the 
system is dimensioned for achieving the maximum expected 
outcome of the controlled system. 

The classic control theory of linear and time-invariant 
systems is well established. However, many devices in the 
grid are discrete and their control can not be linearlized 
because unnecessary switching can produce avoidable grid 
disturbances or excessive wear or stress in the devices.  

Markov chains can model switching or jump events such as 
casual generator trips, unlikely wind variations and the 
connection or disconnection of reactors, capacitors and other 
devices. The stochastic control is better suited to manage 
these events than the classical control of linear and time 
invariant systems. The optimum design and control can be 
achieved assigning costs or benefits to staying in the same 
system state or jumping to other states. In sum, the Markov 
Decision processes can be used to optimize the design and 
control of many devices which should encompass the non-
linear and time-dependent variability of the wind power. 

Markov chains have been typically utilized as Monte Carlo 
random generators in stochastic power flows due to the high 
dimension of their state space. To reduce the state space, a 
discretization methodology is presented where the number of 
states is remarkably reduced through careful system 
modelling and clustering. The state reduction condensates the 
significant operational condition of the system and techniques 
as the principal component analysis and the proper orthogonal 
decomposition can help to achieve an orthogonal, compact 
and meaningful representation of the system. This makes the 
Markov decision processes more tractable. 

Since the system expected cost/benefit is the same if the 
system states are mutually exclusive (only one state can 
actually exist at a time) or can be interpreted as a fuzzy states 
(intermediate states do exist because the continuous system 
states have been discretized). 

The classification of states can be based on power output, 
equivalent wind speed or wind speed prediction, depending 
on the available data and the aim of the wind farm model. The 
performance matrix in Standard IEC 61400-12-3 can be used 
as the emission matrix to relate wind and power in a wind 
farm using a Hidden Markov Model. The wind farm model 
can be used also as time interpolation or to guess if there is an 
outlier in the state (a switching event). 

One application example is in probabilistic power flows. A 
methodology to optimize the power flow based on Markov 

processes is presented. Load, generation and network 
topology is classified into a small set of cases represented by 
the centroids of the fuzzy clusters. Afterwards, regular 
deterministic power flows are run for each centroid and the 
system stochastic dynamics are derived from the transition 
matrix of the embedded Markov Process. Finally, the 
generation, the network topology and the discrete elements 
such as switches and transformer tap changers can be 
controlled conveniently by a Markov Decision Process. This 
approach is more advantageous for loads highly or barely 
interrelated and for non-controllable generators such as wind 
and solar. Other possible application is the design and control 
of reactors and capacitors in a wind farm to maximize the 
profit due to reactive power control. In that case, a simplified, 
quadratic model of the wind farm in the steady state can be 
used to estimate the maximum absorption and injection of 
reactive power at different points of the farm. 

Other application is the optimal design and control of the 
load consumption of an isolate system with renewable 
generation and storage. The optimal design minimize the cost 
of the system infrastructure plus the expected cost of 
maintenance, energy losses, load deferring and not supplying 
regular and critical loads. The control of the optimal design 
manages the loads for optimize the expected profit. 
 
 



8.1. Conclusions 
he present thesis has analyzed the main features of the  
variability of wind power. This thesis has been focused in 

providing a framework for the systematic analysis of the wind 
power variability in time and in space. The approach is 
mainly empirical, based on the data signal processing and the 
concept of equivalent wind. 

Custom programs have been specifically implemented for 
processing the logged data –see for example the graphs in the 
Annexes. Thus, the data mining of the measured data is in the 
core of the thesis. 

Some models of the wind structure on the space and 
frequency domain are extensions of some models available in 
the literature. The variations have been analyzed 
stochastically in the frequency domain and in the time 
domain.  

The frequency representation of the wind fluctuations 
facilitate the estimation of the power smoothing due to the 
turbulence structure and cyclic features. Moreover, the 
orthogonal representation of a Gaussian stochastic process is 
its Fourier transform. However, the time domain approach is 
more related to the structural integrity, system control, 
weather evolution and forecast error and exceptional events. 
When possible, time and frequency approaches have been 
combined through the use of spectrograms. 

The program WINDFREDOM has been developed to 
check the approximation degree of some empirical models of 
the variation of the wind along the time and along the space. 

The program EQWIGUST has been developed to study 
extreme variations of the equivalent wind. Since the wind 
fluctuations show a multiplicative behaviour, two simple 
transformations are provided to compensate the non-Gaussian 
behaviour of the wind.  

The variability of the generated power depends mostly on 
turbulence and weather evolution. The weather forecast and 
the turbine tripping are very specific areas out of the scope of 
the thesis. However, the probability distribution of the 
forecast and the probability of a turbine trip have been 
accounted in the proposed Markov model of wind power 
variability. 

Fast power fluctuations are also due to the vibration 
dynamics of the wind turbines and to eventual switching of 
wind turbines. These features have been characterized from 
measurements, but the results are very specific to the turbine 
model and the atmospheric conditions. Therefore, the analysis 
can be systematized but the conclusions from the 
measurements are difficult to generalize. 

The fundamental characterization of the wind variability is 
presented in the second chapter. The wind fluctuations 
measured with an anemometer are customarily characterized 

by the variance spectral density of the wind. The spatial 
structure of the wind fluctuations are typically described by 
the wind coherence, which is the correlation coefficient in the 
frequency-space domain. 

The spatial structure of the turbulence affects to the 
aerodynamic torque experimented by the turbine. The torque 
oscillations due to turbulence can be estimated from its 
structure. Several models are derived and compared to the 
literature.  

In fact, the large area swept by the blades implies that 
localized turbulent oscillations are significantly averaged 
along the area. •  

In general, the spatial dimension of the wind fluctuations 
seems to be inversely proportional to their frequency. 
Therefore, a link can be established between the oscillations 
measured with an anemometer and the aerodynamic torque 
oscillations. Furthermore, the equivalent wind is defined as 
the one that produce the same effects that the non-uniform 
real wind field. 

The equivalent wind speed contains a stochastic 
component due to the effects of turbulence, a rotational 
component due to the wind shear and the tower shadow and 
the average value of the wind in the swept area, considered 
stationary in short intervals. The variations of torque are 
estimated from blade element theory in annex C. 

The comparison between the turbine measurements and the 
simulations is complicated by the uncertainty in the wind 
field. Usually the wind speed is measured at just one location 
which makes difficult the direct comparison between the 
measured and simulated turbine. However, the power density 
spectra of the measured and simulated processes can be 
compared directly because they are stationary properties of 
the process. 

The equivalent wind can be considered a low-pass filtered 
version of the wind measured with an anemometer. The 
actual aerodynamic torque can not be reconstructed from a 
single point measure due to the stochastic nature of the wind 
and the complex vibrations of the tower, that affects the 
aerodynamic torque. However, the main statistical features of 
the torque –or the equivalent wind– can be predicted. 

The concept of equivalent wind can be extended to a wind 
farm or even to a cluster of wind turbines. The equivalent 
filter of the farm respect one significant turbine can be 
defined from the root of the of their PSD quotient. This filter 
estimates the smoothing due to the spatial diversity of the 
turbulence across a wind farm. The equivalent cluster filter is 
defined analogously to the wind farm filter. 

An interesting concept is the wind smoothing across an 
area. If many wind farms are distributed evenly enough in an 
area, the smoothing level can be estimated from the region 
dimensions and the turbulence parameters. 

Chapter 8:  

Conclusions and Future Work 

T 
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While slow fluctuations in the power generated by turbines 
are fundamentally related to the wind, fast power fluctuations 
are largely due to the turbine vibrations and the electric 
generator with its control and power interface. 

Since the turbine vibrations and the electrical equipment 
varies notably from one model to other, the forth chapter of 
this thesis proposes a methodology to characterize the 
oscillations experimentally observed. A literature review on 
Power Spectral Densities (PSD) and periodograms (averaged 
spectrum) of wind power is presented. 

There are many specific characteristics that impact notably 
in the power fluctuations between the first tower frequency 
(usually some tenths of Hertzs) and the grid frequency. The 
realistic prediction of these power fluctuations needs a very 
comprehensive model of the turbine, which is usually 
confidential and private. Even the agreement of the measures 
with a full model is not trivial. 

The foundations of the methodology are explained in the 
forth chapter and some examples are provided in annex B. 
One contribution of this chapter is the experimental 
characterization of the power fluctuations of three 
commercial turbines. The variations of power during the 
continuous operation of turbines are measured and 
experimentally characterized in timescales from the grid 
period to minutes. Some experimental measurements in the 
joint time-frequency domain are presented to test the 
mathematical model of the fluctuations. 

The admittance of the wind farm is defined as the ratio of 
the oscillations from a wind farm compared to the 
fluctuations from a single turbine, representative of the 
operation of the turbines in the farm. Some stochastic models 
are derived in the frequency domain to link the overall 
behaviour of a large number of wind turbines from the 
operation of a single turbine. 

The nature of turbulence and vibrations are different. The 
equivalent wind fluctuations due to the turbulence are 
broadband stochastic processes with no characteristic 
frequencies. However, vibrations and electrical oscillations 
are almost cyclostationary stochastic processes, usually with 
several noticeable narrowband components. 

The measured power variations are the outcome of 
turbulence, mechanical vibrations and electrical oscillations, 
which are stochastic processes with different properties. 

However, a wind farm typically has more than four 
turbines and the addition of the power variations from more 
than four turbines converges approximately to a Gaussian 
process despite of the process nature. 

The partial cancellation of the variations among the 
turbines  has been illustrated, assuming the unsynchronized 
rotation of the turbines. For simplicity, the turbines are 
assumed to experience a power dip when the blade is close to 
the tower. These power dips are represented as a deterministic 
periodic pulse, which are more severe (they converge slower 
to a normal process) than the actual drivetrain torque 
vibrations.  

Since the turbine speed varies slightly from one turbine to 
other, the blades positions are not synchronized. Eventually, 
several blades can eventually cross their tower almost 
simultaneously. The blade crossing in front of its turbine 

tower is modelled as a Poisson process. The probability of 
simultaneous power dips is derived from this process. 

Indeed, the vibrations and electrical oscillations have 
almost cyclostationary nature, not deterministic and periodic 
features. This stochastic behaviour increases the convergence 
of the aggregated power to a Gaussian process in a wide 
frequency range. In a typical wind farm, the variance density 
aggregates quadratically in the range from a hundredth of 
Hertz to the grid frequency. Therefore, the relative amplitude 
of the farm power oscillations at those frequencies is 
inversely proportional to the number of turbines. 

In the very low frequency range, the oscillations are 
dominated by comparatively coherent turbulence, which has a 
somewhat multiplicative behaviour.  

The power variations of low frequency in the farm have 
bigger amplitudes because these oscillations have a smaller 
spatial variation. Moreover, they have a Laplacian distribu-
tion whereas the variations of higher frequency have a more 
Gaussian distribution. This Laplacian behaviour will be 
approximately accounted using a bijective transformation. 

An approximate flickermeter model in the frequency 
domain is also presented in the fifth chapter to demonstrate 
the low relevance of the flicker emission at the farm level 
when the turbines are not synchronised. In the measured 
farms, the flicker level was very low due to the partial 
cancellation of the oscillations and the strength of the network 
at the point of common coupling.  

The wind spectral density determines the stochastic 
behaviour of the wind, provided it can be consider a 
stationary Gaussian process. In the sixth chapter, this spectral 
density will be used to analyze the characteristics of wind 
variations in the time domain and to synthesize samples of 
equivalent wind with some features. 

The mechanisms that generate turbulent wind changes are 
analyzed are closely related to the shape of the bursts and the 
distribution of the speed variations. Experimental wind 
differences from the mean fit approximately a Laplacian 
distribution, indicating there is some unknown multiplicative 
effect involved in the extreme deviations. A bijective 
transformation is defined to obtain the target distribution. 

The stochastic generation of gusts is a valuable tool to 
obtain random samples of wind with some features. The 
background of the method is the constrained stochastic 
simulation of processes, which is based on conditional 
distributions. More sophisticated transformations can be used 
to improve the fit of the shape and the occurrence probability 
to experimental data. For example, some reports observed 
that the actual front ramp of the gust are, on average, bigger 
than the tail ramp, but the predicted gust shapes are 
symmetrical forwards and backwards. 

The peak and ramp gusts are synthesized in the frequency 
domain using the Karhunen-Loève expansion and the theory 
of conditional simulation of normal processes. An 
approximate method is presented to avoid numerical 
difficulties that arise generating very long samples. 

The concept of the equivalent wind gust can be extended to 
a geographic area and it can serve to compute the maximum 
variability of the power expected in a region.  
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The program EQWIGUST generate gusts of equivalent 
wind with some features that can be selected by the user and 
it estimates their probabilities. 

The variability of wind speed can be modelled during short 
intervals with the classical theory of stationary normal 
processes, which has been presented in the previous chapters. 
However, the weather is a non-stationary process and this 
cannot be neglected for horizons longer than some hours. 

Since the wind variations show a fairly multiplicative 
behaviour, the Markov Approximation Method is suitable for 
modelling the non-linear stochastic behaviour of the wind. 
This technique is a powerful tool to optimally control the 
system, especially if numerical weather predictions are 
available. Indeed, if numerical weather predictions are 
unattainable, the Markov Chain can be used for generate 
basic probabilistic forecasts based on the system behaviour 
previously observed. 

Many devices in the grid are discrete and their control can 
not be linearlized because their unnecessary switching can 
produce grid disturbances or excessive device wear. The 
optimum design and the optimum control can be achieved 
assigning costs to staying in the same system state or jumping 
to other states.  

A discretization methodology is presented where the 
number of states is remarkably reduced through careful 
system modelling and clustering.  

One application example is in probabilistic power flows. 
Other application is the optimal design and control of the load 
consumption of an isolate system with renewable generation 
and storage. 

8.2. Original Contributions 
Some contributions come from the experience gained 

designing, building, installing and analyzing a multipurpose 
data logger that is now commercially available. The huge 
work done in the development of this data logger can be seen 
in some articles cited in the publications section of this 
chapter. The development of a multipurpose power analyzer 
with a PC in the 1998’s for the wind industry was a challenge 
there. Nowadays, the datalogger is rather different from the 
original one. However, the experience gained with the first 
prototypes, developed during the first years of this thesis, has 
been fundamental for the AIRE datalogger to become 
commercially available. 

The third chapter estimates the equivalent wind smoothing 
across an area from its dimensions and the turbulence 
parameters. The equivalent wind has been used also in the 
simulation of aggregated models of wind farms. However, the 
estimation of the equivalent wind of a wind farm or a 
geographical area from the wind coherence is a contribution 
of this thesis. 

A new methodology for characterizing the oscillations 
measured in the power of a wind turbine or a wind farm has 
been proposed in the forth chapter. 

The fifth chapter shows the convergence to a Gaussian 
process of the aggregated oscillations due to vibration, low 
coherent turbulence and electrical fluctuations. This model 
also shows the low relevance of the flicker emission at the 
farm level. 

The sixth chapter estimates the equivalent wind gust, that 
can serve to compute the maximum variability of the power 
expected in a region. 

The seventh chapter presents the application of the Markov 
Approximation method to optimize the system design and 
control in two cases. 

The annex A presents a simplified statistical model to 
represent a wind farm in a power flow study, taking into 
account the variability in the generated power from windmills 
and its normal operation. 

The annex B shows some examples of the analysis of 
experimental data obtained with the multipurpose data logger. 
Some effects observed in the data such the measured 
oscillations are quite difficult to obtain from simulations. 

The annex C introduces an aerodynamic model to estimate 
the influence of deterministic wind component (wind shear 
and tower shadow) from the torque coefficient and the main 
properties geometry of the turbine. 

The distribution of wind speeds and turbulences along a 
wind farm is required to achieve a fair representation of a 
wind farm. The model included in the annex D allows testing 
different wakes models. 

Another contribution of this thesis is the program that 
downloads, represents and analyzes the data from the network 
of meteorological weather stations, typically used by 
meteorological organizations for weather prediction. 

An user manual of the program WINDFREDOM with 
three case studies has been included to show the potential use 
of this program. 

Another contribution of this thesis is the program that 
generates gust or random samples with certain features of 
equivalent wind. 

Concisely, this thesis has attempted to provide a 
methodology for the study of wind power variations, based on 
the spatial-temporal distribution of wind and in the analysis of 
experimental measurements. A Markov Approximation 
framework has been proposed for the design and optimal 
control of non-linear systems affected by the wind power 
availability. 

8.3. Perspectives and future research 
Several fields for further investigation have been identified 

during this thesis. Ideas for future work are listed bellow: 
• Further test of the proposed models. The models 

have been validated from available data or from lit-
erature reviews. Comparison between measurements 
and simulations is complex by the uncertainty in the 
wind field. However, the power density spectra of 
the measured and simulated variables can be com-
pared because they are stationary properties of the 
process which can be estimated easier from 
measures and from simulations. The accuracy of the 
models proposed in this thesis depends on many 
factors and an extensive test of the models can 
retrofit and improve them.  

• The blade element model of the rotor has been 
implemented in a turbine model in PSCAD. 
However, experimental measures indicate that 
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rotational features as the wind shear and tower 
shadow fuel many vibration modes of the turbine. 
Therefore, the relationship between rotational effects 
and shaft vibrations should be further studied. 

• The estimation of a equivalent filter between the 
nacelle anemometer and the equivalent wind is very 
convenient. The rotor introduces many small scale 
(i.e., high frequency) oscillations in the nacelle 
annemometer. However, the frequency content of 
the equivalent wind at induced turbulence is quite 
small compared to the mechanical torque vibrations 
and some measures indicated a better-than-expected 
agreement between the equivalent wind estimated 
from the shaft torque and from the nacelle 
anemometer. However, a second order filter has 
been estimated from the measures while all the 
reviewed literature uses a first order filter. Further 
measuring campaigns are required to check the 
parameters of the equivalent filter. 

• The improvement of EQWIGUST and 
WINDFREDOM programs for increasing their 
versatility.  

• A further understanding of the equivalent wind 
variability can be achieved if many regions are 
systematically characterized and critically compared. 
The hourly wind variability can be characterized in 
many regions with the program WINDFREDOM.  

• The integration of the Markov model into a probabil-
istic optimal flow. The workflow has been derived in 
the seventh chapter, but it has not been implemented 
yet.  

• The implementation an interactive interface to the 
wind farm statistical electrical model. This interface 
could estimate the farm oscillations from the simula-
tion of a single turbine, analogously to the method 
deployed for experimental measures. Other 
application is the centralized control of reactive 
power. 

• A simple stochastic control of the capacitors and 
reactors in a wind farm has been developed in [363], 
using the present reactive bonus tariff in Spain and 
data from three wind farms. This control can be 
further developed to provide a centralized control of 
the reactive power at the turbines and at the farm 
substation, based on dynamic programming. An 
interactive interface can be implemented for 
optimally sizing the capacitors and reactors in a 
wind farm. 

• For convenience, the full vibration behaviour is not 
included in many electrical simulations. However, 
the turbine models can be refined introducing the 
vibrations measured or obtained in structural 
simulations. The mechanic vibrations can be 
introduced in the generator shaft and the non-ideal 
behaviour of power electronics can be 
experimentally characterized and introduced as noise 
at the output of ideal converters.  

The great variety of the contributions and the accomplish-
ment of other duties, as the full time lecturing responsibilities 
from the year 2000 are, in part, the explanation of the long 

time required to finish this thesis, about 12 years with varying 
dedication.  
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A.1. Introduction 
he current legislation for generators included in the 
special regulation (mainly mini-hydraulic, wind and co-

generation plants up to 50 MW) in Spain was developed in 
1985 (Industry and Energy Ministry order 5/9/85). This order 
states that the electric plants included in this regulation must 
operate with unity power factor. 

This characteristic was adequate when the percentage of 
this type of generation was small, but the great increase of co-
generation and wind generation was not foreseen. 

Moreover, conventional power plans must operate in 
accordance with procedure 7.4 (distribution network 
complementary voltage control service, published in BOE 
18/3/2000). However, this procedure is not adapted to the 
characteristics of the wind farms or the grids to which they 
are usually connected. 

Currently, AENOR is performing a review process of this 
regulation by means of the workgroup “Grid integration of 
wind generation”, in particular in the group “Wind 
generators” AEN/CTN 206/SC88. Its goal is achieving a new 
regulation that allows these power plants to help grid 
regulation, without causing an excessive increase in cost. 

According to the current regulation, reactive power 
compensation is performed in the plant’s point of connection 
and it does not take into account reactive power consumption 
and generation in lines and transformers. This worsens the 
power factor in the border nodes between the distribution and 
transport networks. 

Besides, a power plant modifies the voltage distribution in 
the grid. Distribution networks are usually limited, not for the 
maximum thermal current, but for the limits in voltage 
variation (specially at the end of the line). Because of that, 
distribution companies prefer distributed generation to be 
connected to higher voltage levels, where its impact in 
voltage distribution is very small. However, connecting to a 
higher voltage level increases the cost of the plant. 

Traditionally, the maximum installable generation 
capability is calculated by using a deterministic load flow, 
usually based in the worse scenario of minimum load and 
maximum generation [364]. These studies do not take into 
account the probability of the different scenarios. However, 
the standards that establish voltage characteristics are 
expressed in statistic terms [365]. 

In addition, wind energy injection modifies the losses in 
the grid (losses reduction if the zone is mainly consuming and 
an increase if the area has a generation excess, as it happens 
in some wind farm concentrations). 

The method proposed in this paper can help to evaluate the 
affection to the net, as well as to compute voltages inside the 
wind farm. 

According to the Spanish regulation in RD 436/2004 [366], 
current regulation rewards the control of power factor to 
generators in the especial regulation (most renewable energy 
and cogeneration). Remunerated reactive power 
compensation is based on a power factor band depending on 
the low-load, peak or medium-load classification of the 
interval. 

Distribution networks are usually limited, not for the 
maximum thermal current, but for the limits in voltage 
variation (especially at the end of the line) [367]. Because of 
that, distribution companies prefer distributed generation to 
be connected to higher voltage levels, where its impact in 
voltage distribution is very small. However, connecting to a 
higher voltage level increases the cost of the plant. In case the 
wind farm is able to control reactive power absorption or 
generation, voltage can be fixed, avoiding higher voltage 
connection [365, 368]. 

The new Spanish regulation is an improvement from the 
previous one that stated unity power factor at any time (at 
peak hours the farm is rewarded to be capacitive and at low-
loads the farm is rewarded to be inductive). However, the 
reactive bonus is obtained if a power factor is accomplished. 
Therefore, reactive power injection depends on wind and grid 
support is low at low active power (i.e. low winds).  

A better utilization of the infrastructure can be attained 
considering the availability of reactive power at low active 
generation or even with no active power generation (many 
wind turbine technologies can generate more reactive power 
at low active power or even, without generating active 
power). As the capacity factor of wind farms is usually low, 
this would increase the exploitation of the infrastructure. 

The suitable system operation may require a set point from 
the control centre or measures at other points in the grid. 
Indeed, the power factor band regulation of RD 436/2004 
may be regarded as a rough estimation of the load depending 
on the low-load, peak or medium-load time classification. 

If online communication from control centre is not 
available, the set point of reactive power could be scheduled 
from the estimation of grid state and the forecast of near loads 
(based on in time of the day, day of the week, working day, 
weather, etc.). Moreover, the voltage at the supported node 
can be estimated at each turbine without the requirement of a 
centralised control. The wind farm model allows estimating 
power injection from other turbines based on its power output 
and its wind direction. With the estimation of power injection 
of the wind farm and, eventually, nearby wind farms it is 
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possible to compute a rough estimation of voltage at the 
supported node. The change of taps in transformers that 
connects the wind farm to the grid can be detected and 
included in the estimation of the supported voltage node. 

Other wind farm aggregate models are available in the 
literature (see, for example [369]). However, the proposed 
model is focused on the statistical behaviour of the farm. 

A.2. Simplified electrical model of the 
wind farm 

A.2.1. Turbine power curve 

The power curve relates wind at hub height and power 
output [370]. Turbine manufacturers provide the curve along 
with its uncertainty. Fig. 150 shows a power curve from a 
pitch controlled turbine. The uncertainty is small, except at 
cut-off wind speeds. 

 

 
Fig. 150: Example of measured power curve (from [370]). 

The paper [371] normalize power curves to ease the 
optimization of energy production. In this study, a simpler 
power curve will be employed to be able to derive analytic 
expressions. The power curve WT WTP ( w )  of (2) is 
characterized by cut-in, cut-off wind speeds and the wind 
speeds where power speed is 25% and 75 % of turbine rated 
power. It fits well to pitch and active stall wind turbines, but 
it is less accurate for passive stall turbines. Those turbines can 
be modelled more precisely following an analogue procedure 
to the one shown in this work. 
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Fig. 151: Simplified power curve from (587) for example dataof Annex I. 

The cumulative density function is derived in (3) and it is 
plotted in Fig. 152  for the data shown in Annex I (a Weibull 
wind distribution with parameter shape = 2, known as 
Rayleigh Distribution). (588) 

25 75 25 75 WT

nominal

1
WT WT

1
Wind WT Wind

2
1

2 3

Pr( ) = Pr( ( )) + Pr( )=

CDF ( ( ))  + 1 - CDF ( )=

=1 -  / )

% % % %

w cut off

w cut off

cut off

w w w w p
ArcTanh

Ln( ) P

Power p Wind P p Wind w

P p w

Exp ( w

Exp

−
−

−
−

−

+ −
+ −

< < >

=

⎡ ⎤+ −⎣ ⎦

⎛ ⎞
− − ⎜

⎝

shape

scale scale

scale

⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥⎟

⎠⎣ ⎦⎪ ⎪⎩ ⎭

shape

 

0 0.2 0.4 0.6 0.8 1
Power output Hp.u.L

0

0.2

0.4

0.6

0.8

1

rP
H

tuptuoP
<
pL

CumulativeProbabilityFunction

 
Fig. 152: Plot of CDFPower Output for the wind turbine of the example of 
Annex I.  

The statistical parameters of this distribution have been 
derived analytically. The errors introduced in the 
approximations needed to achieve expressions 4 to 6 
(typically 1% to 4%) are far lower than the errors due to the 
simplistic models of the wind and the turbine. 

The median of power output can be computed using  (4). 
The median is approximately proportional to wind scale 
parameter.  
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Mean wind speed and power output of wind farms –with 
similar wind distributions and power curves– are linearly 
related to a high degree, as can be seen in Fig. 153. However, 
the adjusted straight line does not cross the origin ( WT ~P  
~ WTa b w+  with 0a ≠ ). 
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Fig. 153: Plot of average Power Output versus average wind speed at hub 
height of the wind farm for the example. 
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The standard deviation of power output (6) reaches the 
maximum at mean hub wind speeds that correspond to half 
the power, w50%, as can be seen in Fig. 154. In those cases, the 
probability density function (pdf) of power output is U-
shaped, with two modes at the extremes, as can be seen in 
Fig. 155.  
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Fig. 154: Plot of σ Power Output versus average wind speed at hub height of the 
wind farm for the example. 
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The probability density function can be obtained deriving 
the CDF Power Output respect to power output. 

 Power Output WT Power Output WTPDF ( ) CDF ( )dp p
dp

=  (592) 

0 0.2 0.4 0.6 0.8
Power output Hp.u.L

0.25

0.5

0.75

1

1.25

1.5

1.75

2

ytilibaborP
ytisneD

noitcnuF

ProbabilityDensity

 
Fig. 155: Plot of PDF Power Output for example of Annex I. 

The uncertainty of the power curve is bigger near cut-off 
and between cut-in and rated power, as can be seen in Fig. 
151. The uncertainty of power curve would be considered in 
the wind farm power curve in the next section. 

A.2.2. Wind farm power curve 

The objective of this point is to get a simplified 
representation of the wind farm enough accurate to use it in 
the statistical model [372, 373].  

Standard IEC 61400-123 [374] shows a detailed method to 
compute the wind farm power output from data of the 
meteorological mast. The description of the wind farm 
operation consists of performance matrix M indicating the 
declared power output expected of the wind farm for pairs of 
wind speed and wind direction values.  

In a farm, the distribution of the speed among the turbines 
is quite dependent of wind direction and that is why the 
prospective standard IEC 61400-123 utilizes a matrix 
dependent on wind direction.  

This matrix can be expected to be produced as an integral 
part of the wind farm design process. The information needed 
to compute this matrix can consist of: 
• Long-term climate information at a reference position. 
• Turbine performance characteristics. 
• Wind flow models for assessing topographic, land cover 

and turbine wake characteristics. 
• Electrical data to compute losses inside the grid of the 

farm. 
Each matrix element mi,j is the expected power output for 

the wind speed wi and direction θj corresponding to the bin 
i, j. Therefore, the estimated power outputP  can be computed 
from the wind speed and direction bin probability,  Pr(wi,θj). 

 · Pr ( )
M N

output i , j i j
j i

P m w , = θ∑∑  (593) 

The distribution of power output can be found, for 
example, using the relationship 
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To be able to obtain an analytic expression, a simpler 
model will be employed based on the standard deviation σw 
of wind speed inside the wind farm.  Therefore, the 
considered characteristics of the wind would be its spatial 
average wwf and its standard deviation σwf inside the wind 
farm in ten minute intervals. If there is no data about the wind 
distribution inside the farm, σwf can be estimated from the 
standard deviation of turbine efficiency (from microsite 
optimization) or from the variance of energy output that is 
usually available at SCADA (average power and average 
wind speed show a behaviour similar). 

The main effect of the wind distribution inside the farm 
would be: 
• Decrease of wind farm wwf average speed from undisturbed 

wind speed value wS of the site model (section III of this 
paper). If performance matrix is not available and there 
is no more information, it is reasonable to multiply the 
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undisturbed value by an efficiency factor ηwf that would 
be around 90-95%, depending on the wake effects [375]. 

 wf wf Sw w= η  (595) 
• Smooth the power curve since each turbine experience a 

slightly different speed. This smoothing is evident at 
cut-off speed. 

The power output of the wind farm would be the sum of 
the output of the turbines (less the grid losses that would be 
computed in next section).  

If wind speed distribution inside the farm is known, the 
power output distribution of the turbines would be: 
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The average power output for a given mean wind speed is 
the cross correlation of the power curve and the wind 
distribution: 
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The average power for a normal distribution cannot be 
computed analytically unless some approximations are made. 
However, if slope of power curve is quite steady in the 
interval of wwf ± σwf, the average power output can be 
approximated as ( ) ( )P̂ower outputP w P w≈ . This is a good 
approximation except for the cut-off speeds, when the 
disconnection of turbines causes an abrupt change of the 
power curve. For such cases, the wind farm power curve can 
be characterized with two extra parameters that reflect how 
abrupt the disconnection of the turbines is: 
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 (598) 

offwΔ is the difference between the wind speed when there is 
a 25 % and 75 % of disconnection of the turbine due to 
high wind. 

wcut-off is the wind speed when there is a 50% probability of 
the turbine to shut down. 

ηwf is the farm mean efficiency factor. 
wS  is the undisturbed wind speed of the site 
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Fig. 156: Power curve of the wind farm (solid) and the turbine (dashed) for 
the example of annex I. 

If all turbines of the wind farm are the same model, the 
power curve normalised “per unit” is analogous for the grid 
and for the turbine.  

Near cut-off wind speed, the power curve is highly non 
linear. Also, the uncertainty of power curve is greater there. 
In such cases, the power show greater variability. In such 
wind regime, the turbines would gradually shut down starting 
from those more exposed. 
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The uncertainty of wind at the site is σS (the uncertainty is 
the deviation of the parameter measured or estimated). The 
value of the combined standard uncertainty is equal to the 
standard deviation of the measure, that is a stochastic variable 
[376]. 

The relationship between the standard deviation of wind 
farm speed σwf and power output of a single turbine σpof due 
to wind deviation can be approximated by: 
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Fig. 157: Plot of PDF Power Output for the wind farm power output of Annex I. 

The deviation of the whole farm power output is not the 
sum of individual turbine deviations since some degree of 
cancellation is achieved. Unless more detailed data are 
available, it is reasonable to expect a normal distribution of 
wind speeds at the farm. If wind is distributed normally 
independent among n turbines of a farm, the deviation is only 
√n times the deviation of a single turbine, instead of n. 
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The standard deviation of power output of the farm σpo due 
to wind deviation at cut-off speeds can be approximated by: 
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The standard deviation of power output of the farm in 
function of the undisturbed wind speed of the site wS is: 
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Fig. 158: Power curve of the wind farm (dots) and the uncertainty of the 
power for the example of annex I. 

The uncertainty of power curve near cut-off usually 
partially accounts for this deviation since the wind varies 
during the 10 minute interval used for the manufacturer to 
compute the power curve. 

A.3. Wind farm model 
Within this point it is presented a new method to obtain the 

equivalent of a wind farm from the characteristics of its 
components. For the sake of simplicity, the method is applied 
to a farm composed by a single type of generator with the 
same load level. 

In this model, the farm is divided into the following parts: 
• substation (including the park’s substation and the 

portion of the line that goes to the PCC) 
• the medium voltage network that connects the substation 

to the wind turbines. 
• the wind turbines (including the MV to LV transformer 

that usually is located into the tower) 
The presented method is general and can be extended to 

more complex topologies using fourth-pole transformations. 

A.3.1.  Final representation of the Farm 

A) Farm with fixed tap transformer. 
The equivalent circuit for the farm, that will be obtained at 

the end of the modeling, will be represented by the farm’s 
transmission matrix and the power generated by a turbine: 

The basic operations required in order to obtain the 
transmission matrix for the park are the cascade connection of 
the elements (equivalent to multiplying the transmission 

matrixes) and the parallel connection of circuits (equivalent to 
a weighted sum of the fourth-poles. 
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Fig. 159: Model of the farm with fixed tap transformer using its transmission 
matrix. 

Fig. 151 shows the circuit based on the single-phase 
equivalent. Thus, if the per unit method is not used, power 
and voltages should be transformed into phase values. 

In order to calculate the current injected to the grid, it is 
necessary to use the transmission matrix considering the  
network as primary side and the turbines as secondary side of 
the fourth-pole). (604) 
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Two solutions are found for the PQ node. The solution of 
PQ node for stable operation of the turbine is given by the 
following equation:  
C1 = Uo2+ B HP− Ç QL Conj@AD + A HP + Ç QL Conj@BD  

Uturbine = & C1+
èC12 −4HP2 + Q2L Abs@AD2 Abs@BD2

2Abs@AD2
 

Iturbine =
− P+ jQ
Uturbine   (605) 

where P and Q is the power generated by the turbine (PQ 
node). A, B, C, D are the parameters of transmission matrix. 
U0 and Uturbine are voltage at primary and secondary side of 
the equivalent fourth-pole. If  U0 is voltage at infinite bus, the 
parameters of  the transmission matrix are 
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The static voltage collapse occurs at the following primary 
voltage:   (607) 
Uomin =

-i
k
2" P2+ Q2 Abs@AD Abs@BD− BHP− Ç QL Conj@AD −

AHP+ Ç QL Conj@BDy
{  

B) Farm with tap-changing transformer 
However, if the transformer allows load regulation, it is not 

operating at the maximum of minimum value and the voltage 
variation is slow, substation voltage at the MV side of the 
transformer is almost the commanded value. 

According to that, the steady-state simplified model of a 
park with this type of transformer can be divided into two 
uncoupled parts. Thus, the grid sees the park as a PQ node. 
The output of the transformer, seen from the MV circuit side, 
as a voltage source whose absorbed or generated power 

(603)
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corresponds to a PQ node of the grid (power transmitted by a 
ideal transformer does not depend on the tap). 
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Fig. 160: Model of the farm from the utility point of view. 
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Fig. 161: Voltage uncoupled model for parks with load regulation 
transformer (model from the WT point of view). 

C) Dependence on voltage of the power generated by a 
turbine  

If the efficiency of a generator can be assessed as a 
function of voltage and the reactive power compensation 
policy is known, the turbine can be modeled as a node Sturbine 
= Pturbine·Uturbine

np + j Qturbine·Uturbine
nq.  

In this case, Uturbine can be find substituting P = 
Pturbine·Uturbine

np and Q = Qturbine·Uturbine
nq in the PQ equation 

and numerically solving the expression. The values obtained 
not taking into account the voltage dependence can be used as 
initial value. 

A.3.2.  Substation modeling 

Substation is connected to the grid in the point of common 
coupling, PCC, with a HV line. In this model, the line and the 
transformer are going to be represented by their transmission 
matrixes (single-phase equivalent). 
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Fig. 162: Model of the substation of the farm. 

A.4.  Modeling of the underground MV 
network 

Turbines are generally connected to an underground MV 
cable (usually 20 KV, although there are also parks with 
30 kW interior network). Usual distances among turbines are 
around 80-300 m, they have a low consumption or generation 
of reactive power, and the series impedance of the cable is 
moderate. Under these conditions, the voltage drop between 
the first and last turbine is small:  

 PR QXU
U
+

Δ ≈  (608) 

The voltage drop between the substation and the closest 
turbine is usually small if the substation is located in the park. 
In some cases, the substation is away from the park because 
of environmental problems. In these cases the voltage drop in 
the cable can be a limiting factor when choosing cable and 
MV network voltage. 

A) Added model of turbines using the moments 
A simple model that provides precise results even with 

significant voltage drops is based in the voltage drop 
calculation using the method of moment. 

This method is equivalent to concentrating all the 
generators in its load center of mass, which is at 1/3 of the 
distance between the first and the last turbine, closest to the 
substation†. In the case of parks with different types of cable 
or different types of generators, this model can be adapted. 

Considering that the current injected by the turbines varies 
in an almost linear way for small voltage variations, like the 
ones that take place between the first and the last turbine, this 
model gives very accurate results.  
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Fig. 163: Concentrated model of a MV circuit in a park.. 
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Fig. 164: Model of the MV circuit and the turbines of a park. 

The power sent to the substation can be found using the 
parameters of the equivalent fourth-pole of the medium 
voltage cable. (609) 

J AMT BMT
CMT DMT

N
cable
MT

= J 1+ Zc Ya Zc
Ya+ Yb+ YaYb Zc 1+ Zc Yb

N

 
where 

Zc = ZSub-1ªturbine + Z1ª-Ult turbine / 3 
Ya = YSub-1ªturbine / 2 + Y1ª-Ult turbine + Nturb Zμtrafo 
Yb = YSub-1ªturbine / 2 
Nturb number of turbines in the circuit 
Iturbine average current consumed by the turbines (negative 
while in production) 
Usubstation MV is the cable voltage in the substation terminals 

                                                           
† The centre of mass has been calculated using the criterion of equal cable 

power loss. If the criterion of equal average voltage in both the equivalent 
and the original circuits had been chosen, the turbines would be placed 
further, at 1/2 of the distance between the first and the last turbine. The 
power criterion is more realistic since the impedance of the cable usually 
increases in the sections far from substation. 
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Y1ª-Last turb is the admittance of the part of the cable between 
the first and the last turbine  
YSub-1ª turb is the admittance of the part of the cable between 
the substation and the first turbine  
Z1ª-Ult turb is the series impedance of the part of the 
conductor between the first and the last turbine. 
 ZSub-1ª turb is the series impedance of the part of the 
conductor between the substation and the first turbine. 
Zμtrafo the magnetizing inductance of the transformer inside 
the turbine 

 

B) Aggregated model of the MV circuit branches 
In order to solve directly, without iteration, a park with 

various branches on the MV circuit, they must be grouped in 
a single equivalent branch. The equivalent voltage of the 
turbines is the weighted average of the circuits and the current 
send to the substation is the sum of all the circuits. 

The voltage in all the branches in the MV circuit is similar 
if one of the following conditions takes place: 

 Circuits are short and, thus, the voltage drops are small. 
 Circuits are long, but all have similar length and similar 

number of turbines connected.  
Like in the previous part, the equivalent models are based 

in the linearization of the behavior of the turbines around the 
average working voltage. 

If all the turbines are the same type, it is convenient to 
include the number of connected turbines in the transmission 
matrix. By doing this, at the end of all circuits there is the 
same PQ power corresponding to a single turbine. Inside the 
matrix, the current is multiplied by the number of turbines in 
each circuit. 

U
substation  

ΣPgen2

ΣQgen2

Igenerator Icircuit MV 2 
2 2

2 2 2

A B
C D Circuito

⎛ ⎞
⎜ ⎟
⎝ ⎠

 U
generator

ΣPgen1 
ΣQgen1 

Igenerator Icircuit MV 1 
1 1

1 1 1

A B
C D Circuito

⎛ ⎞
⎜ ⎟
⎝ ⎠

U
generatorr

ΣPgenN 
ΣQgenN 

Igenerator Icircuit Ncirc 

U
generator

Ncirc Ncirc

Ncirc Ncirc

A B
C D Ncirc

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Ncirc branches in the MV network of the park 

Substation 

N1 turbines

N2 turbines

NN turbines

 
Fig. 165: Complete scheme of the medium voltage network, using the 
aggregated generator model. 
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Fig. 166: Simplified scheme of the medium voltage network of the park with 
added generator model. 

The parameters of the equivalent fourth-pole are found 
adding the currents and calculating the equivalent voltage as a 
weighted average of the voltages in each branch. 

N= ‚
i=1

Ncircuits
Nturbi

  (610) 

AnetMV =
⁄i=1
NcircuitsNturbi Acircuit  i

N  (611) 

BnetMV =
‚

i=1
NcircuitsNturbi2 Bcircuit  i

N2  (612) 

CnetMV = ‚
i=1

Ncircuits
Ccircuit  i

 (613) 

DnetMV =
⁄i=1
NcircuitNturbi Dcircuit  i

N  (614) 
 

This model can be extended to farms with turbines of 
different types and with complex layouts. 

A.4.2. Modeling of the turbines 

A)  Simplified model of the low voltage circuit 
In the LV side of a turbine, voltage usually is near its rated 

value thanks to the taps in the transformers. Small voltage 
changes modify lightly electrical losses and reactive power. 

Losses are due to Joule effect PCu ≈ Rcc S2 / U2 and iron 
losses, PFe ≈ RFe U2. Thus, losses depend on voltage with a 
function of the parameters of the generator. However, the 
efficiency of the generator is usually high and it does not 
depend greatly on voltage. Moreover, the effect of voltage 
fluctuations in electrical losses is small compared to the 
uncertainty in the power curve of the turbine. 

Besides, reactive power consumed by the generator 
depends on the square of both voltage and current Qgen ≈ ( Xμ 
– Xcap) U2 + Xcc I2 = ( Xμ – Xcap) U2 + XccS2/U2.  However, 
reactive power consumption variations are nearly 
compensated by the control of the capacitor sets, as long as 
they are sufficiently sized. In other types of generators, the 
control acts regulating reactive power. 

The stochastic nature of wind affects the control, adding 
uncertainty regarding which generator (in a machine with two 
generators or one with different connections) or which 
capacitor sets are connected. On top of that, some auxiliary 
consumption shows an intermittent or cyclic behavior. 

Because of all these reasons, the turbine can be 
approximated on a load flow study, in a quite realistic way, 
by a PQ node whose parameters are a function of the average 
powers at each wind speed. 

It is only necessary to consider the influence of voltage in 
those studies focused on the behavior of the park in extreme 
conditions (voltages out of normal operating range, 
homopolar or inverse sequence voltages,…) 

The value of active power as a function of wind speed can 
be derived from the power curve. The value of reactive power 
is not usually given by the manufacturer, but it can be 
measured. In generators with various LV circuits in the 
transformer, the power in all the LV circuits must be added 
(A direct measure of power in MV is difficult to perform). 
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It is desirable to obtain the reactive power curve from the 
manufacturer as a function of active power or wind speed. If 
the turbine can control reactive power, it is necessary to know 
how the command is set (power factor, reactive power…) and 
its limitations (working PQ plane). 

B)  Statistical model of the turbine 
When the turbines do not have the same load level, the 

previous equivalent circuit has some error. Active and 
reactive power consumed by the transformers is proportional 
to the square of the load level in each turbine, not to the 
square of the average load level. Thus, using that model 
underestimates the power consumed by the transformers 
when the load level variation is important. 

However, the previous model can be adapted to turbines 
with different load levels using a statistical approach. The 
turbine  works around an average working point with active 
and reactive powers μ Pi, μ Qi and variances σ Pi

2, σ Qi
2 [3]. 

Variance is due both to the difference in power among 
turbines (spatial variation), and to the time variation of the 
generated power. 

Spatial variation can be estimated from a wind potential 
study of the site, when measurements are not available. In 
such a case, this variation can be considered deterministic. 

Time variation of power can be estimated from the 
maximum and minimum power in a time period. Another 
option is to calculate the variance of the power according to 
the uncertainty of the power curve. The exact calculation of 
the joint variance requires knowing the correlation among the 
time power variations in the turbines. However, in most  
cases, it can be accepted that the time variations are 
independent in every turbine. 

Looking at the model in Fig. 165, a fairly simple model of 
the circuit can be found, based in statistic parameters. The 
sum of the generated power by the turbines is a statistic 
variable whose average, for the active and reactive power, is: 

μ ΣPturbines = ‚
i=1

Nturb
μPi −

ξRsc

Sbase
 J ‚

i=1

Nturb
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2+ ‚
i=1

Nturb
μQi
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σPi

2 + ‚
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σQi

2N
 

μ ΣQturbines = ‚
i=1

Nturb
μQi −

ξXsc

Sbase
 J ‚

i=1

Nturb
μPi

2+ ‚
i=1

Nturb
μQi

2+ ‚
i=1

Nturb
σPi

2 + ‚
i=1

Nturb
σQi

2N
 

In order to estimate the uncertainty of the power generated 
by the turbines, it is necessary to have a statistic model of the 
park. Some dynamic wind models can be found in the 
literature [4-6]. However, taking into account that the aim of 
this paper is to find a simple model that can be characterized 
by few measurements, the following hypothesis are going to 
be made: 

Variance which appears in the previous formulae is due, on 
one hand to the time variation of the power in a measuring 
period and on the other hand to the spatial variation (along the 
circuit) of the power generated by the turbines [7, 8]. 

Spatial power variation is due mainly to fast fluctuations 
that can be considered independent form one machine to 

another. Spatial variations are correlated. For every 
predominant wind speed there are machines that, in average, 
generate more than others. This fact is taken into account 
applying a coefficient Ci, that is equivalent to the efficiency 
of the location of each turbine, and it is obtained from the 
micrositting of the park. 

In order to consider these effects, the power generated by 
every turbine is modeled as an average power 
P = average power in a working point 
Pi = active p. from turbine i = Ci P + σP spatial Xi + σ P temporal Y 
Qi = reactive power from turbine i = 

=  Ci Q + σQ spatial Xi + σ Q temporal Y 
X, Y = normalized statistical distributions, independent 

between them 
Xi = distribution that represents the independent fluctuations 

for every turbine (mainly fast variations due to turbulence, 
tower shadow...). 

Y = distribution representing the fluctuations that affect 
proportionally at every turbine (mainly slow power 
variations) 

Ci = efficiency coefficient of the location of a turbine inside 
the park, relative to farm average. 

Pi
iC

P
μ

= ; σcoeficients Ci 
2 

 = ( )2
iC 1

N
−∑  

i spatial i temporali i(C P X Y)P C P
P ExpectedValue E ;

N N N
⎡ ⎤⎡ ⎤ + σ + σ

= = =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑∑ ∑  

( )2 2 2 22 2
i coeficients Ci P temporal P spatialE P N  P 1 N ⎡ ⎤ = + σ + σ + σ⎣ ⎦∑  

The equivalent average power in the turbine, in low 
voltage, is the average power of all turbines minus the 
average power consumption in the transformers. Performing 
the same analysis for the reactive power results in: 

( )

2 2RCC XCC
equiv turbine S turbine equiv turbine S turbine

base base

2 2 2 22 2
S turbine coeficients Ci P temporal Q temporal

2 2
P spatial Q spatial

P P ;          Q Q
S S

P Q

              
N

ξ ξ
= − σ = − σ

σ = + σ + σ + σ

σ + σ
+

 

It is important to know the variance of Pequiv turbina y Qequiv 

turbina, because it is going to be the main contribution to the 
uncertainty on the power generated by the park 

2
2 2 P spatial

P  equiv turbine P temporal

2
2 2 Q spatial

Q equiv  turbine Q temporal

N

N

σ
σ ≈ σ +

σ
σ ≈ σ +

 (618) 
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Fig. 167: Joint model of the MV circuit and the turbines of a park. 

In order to have into account the consumption of active and 
reactive power when the load level is not the same in all the 
turbines, it is necessary to decrement the average power  

 

(615)

(616)

(617)
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Fig. 168: Compact model, compensated for the variability of the power 
injected by the turbines. 

The parameter σcoeficients Ci can be found from the study of 
the micrositting of the park, or from the correlation of the 
active and reactive power of each turbine with the average in 
the park. 

The parameter σspatial can be determined from an operating 
park, through the remote measurement system, with the 
correlation matrix. For a farm that is not operating yet, the 
order can be estimated from, at least two wind measurements 
and the active and reactive power curves. 

The parameter σtemporal can be found measuring the 
standard deviation of active and reactive power in one turbine 
whose turbulence is on the same order as the one of the park. 
It can also be estimated from the maximum and minimum 
power in the time period, although this method has less 
precision. 

C)  Electronically controlled generators. 
Models for generators controlled by power converters can 

be found in the literature. The more frequent configuration is 
the doubly-fed induction generator, because of the lower cost 
of the power stages. However, it is becoming more common 
to find squirrel cage induction generators or synchronous 
generators connected to the grid through converters, in order 
to achieve variable speed. 

The main problem when trying to model this type of 
generators is that there is no precise information about the 
control of the machine. In general, it is useless to try to find a 
precise model of the machine in a power flow study when the 
control strategies have to be “guessed” and whose parameters 
vary in each farm in order to achieve maximum efficiency at 
every location. 

Taking into account that the efficiency of the generator is  
high, that the voltage is within a narrow range, that usually 
the information about the control is insufficient and that the 
power curve has a uncertainty from 3% to 5%, it is acceptable 
to approximate the group generator + electronics + auxiliary 
consumption by a PQ model. 

Because of that, unless there is in-deep information about 
the generator (usually available only for the manufacturer), 
the model to be used is the simplified one.  

D)  Specific model for induction generators, directly 
connected to the grid. 

The typical induction generator can be modeled as the 
cascade connection of the fourth-pole corresponding to the 
equivalent circuit of the generator, power factor correction 
capacitors and transformer. The variable resistor on the left 
represents the mechanical power in the generator. 
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Fig. 169: Equivalent circuit of a turbine with a directly connected induction 
generator. 

The transmission matrix is the cascade composition of the 
transmission matrix of the equivalent circuit of the generator 
(without the variable resistor), the capacitors and the 
transformer, (ξgenerator’ is the e.m.f.. of the generator in the 
rotor, referred to the stator). 

If it is assumed that all the generators in the circuit work at 
the same point, the inverse transmission matrix can be found 
by cascade multiplying all the corresponding fourth-poles. 
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Fig. 170: Complete model of a park with directly-connected induction 
generators, valid when the number of capacitors and the auxiliary 
consumption can be estimated. 

The slip of the generator depends on the terminal voltage. 
However, induction generators operate with at low slip 
(around 1% at full load) and it can be considered that blade 
speed is almost constant and thus, Pmi does not depend on 
voltage. 

If the number of capacitor banks and the auxiliary 
consumption can be estimated, the influence of voltage in 
active and reactive power can be approximated by a power of 
voltage. In order to obtain the optimum power, the following 
equation can be solved with the rated values of the turbine. 
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Coefficients nP y nQ can be calculated analytically as a 

function of the inverse transmission coefficients. For sim-
plicity, the quotes have been omitted from A’, B’, C’ y D’): 

C1 = CosB ArgB$ HBC− ADL2+ 4BDPmi
B2 D2

FF
 (621) 

C2 = BDHBC+ ADL$ HBC−ADL2 + 4BDPmi
B2D2  

nP = ReB−1−
C1HBC−ADL2 − C2

C1HHBC− ADL2+ 4BDPmiL −C2
F

 (622) 

nQ = ReB−1−
HBC− ADL2+ 8BDPmi
HBC− ADL2+ 4BDPmi

F
 (623) 

(619)

(620)
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For a 600 kW turbine, the following curves have been 
obtained. 
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Fig. 171: Influence of voltage on real power. 
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Fig. 172: Influence of voltage on reactive power. 

Powers nP or nQ near cero show little influence of voltage. 
In the previous example, it can be seen that the influence of 
voltage in P and Q is small because the machine operates with 
power factor near unity and the resistance in the system is 
small. 

The previous expressions have been obtained with a fixed 
number of capacitors connected (without power factor 
regulation with voltage).  

The generator emf referred to the stator, ξgenerator , can be 
calculated from the voltage at the PCC, solving the PQ node. 
Then, the generator terminal voltage can be easily calculated 
using the impedances of the generator equivalent circuit. 
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  (624) 

A.4.3. Uncertainty of the model 

 The uncertainty of the power injected to the grid by 
the wind farm can be divided in two parts, depending on its 
origin. One part is due to the stochastic behavior of the wind, 
and the other is due to the electric model [9]. 

A)  Uncertainty due to the stochastic behavior of the 
park. 

 The main source of uncertainty is originated by the 
variability of the primary source of energy, the wind. This 
affects directly both Pturbine and Qturbine. 

In the part dedicated to the stochastic modeling of the 
turbines, a very simplified model has been used. In practice, 
wind will interactuate with aerodynamics and the control 
system. The uncertainties can be found from data measured in 
a park. 

2
2 P spatial

P  due to the wind farm P temporal

2
2 Q spatial

Q due to the wind farm Q temporal

u P
N

u Q
N

σ
≈ σ +

σ
≈ σ +

 (625) 

 
Uncertainty due to the stochastic operation can be around 

5%, although depends greatly on the measuring period and 
the power sampling speed. If uncertainty is calculated from 
field data, these will include the effect of outage of the 
turbines. 

 

B) Uncertainty due to the simplified model of the park. 
In general, the uncertainties introduced by the park model 

will be much lower than the ones introduced by the wind, 
because in normal operation ΔV < 3 %. 

The uncertainty due to the approximate solving of the 
circuit of the park depends on the voltage difference among 
turbines. The model is based in the assumption that all the 
turbines work at the average voltage. In practice, errors are 
introduced because the behavior is not lineal. The uncertainty 
associated to the voltage distribution is, as a function of the 
impedances of the circuit in p.u. 
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There are other sources of uncertainty, like the dependence 
of generated power with voltage. However, the behavior of 
the turbine is highly dependent on the technology used and on 
the parameters of the machine, so it would be necessary to 
measure or simulate it precisely. 

Using these data, the turbine can be represented by a node 
Sturbine = Pturbina·Vp.u.

np + j Qturbine·Vp.u.
nq, where the parameters 

np y nq show the influence of voltage. Uncertainty from these 
parameters is: 

min min

·  ·

np nq

turbine turbine
turbine turbine turbine

no al no al

V V
S P jQ

V V

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠
 (631) 

(628)

(629)

http://www.uwig.org/IEA_Report_on_variability.pdf


 Annex A: Simplified Electrical Model Of The Wind Farm 147 

 

 due to  different from nominal
np-1

turbine turbine

nominal nominal

V
1

V3

P V

p farm

u

n P V

V

≈

⎛ ⎞⎟⎜ ⎟⎜≈ −⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (633) 

 due to  different from nominal
nq-1

turbine turbine

nominal nominal

V
1

V3

Q V

q farm

u

n Q V

V

≈

⎛ ⎞⎟⎜ ⎟⎜≈ −⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (634) 

C) Uncertainty due to grid voltage 
In the model it has be assumed an infinite bus voltage Uo 

corresponding to the Thevenin equivalent. This voltage varies 
in parks connected to distribution networks, lines with highly 
variable consumption… The uncertainty associated to voltage 
variations in the grid is: 
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D) Total uncertainty 
In order to calculate the total uncertainty of the power 

injected to the utility, due to all the factors previously 
mentioned, the square addition law must be used. In general, 
it is normal to use the total extended uncertainty k=2 (interval 
where power is the 95% of the time, for a given set of 
operating conditions). 

2 2 2 2
 wind    min

2 + + +
P P P Vgrid P Vturbines P V no al

u u u u uΔ Δ ≠=  (639) 

2 2 2 2
 viento Q Q Q min

2 + + +
Q Q Vgrid Vturbines V no al

u u u u uΔ Δ ≠=  (640) 

A.4.4. Model of the electrical grid of the 
farm 

The approach followed in this section is based in [377], 
where a simplified model of the wind farm is derived based 
on the fourth-pole equivalent representation of the electrical 
elements, the distributed layout of the turbines, the stochastic 
nature of power output and small-signal analysis of the grid. 
The uncertainties of the approximations made in the model 
are also assessed there. The overall system uncertainty is 
barely affected by this representation since it is precise 
enough and the grid behaviour is much more deterministic 
than the wind and power curves.  

The approximate method of the moments is widely 
accepted  in electrical engineering. Using that approach, the 
turbines can be concentrated in some points, as it is pictured 
in Fig. 159.  Due to the fact that the turbines inside a wind 
farm have similar power output and voltage, a “concentrated 

model” can be used for accounting power losses in shunt 
admittances and series inductances. 

The behaviour of turbines resemble PQ nodes because its 
efficiency is high, voltage is near nominal value for usual 
operation and because reactive control tries to reach control 
target (usually certain power factor). 
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Fig. 173: Original and concentrated model of a MV circuit in a park. 

Paper [204] computes the model parameters form 
resistance, capacity and reactance of each element, obtaining 
the farm equivalent transmission matrix shown in the Fig. 
158. However, it is more convenient to estimate the 
parameters from power flow solutions. 
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 Fig. 174: Model of the farm using its transmission matrix. 

The farm equivalent can be regarded as Π or T equivalent. 
However, an approximate representation with a shunt 
admittance and series impedance will be used to simplify the 
analytic expressions. If a more precise model of the farm is 
needed, a full Π or T fourth pole equivalent can be used 
(another simulation case would be needed to estimate the 
extra parameter). 
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Fig. 175: Model of the farm using a fourth pole realization. 

In this article, the electrical parameters of the farm will be 
expressed in per unit using the nominal power of the wind 
farm as base. 

The relation of power flow at turbines and at point of 
common coupling PCC can be easily derived. 

2 2
2WT WT

PCC WT series shunt PCC2
PCC

P +QP =P -R -G U
U

 (641) 

2 2
2WT WT

PCC WT series shunt PCC2
PCC

P +QQ =Q -X +B U
U

 (642) 

Where  
PWT = Σ Pturbines = sum of active power of all turbines 

(632)
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QWT = Σ Qturbines = sum of active power of all turbines 
PPCC = Active power injected at PCC 
PPCC = Reactive power injected at PCC 
Rseries and Xseries are the real and imaginary part of Zseries, i.e. 
the resistance and reactance of the series equivalent. 
Gshunt and Bshunt are the real and imaginary part of Yshunt, i.e. 
the shunt conductance and susceptance. 

In case of fixed capacitors that are always connected, it is 
more precise to compute them in Bshunt. Also, if the maximum 
supply or drain of reactive power is being studied, all the 
capacitors and inductances shunt connected should be 
included in Bshunt. In other cases, the automatic reactive 
compensation must be included in QWT.  

Even though the voltage inside the farm varies, it is 
expected to be near to assigned value on normal operation 
(Uturbine ~ 1 p.u.). This simplification is only a small source of 
uncertainty of the model since Zseries  are expected small p.u. 
(around 0.12 p.u.) and Yshunt is expected to be big (at least 20 
p.u.). Standard UNE 206005 [378] assess the reactive power 
ability of wind farms at Uturbine = 0,95 p.u., 1 p.u. and 1,05 
p.u. This standard states a method to compute farm power 
losses that is equivalent to the one presented in this section. 

The new method to obtain the farm equivalent consists on 
simulate the wind farm with a power flow program at two 
power levels and to solve the parameters Rseries, Xseries, Gshunt 
and Bshunt from equations (641) and  (642). For 1 p.u. voltage 
at PCC and power simulations at calm (PWT = 0, QWT = 0) and 
full power with unity power (PWT = 1 p.u., QWT = 0), the 
parameters are: 

WT WT

WT WT

WT WT

WT WT

shunt PCC P 0, Q 0

shunt PCC P 0, Q 0

series PCC shuntP 1, Q 0

series PCC seriesP 1, Q 0

G P

B

R =1- P -G

X =-Q +Y

Q
= =

= =

= =

= =

= −

=
 (643) 

A.4.5. Model of nearby wind farms 

The influence of near wind farms should be taken into 
account because their active power output are quite correlated 
(they show a similar behaviour).  

A simple linear correlation can be enough precise for grid 
studies of near wind farms. Far away wind farms show 
generally complex relationships and have low correlation 
coefficients. But those farms are expected to interact less with 
the studied wind farm. Therefore, a linear correlation of the 
farms is enough in most cases (the more influencing wind 
farms are better modelled). 

If grid parameters vary linearly with the power output of 
the analyzed wind farm, the average effect of other wind 
farms would be approximately computed using average 
power for the given selected power level of the studied farm 
(a linear function, applied to a stochastic variable, also 
transform linearly the expected value and standard deviation 
of that variable). For example, voltage deviations and power 
flows are related mainly linearly with power (except near a 
voltage collapse or very high wind share).  

The linear regression of the power predicted in wind farm 
“j” based on the power of the reference farm “i” is given by: 

 ( )j j i iP =P P Pjb+ −  (644) 

 j
j ij

i

s
b r

s
=  (645) 

where jP and iP are the average power output in park “j” 
(estimated farm) and “i” (reference farm); 
rij is the experimental correlation coefficient; 
si and sj are the standard deviation of power in farms i and j. 

The interaction between reactive power of wind farms must 
be also taken into account. If the control is a fixed power 
factor, Q = P tan ϕ, a linear correlation is also advisable for 
compute reactive power injection of other wind farms (note 
that unity power factor is a special case where ϕ =0). 

In case of Automatic Voltage Support or other control 
strategies, the reactive power of the wind farms must be 
estimated accordingly.  

A precise model of interaction can be needed in some 
studies (topology changes and congestion typically show a 
non-linear behaviour). In such cases, a Monte Carlo 
simulation is advisable, where wind power and load are 
stochastically modelled. This type of study is beyond the 
scope of this article. 

A.5. Reactive power control 
A.5.1. Limits on reactive power 

The maximum amount of reactive power that can be 
injected or absorbed are given by: 
• Limits provided by the turbine manufacturer. Second 

edition of IEC 61400-21 will include a section devoted 
to the reactive power capability and the ability to 
participate in an automatic voltage control scheme. 

• Allowable voltage limits at the turbines. The wind turbine 
that is electrically farer from PCC will suffer the 
greatest voltage deviations of the wind farm. 

• Allowable current in series elements (electronic converters, 
lines, transformers, etc).  

 
Turbines inside a wind farm operate at similar power levels 

and voltage drops are small enough to use the linear 
relationship: 

( ) ( )SC at PCC series WT SC at PCC series WT
WT 0

0

worse eff WT eff WT
turbine

R +R P X +X Q
U U

U
U R P X Q

+
≈ +

Δ = +
  

eff eff

WT WT

WT WT WT

where the parameters R  y Q  can be adjusted from a 
simulated power flow with P 1 p.u., Q 0 and with
P 0, Q 1/ 3 p.u. (a simulation with Q 1 p.u. can
lead to voltage out of range in many cases

= =
= = =

 and the linear
aproximation is not valid near voltage collapse).

 

WT WT

WT WT

sc series
eff worse 0

turbine0 P 1 p.u., Q 0

sc series
eff worse 0
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R +RR U U
U

X +X 1X U U
U 3
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The limit of voltage rise or drop leads to a band of allowed 
power in the P,Q plane (p.u.). 

min 0 worse max
turbine

min min 0 worse max 0 max
turbine

min eff WT eff WT max

eff WT eff WT max

eff WT eff WT min

U U U U

U =U U U U U U

U R P Q P U

R P Q P U

R P Q P U

Upper voltage limit :

Lower voltage limit :

< + Δ <

Δ − < Δ < − = Δ

Δ < + < Δ

+ = Δ

+ = Δ

 (648) 

The locus of excessive current is determined by a 
circumference of radius Smax = Uturbine Imax (p.u.) 

turbine

2 2
2 2WT WT

max WT WT maxU  
~ 1 p.u.turbine

P +Q I P +Q I (p.u.)
U

< ⎯⎯⎯→ <  (649) 
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Fig. 176: Operational limits of turbine reactive power QWT due to excessive 
voltage deviations and over current at the wind turbine. 
 

The quadratic equations (550) and (642) transforms the P, 
Q limits of Fig. 160 (at turbine) to the P, Q values that are 
achievable at PCC. Therefore the straight lines bend a little 
and the circle is slightly smashed when the power limits are 
calculed at PCC 

A.5.2.  Reactive Power Policy 

Nowadays, most turbines use unity power factor regulation 
[379]. However, the reactive power injection can achieve 
some goals: 
• Minimize voltage variations at a point in the grid due to the 

wind farm. This control would lead to a power factor near 
unity at wind turbines (slightly inductive). 

• Stabilize voltage at a nearby point of the network. This 
control would need to measure the actual voltage at the 
reference node or, alternatively, an algorithm to estimate 
voltage there from voltage measured at wind farm. 

• Try to compensate reactive needs in the surrounding grid. 
In fact, this would also minimize power losses in the grid. 
This strategy would be typically managed by a control 
centre that measures nearby load consumption, line flows 
and grid constrains. 

A.5.3. Constant power factor regulation 

The voltage variations due to a wind farm with constant 
power factor would be proportional to active power. 

WT WT WT
0

0 0

R X tan
U P P

U '

R X
1

1U ' U
1

eff eff WT

SC
eff eff series

shunt SC

shunt series

shunt SC

K

Zj Z
Y Z

Y Z
Y Z

ϕ

ϕ+
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+ = +
+

+
=

+
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The voltage influence of the farm can be cancelled at the 
wind turbines ( WTU 0Δ ≈ ) or at the PCC ( PCCU 0Δ ≈ ). 

If the target is not to influence voltage at a point, the wind 
farm will behave inductively, that in many scenarios is not a 
desired scenario. 

WTU 0 =0 tan R / Xeff effKϕ ϕΔ ≈ ⇒ ⇒ = −  (651) 

If the target is PCCU 0Δ ≈ then the power factor is 
determined by the short circuit impedance at the PCC, 
tan PCCϕ = SC at PCC SC at PCCR / X−  

If the target is a fixed power factor at PCC, then the value 
of turbine reactive power QWT can be determined solving the 
quadratic equations (550) and (642). For unity power factor at 
PCC, there must be injection of reactive power at the wind 
farm that is not proportional to PWT. 

2 3 2 2
PCC PCC shunt series PCC WT series

PCC
series

U U 4 B X U 4P X
Q =

2 X
− + −

  

The effect of a power factor in the voltage profile can be 
computed taking into account that the voltage deviation due 
to the farm is proportional to the active power 
output, WT WTU PKΔ = ϕ . Therefore, the voltage distribution 
and the power have the same shape as (see Fig. apparent and 
complex power )and the scale factor is Kϕ . 

A.5.4. Automatic voltage control 

The voltage control is difficult to achieve without 
communication with a control centre. If neither the detection 
of voltage regulators is made nor there is connection to a 
monitoring centre, the estimation of voltage at PCC from 
farm voltage can be fooled. Think in an under voltage 
scenario, where tap or a topological change in the grid push 
up the voltage at the wind farm. Then, the automatic voltage 
regulator (AVR) can make the wind farm to restrain the 
reactive power injection (or even, to start behaving 
inductively), increasing the deficit of reactive power in the 
grid. 

Even if there are other loads connected between the wind 
farm and the reference node (usually, PCC), the state of tap 
changing transformers or voltage boosters in the line can be 
accounted. If tap changing transformers are close to the wind 
farm, the sudden voltage or angle jump can be detected and 
identified.  However, the voltage or angle jump must be 
significantly bigger than voltage variations due to nearby 
sudden load variation or connection of nearby farms. 

A Bayesian decision tree can be used to detect tap changes. 
Voltage deviations due to nearby loads can be estimated from 
statistical data of consumers, even though these data can be 
difficult to obtain in a de-regulated market (for example, the 
loads can be estimated from working day classification, 
month and hour) 

(652)
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One way to compute QWT to support voltage a net node is 
to compute /node WTU Q∂ ∂  through network simulation at two 
power levels. 

MAX=Q 0

MAXQ 0
WT WT

node nodeQ Qnode node

WT WT

U UU U
Q Q

=
−∂ Δ

≈ =
∂ Δ −

 (653) 

measured or
estimated at node

WTWT Q
node

WT

U
Q K U

Q

Δ
=

∂
∂

  (654) 

The weighting factor 0 1
WTQK< <    accounts for the fact 

that more generators and devices are performing voltage 
support. This factor must be small if the supported node is 
electrically far from the wind farm. Otherwise, the turbines 
would operate very often at maximum reactive power 
absorption or injection. 

A.5.5. Scheduled reactive control  

If communication with the system operator (S.O.) is not 
possible, a schedule of reactive power at PCC based on load 
is possible. In fact, Spanish regulation RD 436/2004 [366] 
rewards certain power factor depending on the time of the day 
and the Spanish region. This is an improvement from past 
regulation (unity power factor) since there is more correlation 
between system reactive needs and reactive generation.  

However, actual Spanish regulation is based in type 3 
classification of the tariff established in OM 12/1/1995 [380]. 
A clear improvement would be to establish the bonus based 
on type 5 schedule, where the type of the day (labour, 
weekend, bank holiday) and the season would be also 
considered. The improvement would be due to higher 
correlation between system reactive needs and reactive 
generation. The increase of control complexity with type 5 
schedule is very small since all SCADA have a built in 
calendar. 
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Fig. 177: Distribution of voltage deviations at PCC due to the wind farm of 
Annex I (data corresponding to P.F. at wind turbine 0,95 inductive in blue; 
0,95 capacitive in yellow and unity in magenta).  

One drawback of power factor discount is that, as active 
power is random, voltage and reactive power support would 
be also. Calm and low wind are the more likely states at wind 
farms, as can be seen from Fig. 6. In such states, the grid 
support and the use of available infrastructure is low. 

Moreover, the reactive power capability of most wind 
farms is bigger at low active power: many technologies and 
compensating devices can inject or absorb reactive power 
when the generator is not connected. 

Therefore, other clear improvement is to compute the 
reactive bonus on reactive power, not on power factor. 
Voltage at PCC for several power factors 
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Fig. 178: Reactive power injected at PCC by the wind farm of Annex I.  

A.5.6. Reactive power under centralized 
control 

The optimum policy for reactive power control must 
support voltage and try to maintain power losses at low level, 
avoiding network congestion. 

The cost of voltage support, power losses and net 
congestion can be derived from voltage deviation penalty at 
border nodes, mean power tariff and costs derived from 
congestions. An optimum power flow could attain a global 
optimum considering these factors [381]. 

Reactive power pricing must be adjusted carefully for the 
optimum control to be performed. 

The availability of reactive power injection is a random 
variable because it depends on wind. It must be assessed 
depending on the technology of wind turbines, ancillary 
reactive devices and wind potential at the site. Even though 
active and reactive power are related, existing technology 
allow some level of control freedom. 

For example, Fig. 15 show the realizable power at a turbine 
equipped with a full rated converter. The limits on the 
converter displayed are due to maximum current and 
maximum voltage at turbine. Other constrains can appear due 
to internal features of the converter, but they are not 
considered here (for example, the choke coils can decrease 
the capacitive capability of the converter, but here is not 
considered). 

 The probability of being able to inject more than Q 
reactive power at the PCC can be computed trough the 
cumulative distribution of power.  

1
WT WTPr( ) = Pr( ( )) WT MAXq Maximum Q Power Q q−< <  (655) 
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Fig. 179: Realizable reactive power at the wind turbine for the example of 
Annex I.  
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Fig. 180: Availability of reactive power injection (capacitive behaviour of the 
WT) by the wind farm of Annex I.  
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Fig. 181: Availability of reactive power absorption (inductive behaviour of 
the WT) by the wind farm of Annex I.  

 
The calculus of availability is quite straightforward from 

CDF of the wind farms.  
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The optimum reactive power QWT, from voltage point of 
view, can be computed taking into account several node 
voltages, each one with its weighting factor. 
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A.5.7. Effect on power losses 

The farm power output influence elements active and 
reactive power network losses. Power in shunt elements is 
voltage dependent in a non-linear way. Since the farm affects 
voltage only at nearby nodes and the main losses are in series 
elements, the influence of the farm in shunt losses will not be 
considered in this simplified approach. 

Let’s consider power losses Plosses, i in a series element i 
that carry an apparent power Selement, i. The power injected by 
the farm would spread along the grid. Active and reactive 
power flows are quite decoupled and the farm power is 
approximately linearly distributed between parallel elements. 
Therefore, it is reasonable to use the following simplified 
model for the power loss in a grid element:  

( ) ( )

2i
loss, i i

i
222

i 0,i P,i WT 0,i Q,i WT

RP = S ;      
U

S P +k P Q +k Q≈ +

 (658) 

P0,i and Q0,i are the power flow at the elements when the 
turbines are disconnected. Approximate factors kP,i and kQ,i 
can be estimated simulating the network at maximum active 
and reactive power and computing the power flow difference 
at the element. The overall power loss with the 
aforementioned approximations would lead to a quadratic 
behaviour of net losses.  

loss losses, i loss Pwt=0, Qwt=0
i

2 2
P WT p WT Q WT Q WT

P = P = P +

+ a P + b P + a Q + b Q  

∑
 (659) 

The five coefficients of  (659) can be adjusted from the 
power flow losses in 5 different combinations of active PWT 
and reactive QWT wind power. 

If the network losses due to wind power are allocated 
mainly in elements electrically close to the wind farm, bP and 
bQ will have greater values. Thus, the relationship would be 
mainly quadratic with PWT and QWT. 

If wind power influence losses in elements mainly 
electrically far from the wind farm to vary, aP and aQ will 
have greater values. Thus, the relationship would be mainly 
linear with PWT and QWT. 

If network configuration or flows can change notably on 
high, medium and low load, the coefficients must be 
computed for those cases. Therefore, the reactive control of 
the wind farm might take into account the load classification 
at each time (a different control policy must be used 
depending on a scheduled load classification). 

Reactive power losses also show an analogue relationship 
with PWT and QWT. 

A.5.8. Uncertainty analysis 

The uncertainty in the farm power output is due to: 
• Adjustment of wind resource to a Weibull distribution. 

(656)
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• The uncertainty of the power curve. 
• Simplistic model of the power curve with only two or four 

parameters. 
• The wind farm speed characteristics are usually not well 

known and they depend on wind speed and direction. 
More over, the “undisturbed wind speed” should be 
estimated once the wind farm is in operation. 

• Approximations done in the model of the grid (for 
example, considering U0 constant). 

• Availability of turbines and network. 
The main source of uncertainty comes from the wind and 

the power curve. In case the performance matrix of the farm 
is available, the uncertainty can be notably decreased. The 
grid influence in power output is low since characteristics are 
usually well known and it is designed for high efficiency.  

The availability of turbines is high due to scheduled 
maintenance and high reliability (the availability of the 
electrical network is even higher). However, the effect of 
events such as nearby short-circuits in some situations can 
trip many wind power stations.  This is an example of very 
infrequent event but that can affect power quality because it 
concerns system stability in grids with high wind share.  

The estimation of uncertainty is not easy. Apart form the 
ISO guide of uncertainty, GUM [382], all the power curve 
standards ISO 61400-12-1 [370], 61400-12-2 [383] and 
61400-12-3 [339] include some annexes to help in uncertainty 
assessment. 

The general procedure is to estimate the uncertainty of 
each component (i.e. power curve, wind distribution, etc).  
The sensitivity coefficients of individual uncertainty in the 
overall power output must be derived.  Also, a model of 
propagation between uncertainties must be supposed. Should 
the uncertainties be uncorrelated, they partially cancels and 
the rooted sum of squares law should applied instead of the 
arithmetic sum of uncertainties. Sometimes, it is not clear 
which type of assumption is more adequate. In those cases, 
the assumptions can be classified as “conservative” or 
“optimistic”. At the end, the uncertainty computed for several 
scenarios (optimistic, conservative, etc.) can be weighted by 
its likelihood or by an expert to obtain the expected 
uncertainty. 

The uncertainty of the power output can be reduced using 
more detailed data. The process is roughly the same that has 
been presented here except that the majority of the 
computations must be done numerically. Moreover, the 
Monte Carlo method can be used to cope with detailed 
models. However, the increase of accuracy comes at the cost 
of a not so easy analysis of parameter sensitivity as in the 
analytic case. 

Even though there is a small correlation of renewable 
energy and consumer load through the weather, this effect can 
be neglected in energy sources as wind and non-storage 
hydroelectric [384]. 

Conclusions 
The annex shows a statistical model of the farm that can be 

used in power flow studies, and a methodology for adjusting 
its parameters to the available data (if it is already operating) 
or using data from micrositting and power curve of wind 
turbine (if it is under project state).  

The model is fairly simple and reflects the normal 
operation of the farm. Moreover, the minimum voltage for 
stable operation is assessed in farms with asynchronous 
generators. 

The uncertainty of the model is also estimated. The sources 
of uncertainty are stochastic operation of wind farm, employ 
of a simplified model and grid voltage. 

This work shows a statistical model of wind farms and a 
methodology for adjusting its parameters. This model has 
been used to assess the grid impact of a wind farm reactive 
power during normal operation. Several reactive power 
control strategies are analyzed.  

The uncertainty of the final data due to the approximations 
made is studied. The accuracy can be increased if non-
parametric models of farm power curve and wind resource is 
employed. 

Annex: Example Data 

A) Power curve shown in figures: 
w25%= 7,5 m/s;  w75% = 10,5 m/s;  wcut-in = 4 m/s; 
wcut-off = 25 m/s;  Pnominal= 1 p.u.;   σwf = 1,5 m/s 

B) Parameters of wind speed distribution: 
scale = 2 μwind/√π;    shape = 2 

C) Parameters of the wind farm: 
ηwf = 0,93; offwΔ = 2 m/s; wcut-off = 25 m/s; σwf = 1,5 m/s 
Rseries = 0.03 p.u.;  Xseries= 0,12 p.u; Gshunt = 0.005 p.u.; 
Bshunt = 0.01 p.u.; Rsc = 0.02 p.u.;  Xsc= 0,18 p.u; 
μwind is assumed to be 7 m/s if it is not stated. 

D) Limits of reactive power generation: 
Smax = 1 p.u.;    ΔUmax = 0.10 p.u. at turbine converter. 



 

 

B.1. Fixed speed, stall regulated turbine 
of 750 kW 

This subsection studies the power fluctuations of a 750 kW 
wind turbine from TAIM-NEG MICON (Nordtank squirrel 
cage induction generator and stall regulation) measured at 
Valdecuadros wind farm (Spain) [52]. For the shake of 
clarity, most plots show either 10 s or 20 s of typical turbine 
operation. The measured amplitude is around 1/30th of the 
nominal power and the shape varies continuously and it is 
quite random. This behaviour has been found in other wind 
turbines with different frequencies and amplitudes of the 
fluctuations. 

Almost periodic behaviour can be characterized as a 
sinusoidal fluctuation at the blade frequency with random 
amplitude. However, the shape and the amplitude vary and 
they are quite random. The amplitude modulation can be 
decomposed into oscillations of close frequency. To test this, 
the power spectrum density (PSD) of power during 5 minutes 
have been calculated in Fig. 187, showing several 
overlapping peaks spread around fblade ≈ 1,06 Hz, ¾fblade ≈ 
0,77 Hz  and ½fblade ≈ 0,51 Hz. The harmonics of tower 
shadow are very sharp and thus, their power content is much 
lower than the fundamental component and its ¾ and ½ sub-
harmonics. Therefore, tower shadow harmonics can have 
structural concerns but their influence in the variance of 
power is small. 

 
Fig. 182: Operation of a SCIG 750 kW wind turbine for wind speeds around 
6,5 m/s during 14 minutes. From top to bottom, time series of the real power 
P [kW] (in black), wind speed Uwind [m/s] at 40 m in the met mast (in red, 
with a magnification factor x 10 respect the vertical axis) and reactive power 
Q [kVAr] (in dashed green). 

B.1.1. Record of 20/10/00, 13:37-13:50 
(low winds) 

The record analyzed here corresponds to date 20/10/00 and 
time 13:37-13:50 (about 13 minutes). The average blade 
frequency in the interval was fblade≈1,12 Hz. The wind, 
measured in a meteorological mast at 40 m above the surface 
with a cup anemometer, was Uwind = 6.7 m/s ±1,86 m/s 

(expanded uncertainty, aka k = 2 or twice the standard 
deviation, is used to indicate range variation of stochastic 
magnitudes unless otherwise is stated). The main features of 
this record are summarized in the following table and Fig. 
182. 

 
TABLE XIV: PARAMETERS OF THE 750 KW SCIG TURBINE,  

SERIES 20/10/00, 13:37-13:50 (FBLADE≈1,12 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 6,7 m/s 192,83 kW -7,70 kVAr 

Variance 0,93 m/s 63,48 kW 18,01kVA 

Ratio Std. 
Dev./mean 71,5 % 4,0 % 3,0% 

Mean ± 
uncertainty 

6.7 
±1,86 m/s 

192,83 
±126,96 kW 

-7,70 
±36,02 kVAr 

r’ ~0,85 ~1,35 ~0,88 

P1’≈PSD+(1)
0,0152 

(m/s)2/Hz 1,02 kW2/Hz 2 kW2/Hz 

f1 ≤0,008 Hz ≤0,013 Hz ≤0,004 Hz 

f2 ∞ 12 Hz ∞ 

B.1.2. Analysis of real power output 

In the graph of the full time series, Fig. 182, the 
oscillations due to rotor position cannot be seen clearly. In the 
following magnified graphs, one oscillation per 0.9 second 
are noticeable in turbine power output. 

 

 
Fig. 183: Real power of a SCIG 750 kW wind turbine for wind speeds around 
6,5 m/s during one minute. 

For simplicity, tower shadow of Fig. 183 can be 
characterized as a sinusoidal fluctuation at the blade 
frequency with random amplitude (i.e. an amplitude 
modulated signal) [385]. In fact, the modulation can be due to 
the sum of fluctuations at frequency fblade dependent on rotor 
position and tower resonance frequency ftower (the modulation 

Annex B:  Analysis of wind power 

variability from measured data 
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happens when two oscillations of similar amplitude and 
frequency are close). There are also a higher frequency 
oscillation (possibly due to oscillation modes of the mechanic 
system of frequency around 6 Hz). A similar behaviour (but 
with lower 6 Hz oscillation) is shown in [186] .  

However, when the coupling of generator and turbine rotor 
is stiffer, high frequency vibrations are transferred more 
directly to the generator [48]. In those cases, generator 
fluctuations have a wider frequency spectrum and more 
complex shapes. 

 
Fig. 184: Real power of a SCIG 750 kW wind turbine for wind speeds around 
6,7 m/s during 20 s. 

Fig. 185 shows a rich dynamic behaviour of the real power 
output, where the modulation and high frequency oscillations 
are superimposed to the fundamental oscillation. 

 
Fig. 185: Real power of a SCIG 750 kW wind turbine for wind speeds around 
6,7 m/s during 10s. 

The previous images are comparable to other time series 
found in the literature. For example, Fig. 186 shows 
modulation and high-frequency oscillations superimposed to 
the fundamental oscillation. 

Fig. 187 indicates that power spectrum is quite constant for 
frequencies bellow 0,02 Hz. The wide peak between 0,8 to 
1,12 Hz is due to the rotational effects, which excites tower 
vibration modes. In fact, the peak at 0,5 Hz is the ½ 
subharmonic of the fundamental oscillation at blade 
frequency. Other narrow peaks corresponding to harmonics of 
fundamental oscillation can be clearly seen in Fig. 187. 

Fig. 188 shows the contribution of each frequency to the 
variance of power 2

, ,P T fσ  –the area bellow f·PSDP
+(f) in a 

semi-logarithmic plot is the signal variance according to (10).  

 
Fig. 186: Power from a fixed speed stall-regulated wind turbine at 10 m/s 
(from [186]). 

 
Fig. 187: PSDP

+(f) parameterization of real power of a SCIG 750 kW wind 
turbine for wind speeds around 6,7 m/s (average power 190 kW) computed 
from 13 minute data. 

 
Fig. 188: Contribution of each frequency to the variance of power 
corresponding to Fig. 187 (the area bellow f·PSDP

+(f) is the variance of 
power). 
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The main contributions to power variability are:  
— Low frequencies due to wind variation (f < 0.1 Hz). 
— Blade and tower fluctuations (0.5 Hz <f < 1.5 Hz). 
— Minor contributions in 5 Hz <f < 7 Hz, due mainly to 

drive train, generator and blade frequency harmonics. 

B.1.3. Analysis of reactive power output 

The main features of reactive power are the capacitor 
switching and the variations of reactive power due to 
variations of generator slip and power. The capacitor bank 
switching is seen in Fig. 189 as jumps of 50 kVAr in the 
reactive power. The control can be further optimized since 
there are 3 switches in 13 minutes. 

 
Fig. 189: Reactive power of a SCIG 750 kW wind turbine corresponding to 
Fig. 183. 

 

 
Fig. 190: Reactive power Q [kVAr] of a SCIG 750 kW wind turbine 
corresponding to the real power of Fig. 184. 
 

At frequencies bellow 0,02 Hz, the PSD of reactive power 
in Fig. 191 is similar to the PSD of real power in Fig. 187 
since the static relationship between P and Q holds valid. 
Between 0,2 Hz and 0,6 Hz, the spectrum remains quite 
constant due to generator dynamics. Oscillations at blade 
frequency and its harmonics and sub harmonics are much 
smaller in the reactive power than in the real power. Beyond 
8 Hz, the frequency content of the signal drops sharply. The 
system order for the reactive power is similar to the wind and 
to the voltage, indicating that the behaviour of reactive power 
could be influenced by voltage, which, in turn, is influenced 
by wind since there are many turbines connected nearby.  

The system order r’ of Q is 0,88 –quite similar to wind and 
voltage order– while the system order r’ of P  is significantly 
different, r’ ≈ 1,35. This discrepancy can be due to the poor 
fitting of the reactive power in Fig. 191 and the great 

influence of voltage in Q. Conversely, real power is less 
related to the line voltage and more related to the angle 
between rotor and stator magnetic moments. 

 

 
Fig. 191: PSDQ

+(f) of the reactive power corresponding to Fig. 187. 

B.1.4. Analysis of wind measured at the 
meteorological mast 40 m above surface 
level 

The PSDUwind
+(f), estimated during the same interval that 

PSDP
+(f) in Fig. 187, is shown in Fig. 192. Due to the 

anemometer inertia, it behaves as a low-pass filter of cut-off 
frequency around Uwind / 10 m ~ 0,67 Hz (from such cut-off 
frequency, the recorded wind speed shows an additional drop 
corresponding to a low-pass 1st order system). Beyond 3 Hz, 
some artifices appear related to the measuring procedure. At 
higher frequencies, the system introduces errors in the wind 
measure.  

Up to anemometer cut-off frequency, the slope is smooth 
and it fits well the model (184) (black and red lines in Fig. 
192 are almost superimposed up to 0,67 Hz). The system 
order is r’ ≈ 0,85 (agrees approximately with the order r’ = 
5/6 = 0,833 corresponding to the Kaimal (11), Harris (13) and 
Von Karman (14) spectra). 

Taking into account the measuring system limitations, the 
real frequency content in the wind is expected to be quite 
close to the adjusted model (184) –in thick solid red in Fig. 
192– and to the Kaimal Spectra. 

The pole is f1 1 0,008 Hz, corresponding to an integral 
length scale of the turbulence UwindA  2 〈Uwind〉/(6 a f1) ≈ 
82 m, assuming a = 1,7 according to the draft Eurocode ENV 
1991-2-4 and (11). Low values such as the previous one are 
possible in unstable atmospheric conditions in complex sites. 
However, the analysis of longer duration meteorological 
records indicates that the turbulence length scale is usually in 
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the order of 1 km and the actual length scale in this sample is 
believed to be significantly greater than 82 m. 

The scale parameter is P1’ ≈ PSDUwind
+(f = 1 Hz) ≈ 

0,00153 (m/s)2/Hz. The value of the wind variance is σwind = 
0,93 m/s, corresponding to a turbulence intensity I = 
σwind/〈Uwind〉 = (0,93 m/s) / (6.7 m/s) = 13,8 % –high since the 
turbine was in a hill top and surrounded by other turbines. 

 
Fig. 192: PSDUwind

+(f) of the wind corresponding to Fig. 187 (Uwind = 6.71 
m/s ±1,86 m/s at 40 m height). Beyond 0,67 Hz, some artifices appear due to 
measuring limitations. 

B.1.5. Analysis of phase-to-phase voltage 

PSDVrs
+(f) of the low voltage phase to phase 

corresponding to Fig. 187 is shown in Fig. 193. The voltage 
during the series is quite variable for a period of 13 minutes, 
691,2 ± 2,06 V (extended uncertainty). The PSDVrs

+(f) 
corresponds to a first order system, approximately (the slope 
of the voltage spectrum is r’ ≈ 0,9-1,1). The influence of 
nearby generators and loads are similar to the contribution of 
the analyzed turbine, ΔVRS ~ (Reff ΔP +Xeff ΔQ) / 〈VRS〉. 
The individual effect of the analyzed turbine in the voltage is 
difficult to distinguish from external influences without 
extensive measurements.  

A L-R circuit behaves as a first-order filter with cut-off 
frequency f1 ≈ Reff /(2πLeff). Considering only the external 
loads and generators, a L-R network fed by random loads and 
generators with constant PSDP

+(f), also referred as a “white 
noise” loads or generators, would experience a voltage with r’ 
≈ 1. In such case, the cut-off frequency f1 would be 
determined from the effective resistance Reff and reactance 
Leff shared by the white noise loads/generators and the 
analyzed turbine (Reff and Leff can be computed from a small-
signal model of the grid).  

Despite Leff (equivalent grid shared inductance) and Reff 
(equivalent grid shared resistance) could not be computed, the 

cut-off frequency f1 ≈ 0,0025 Hz would correspond to a ratio 
Reff /XLeff ≈ f1/50 ≈ 5·10-5 for a 50 Hz grid. 

Usual ratios Reff /XLeff are in the range of a few units to 
some tenths. Table XV, taken from [386], shows typical 
values of resistance and reactance per kilometer depending on 
the voltage level. 

TABLE XV: TYPICAL LINE PARAMETERS [386] 

Type of line 
R’ 

[Ω/km] 
X’ 

[Ω/km] 
IN 

[A] R’/X’ 

low voltage line 0,642 0,083 142 7,7 
medium voltage line 0,161 0,190 396 0,85 

high voltage line 0,06 0,191 580 0,31 
Since generators and loads are connected by medium and 

high voltage networks, the cut-off frequencies inherent to the 
RL tie lines are in the range of 15,5-42,5 Hz (the filtering 
effect of the reactances of the grid is negligible at frequencies 
far bellow 50·Reff /XLeff ). The expected ratios 50·Reff /XLeff are 
much higher than the cut-off frequencies f1 observed in 
voltage spectrums. Thus, the hypothesis of the “white noise” 
loads and generators should be rejected.  

 
Fig. 193: PSDVrs

+(f) of the low voltage phase to phase corresponding to Fig. 
187. 

The observed voltage frequency response would be due, in 
great extent, to nearby generators and loads behaving as 
colored (not white) noise. Nearby wind turbines introduces 
small voltage fluctuations somewhat proportional to wind 
variations (r’ ≈ 0,88 ~1), adding colored noise in the voltage 
instead of white noise and this is the expected cause of the 
drop in PSDVrs

+(f). Due to the spatial spreading of the 
turbines, the cut-off frequency f1 in the voltage can be much 
lower than the f1 corresponding to the power of a single 
turbine. 

The voltage drop in the line up to the main transformer (a 
690 V line of 300 m) is (quite approximately) linearly related 
to the reactive and real power. Hence, the PSD of the voltage 
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drop should be similar to a combination of Fig. 191 and Fig. 
187. The small peak near the blade frequency is due to the 
oscillation due to rotor angle. However, the amplitude of the 
fundamental peak of voltage is noticeably smaller than in Fig. 
191 and Fig. 187. The rest of harmonics cannot be 
distinguished in Fig. 193, indicating that the background 
voltage fluctuation in the network is, in general terms, bigger 
than the voltage drop due to the varying reactive and real 
power. In fact, this background oscillation can be considered 
a “noise source” in the odd Bode plot of reactive power 
respect real power in Fig. 195.  

B.1.6. Bode magnitude plots 

The turbine can be assumed to be a system whose primary 
input is wind and its main output is real power. Even though 
considering the real turbine a linear single-input single-output 
system is an obvious oversimplification, it allows to derive a 
small signal model for accounting wind variations in power.  

The transfer function has been estimated as the smoothed 
ratio of the Fourier transforms of the input and output 
magnitudes. Since the system has actually many inputs, the 
gain includes cross-effects due to relationship among input 
variables (the transfer function matrix might be estimated for 
a more rigorous analysis of MIMO –multiple input, multiple 
output– systems). For example, the Bode plot of voltage vs. 
power will be influenced by the turbine where the voltage is 
being measured but also by the nearby turbines.  

When the transfer function is above the average gain 
(indicated with a horizontal red line for convenience), the 
oscillations of these frequencies in the input are amplified in 
the output above the average. When the transfer function is 
below the average gain, these frequencies are attenuated or 
damped respect the average. 

The ratio of the spectrum of real power P  to the spectrum 
of wind Uwind is the frequency response of the real power 
respect to the wind at the met mast in Fig. 194. Wind is 
measured at the met mast with a cup anemometer (its 
frequency response is only ~ 0,67 Hz). At frequencies higher 
than 0,7 Hz, the measuring system introduces error in the 
wind measure and thus the transfer function is not reliable.  

In Fig. 194, the peaks due to rotor position and turbine 
vibration modes in real power do not appear in wind, and 
hence correspond to gain peaks at 0.7-1.4 Hz and 5-7 Hz 
frequencies in the transfer function. Conversely, 0,02~0,5 Hz 
fluctuations are damped by the aerodynamic stall and its gain 
is below the static gain. 

Near blade frequency, f ~ fblade , the ratio of wind to power 
fluctuation presents a peak but this is due to the tower shadow 
effect, which is not proportional to the fluctuation of the wind 
in such range. Thus, fluctuation of power at blade frequencies 
and its sub-harmonics and harmonics should be regarded as 
an additive factor (almost) insensitive to wind turbulence. 

Fig. 195 shows the bode plot of the reactive power Q 
respect to the spectrum of wind, Uwind, at the met mast. 
Between 0,02-0,2 Hz, the transfer function shows a small dip 
and then outreaches the static gain in the 0,2-0,7 Hz range. 
 

 
Fig. 194: Bode magnitude plot of real power P [W] respect wind Uwind [m/s] 
(beyond 0,7 Hz, the transfer function is underestimated due to limitations in 
the wind measure).  

 

 
Fig. 195: Bode magnitude plot of reactive power Q [VAr] respect wind 
Uwind [m/s] (beyond 0,7 Hz, the transfer function is underestimated due to 
limitations in the wind measure). 

 
Fig. 196: Reactive power Q [VAr] versus real power P [W] in the 750 kW 
SCIG turbine (25 kVAr capacitor banks). 

Fig. 197 shows the bode plot of the reactive power Q 
respect to the real power P. There is a quasi-static quadratic 
relation among real and reactive power in a SCIG generator 
[160] provided the voltage and the number of connected 
capacitor banks are constant (see Fig. 196).  

Regardless the number of capacitor banks connected, the 
slope of the X/Y graphs is roughly the same: ΔQ ~ 0,3ΔP. 
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Thus, the linearized small signal model can be valid if real 
power excursion is small and voltage is fairly constant. This 
could explain why the horizontal line of constant gain 0,3 is a 
simple fit of the bode plot in Fig. 197.  
 

 
Fig. 197: Bode magnitude plot of reactive power Q [VAr] respect real power 
P [W]. 

Since the rated slip of induction generator is as low as 1%, 
the rotor current have noticeably slower dynamics than the 
stator current. The frequency response of Q respect P in Fig. 
197 reveals that real power fluctuations in the ranges 0,3-
0,6 Hz and 1,5-5 Hz have stronger impact in the reactive 
power. Fluctuation at blade frequency and its subharmonics 
are damped in the reactive power. 

The influences of real P and reactive Q power on line 
voltage (VRS) are shown in Fig. 198 and Fig. 199. Since the 
real and reactive powers are closely related, both plots are 
cross-related. The small-signal lineal model for voltage is 
ΔVRS ~ (Reff ΔP +Xeff ΔQ) / 〈VRS〉, where Reff and Xeff are 
the effective Thévenin resistance and reactance seen from the 
voltage point of measure. However, the presence of other 
independent loads and generators electrically near, makes the 
values of Reff and Xeff depend on the frequency. 

 

 
Fig. 198: Bode magnitude plot of line voltage VRS [V] respect real power P 
[W]. 

 

 
Fig. 199: Bode magnitude plot of line voltage VRS [V] respect reactive power 
Q [VAr]. 

B.2. Fixed speed, stall regulated turbine 
of 600 kW 

This subsection studies the power fluctuations of a 600 kW 
wind turbine from TAIM-NEG MICON (Nordtank squirrel 
cage induction generator and stall regulation) measured at 
Valdecuadros wind farm (Spain) [52]. 

B.2.1. Record of 28/7/00, 13:48 to 
13:52 and 13:36 to 13:41 (medium 
winds) 

The time series analyzed in this subseries corresponds to 
date 28/7/00. Some starting and stopping test were done, and 
data considered in this test corresponds to the portion of time 
the turbine is in continuous operation, after all the switching 
transients have faded away. After discarding the transients, 
there are two series since there is a turbine stop and a start in 
between. The time series #1 last 5:30 minutes (from 13:36:10 
to 13:41:40) and the time series #2 lasts 3:30 minutes (from 
13:48:30 to 13:52:00).  

The wind, measured in a meteorological mast at 40 m 
above the surface with a cup anemometer, was Uwind = 9,5 m/s 
±2,8 m/s  and Uwind = 9,8 m/s ±2,8 m/s in the first and second 
series (expanded uncertainty).  

 
Fig. 200: Operation of a SCIG 600 kW wind turbine for wind speeds around 
9,5 m/s during 5:30 minutes (series #1). From top to bottom, time series of 
the real power P [kW] (in black), wind speed Uwind [m/s] at 40 m in the met 
mast (in red, with a magnification factor x 10 respect the vertical axis) and 
reactive power Q [kVAr] (in dashed green). 
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The main features of the time series from 13:36:10 to 
13:41:40 (5:30 minutes of duration) are summarized in the 
following table and Fig. 200. 

 
TABLE XVI: PARAMETERS OF THE 600 KW SCIG TURBINE SERIES #1, (DATE 

28/7/00, FROM 13:36:10 TO 13:41:40, FBLADE≈1,35 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 9,50 m/s 322,7 kW 40,7 kVAr 

Variance 1,42 m/s 80,7 kW 13,9 kVA 

Ratio Std. 
Dev./mean 7,3 % 2,6 % 4,7% 

Mean ± 
uncertainty 

9,50 
± 2,84 m/s 

322,7 
± 161,4 kW 

40,7 
± 27,8 kVAr 

r’ ~1,1 ~1,3 ~1,35 

P1’≈PSD+(1) 0,02 
(m/s)2/Hz 10 kW2/Hz 0,27 kW2/Hz 

f1 10,025 Hz 10,020 Hz 10,020 Hz 

f2 ∞ ∞ ∞ 

 
The second series (from 13:48:30 to 13:52:00, 3:30 

minutes of duration) is quite similar (see Table XVII and Fig. 
200).  

The differences in the order r’ between the runs depend 
greatly on the weighting of the error at different frequencies. 
Even though the wind speed in the 750 kW and 600 kW 
SCIG turbines is measured in the same meteorological tower, 
the series presented at the 750 kW and 600 kW sections 
corresponds to different atmospheric conditions. In the data 
from 750 kW, the system order matched well the Kaimal 
spectrum. But in the data of the 600 kW series, the order is a 
bit beyond unity, indicating a worse fit. The study of the wind 
spectra requires complete atmospheric information and 
systematic measure of meteorological magnitudes. Thus, no 
conclusions can be drawn except that experimental wind 
spectra can differ notably from Kaimal, von Karman or 
Davenport models. 

 
Fig. 201: Operation of a SCIG 600 kW wind turbine for wind speeds around 
9,8 m/s during 3:30 minutes (series #2). 

In the analyzed data, the estimated parameter f1 is only 4 to 
9 times the inverse of the time series duration, 1/T. Therefore, 
the estimate of the pole frequency f1 is severely influenced by 
the limited data duration and actual estimate is, in fact, an 

upper bound limit of f1. In other words, f1 should be estimated 
using longer data series. 

No significant spectrum noise floor has been observed in 
the 600 kW series. Thus, the root frequency f2 is beyond the 
maximum frequency of the measuring system and, 
consequently, f2 has been considered ∞ in all measurements 
from the 600 kW turbine (i.e., negligible). 
 
TABLE XVII: PARAMETERS OF THE 600 KW SCIG TURBINE, SERIES #2, (DATE 

28/7/00, FROM 13:48:30 TO 13:52:00, FBLADE≈1,35 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 9,8 m/s 338,2 kW 43,4 kVAr 

Variance 1,43 m/s 81,5 kW 13,95 kVAr 

Ratio Std. 
Dev./mean 25,9 % 2,5 % 23,0% 

Mean ± 
uncertainty 

9,8 
± 2,86 m/s 

338,2 
± 162 kW 

43,4 
± 27,9 kVAr 

r’ ~1,04 ~1,373 ~1,45 

P1’≈PSD+(1)
0,0309 

(m/s)2/Hz 
17,7 

kW2/Hz 
0,258 

kW2/Hz 

f1 10,025 Hz 10,025 Hz 10,025 Hz 

f2 ∞ ∞ ∞ 

B.2.2. Analysis of real power output 

In the full graph of the time series, Fig. 200 and Fig. 201, 
the oscillations due to rotor position cannot be seen clearly. In 
the following magnified graphs, approximately one 
oscillation per 0,8 second is noticeable in turbine power 
output. 

The oscillation pattern in the 600 kW is complex since 
subharmonics 1/3, 1/2 and 2/3 of the blade frequency fblade have 
similar energy content to the fundamental component. The 
presence of subharmonic 1/3 is very likely bound to 
misalignments in the blades or in the rotor. Thus, the turbine 
experience a mixture of oscillation modes resulting in a more 
complex signal than an amplitude modulated single tone. 

Harmonic content in the 600 kW turbine is lower than in 
the 750 kW turbine and only harmonics 4 and 5 have 
significant energy content (harmonics 2 and 3 are noticeable 
but small). This is due to lower stiffness and higher damping 
in the mechanic drive train of the 600 kW turbine respect 750 
kW case. 

The 600 kW data corresponds to near rate wind (Uwind ~ 9,8 
± 2,86 m/s) whereas the 750 kW data corresponds to smaller 
wind speeds (Uwind ~ 6,7 ± 1,86 m/s). Free stream turbulence 
intensity in both cases is similar (14,6 % for 600 kW and 13.9 
% for 750 kW), but the 600 kW turbine is operating near the 
rated speed and blades are more likely to stall, producing 
separation of the boundary layer and unsteady flow. Unsteady 
flow increases fast power fluctuations, such as subharmonics 
1/3, 1/2 and 2/3. Conversely, stall limits overall power excursion 
and the ratio of the power variance to the power mean is 
lower for greater wind speeds since the slope of the power 
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curve is smaller. In plain words, the aerodynamic stall limits 
the signal excursion decreasing very low frequency content 
and widening the spectrum peaks (narrow peaks are related to 
high amplitude tones in the time domain). 
 
 
 
 

 
Fig. 202: Detail of real power of a SCIG 600 kW wind turbine for wind 
speeds around 9,5 m/s during 1 minute in series #1. 
 
 
 
 
 

 
Fig. 203: Detail of real power of a SCIG 600 kW wind turbine for wind 
speeds around 7 m/s during one minute in series #1. 
 
 
 
 
 

 
Fig. 204: Detail of real power of a SCIG 600 kW wind turbine for wind 
speeds around 9,5 m/s during 20 seconds in series #2. 
 

 
Fig. 205: PSDP

+(f) parameterization of real power of a SCIG 600 kW wind 
turbine for time series #1. 
 

 
Fig. 206: PSDP

+(f) parameterization of real power of a SCIG 600 kW wind 
turbine for time series #2. 

B.2.3. Analysis of reactive power output 

The main features of reactive power are the capacitor 
switching and the variations of reactive power due to 
variations of generator power. In this model, all the capacitor 
banks are connected just after the generator coupling and they 



 Wind Power Variability in the Grid – Annex B 161 

 

are not disconnected until a bit earlier than the generator 
uncoupling.  

Therefore, a static relationship can be used to relate real 
and reactive power. Fig. 207 shows the measured reactive 
power (in solid black) and its estimation from real power with 
a least square linear relationship with red dots (Q ≈ 0,1702P 
– 14,524). 

 
Fig. 207: Rective power Q [kVAr] (in solid black line) of a SCIG 600 kW 
wind turbine for series #1, corresponding to Fig. 200, and its linear 
estimation from real power. 

 

 
Fig. 208: Detail corresponding to the reactive power of Fig. 204 (in solid 
black line) and its linear estimation from real power (red dots).  

 
In fact, the scatter plots of real and reactive powers (Fig. 

209 and Fig. 210) shows that the relationship is quadratic 
since reactive consumption of the generator is approximately 
proportional to the squared current and real power is 
proportional to current provided grid voltage is held constant. 
In fact, part of the error in the quadratic fit can be due to the 
variability in grid voltage. 
 

 
Fig. 209: Reactive vs. real power scatter plot of series #1 of a SCIG 600 kW 
wind turbine. 

 

 
Fig. 210: Reactive vs. real power scatter plot of series #2 of a SCIG 600 kW 
wind turbine. 
 

Due to the almost linear relationship between the real and 
reactive power, both PSD are very similar (see, for example, 
Fig. 205 and Fig. 211). However, the discrepancy is greater 
when the power excursions are bigger and a quadratic fit 
outperforms a simple lineal relationship. The system order r’ 
of real P and reactive Q power are quite close, as it can be 
seen in Table XVI and Table XVII (differences have the same 
order of magnitude than the uncertainty of r’). The better 
agreement of real and reactive power, compared to the 750 
kW data, can be partly due to greater stability of grid voltage 
during the measuring campaign in the 600 kW turbine.  

 

 
Fig. 211: PSDQ

+(f) of the reactive power corresponding to Fig. 207. 
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B.2.4. Analysis of wind measured at the 
meteorological mast 40 m above surface 
level 

The PSDUwind
+(f) estimated in series #1 and #2 are shown 

in Fig. 212 and Fig. 213, respectively. The cup anemometer 
behaves as a low-pass filter of cut-off frequency around 
Uwind / 10 m ~ 1 Hz. The recorded wind speed show an 
additional drop corresponding to a low-pass 1st order system 
from 1 Hz and some artifices due to the digital treatment of 
the signal appear beyond 3 Hz.  

Up to anemometer cut-off frequency, the slope is smooth 
and it fits well the model (184) (black and red lines in Fig. 
212 and Fig. 213 are almost superimposed up to 0,67 Hz). 
The system order is r’ ≈ 0,97~1,1 (higher than the usual order 
5/6 = 0,833 corresponding to the Kaimal (11), Harris (13) and 
Von Karman (14) spectra). Taking into account the measuring 
system limitations, the real frequency content in the wind is 
expected to be quite close to the adjusted model (184) –in 
thick solid red in Fig. 192–, which can be thought as a 
generalization of the Kaimal Spectra. 

The pole is f1 1 0,020~0,025 Hz, corresponding to an 
integral length scale of the turbulence UwindA   2 〈Uwind〉/(6 a 
f1) ≈ 37~46 m, assuming a =1,7 according to the draft 
Eurocode ENV 1991-2-4 and (11). Since the turbulence 
length scale of this site is usually in the order of 1 km, the 
actual length scale in this sample is believed to be 
significantly greater than 46 m. 

The scale parameter is P1’ ≈ PSDUwind
+(f = 1 Hz) ≈ 

0,020~0,037 (m/s)2/Hz. The value of the wind variance is 
σwind = 1,42 m/s, corresponding to a turbulence intensity I = 
σwind/〈Uwind〉 = (1,42 m/s) / (9.65 m/s) = 14,7 % –high since 
the turbine was in a hill top and surrounded by other turbines. 

 
Fig. 212: PSDUwind

+(f) of the wind corresponding to series #1. Beyond 1 Hz, 
some artifices appear due to measuring limitations. 

 

 
Fig. 213: PSDUwind

+(f) of the wind corresponding to series #2. Beyond 1 Hz, 
some artifices appear due to measuring limitations. 

B.2.5. Analysis of phase-to-phase voltage 

PSDVrs
+(f) of the low voltage phase to phase 

corresponding to Fig. 187 is shown in Fig. 193. The voltage is 
684,2 ± 0,48 V. Voltage at series #1 and #2 is significantly 
more stable than the series for the 750 kW turbine and this is 
the likely cause of the better agreement of the real and 
reactive. 

The slope of the voltage corresponds to a first order system 
(r’ ≈ 1), similar to the wind spectra (r’ ≈ 0,97~1,1). Small 
voltage fluctuations are somewhat proportional to wind 
variations (partly due to the turbine analyzed and partly due 
to the other turbines electrically close).  

The voltage drop in the line up to the main transformer (a 
690 V line of 500 m) is (quite approximately) linearly related 
to the reactive and real power. Hence, the PSD  of the voltage 
drop should be similar to a combination of Fig. 206 and Fig. 
211.  

The small peak near the blade frequency is due to the 
oscillation due to turbine angle. However, the amplitude of 
the fundamental peak of voltage is noticeably smaller than in 
Fig. 205 and Fig. 211, indicating that external influence is 
strong. On one hand, the voltage oscillation around 0,08 Hz is 
not related to the turbine and thus, its origin is assumed to be 
outside the turbine. On the other hand, the power fluctuations 
of the turbine in the 5-8 Hz range have a limited effect on the 
voltage (likely, because other nearby turbines are not 
experiencing these oscillations). 
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Fig. 214: PSDVrs

+(f) of the low voltage phase R to phase S corresponding to 
series #1. 

B.2.6. Bode magnitude plots 

The ratio of the spectrum of real power P  to the spectrum 
of wind Uwind is the frequency response of the real power 
respect to the wind at the meteorological mast in Fig. 215. 
Wind is measured at the met mast with a cup anemometer (its 
frequency response at 10 m/s is only ~ 1 Hz).  

In Fig. 215, the peaks at subharmonics 1/3, 1/2 and 2/3 and 
harmonics 3, 4 and 5 frequencies correspond to rotational 
effects. They appear as gain peaks at fundamental frequency 
since rotor position and turbine vibration modes are not 
present in wind. Thus, they should be considered as additive 
factors quite insensitive to wind turbulence. 

 
Fig. 215: Bode magnitude plot of real power P [W] respect wind Uwind [m/s] 
for series #1 (beyond 1 Hz, the transfer function is underestimated due to 
limitations in the wind measure).  

There is also a small peak at 0,12 Hz and a damping in the 
0,2-0,5 Hz range. The quasi-static approximation ΔP ~ 

68000ΔUwind can be valid for simplistic calculations, i.e. the 
static gain is 68 kW/(m/s).  

Fig. 216 shows the bode plot of the reactive power Q 
respect to the spectrum of wind at the met mast Uwind. The 
behaviour is similar to the frequency response of real power 
P respect to Uwind. The quasi-static approximation ΔQ ~ 
11200ΔUwind can be valid for simplistic calculations.  

 

 
Fig. 216: Bode magnitude plot of reactive power Q [VAr] respect wind 
Uwind [m/s] for series #1  (beyond 15 Hz, the transfer function is 
underestimated due to limitations in the wind measure). 

Fig. 217 shows the bode plot of the reactive power Q 
respect to the real power P and the reference quasi-static 
approximation ΔQ ~ 0,157ΔP.  
 

 
Fig. 217: Bode magnitude plot of reactive power Q [VAr] respect real power 
P [W] for series #1. 

The influences of real P and reactive Q power on line 
voltage (VRS) is shown in Fig. 218 and Fig. 219. Since the 
real and reactive powers are closely related, both plots are 
cross-related. The small-signal lineal model for voltage is 
ΔVRS ~ (ReffΔP +Xeff ΔQ) / 〈VRS〉, where Reff and Xeff are 
the effective Thévenin resistance and reactance seen from the 
voltage point of measure. However, the frequency response 
beyond 0,7 Hz increases at a pace of a system of order ½. 
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Fig. 218: Bode magnitude plot of line voltage VRS [V] respect real power P 
[W] for series #1. 
 

 
Fig. 219: Bode magnitude plot of line voltage VRS [V] respect reactive power 
Q [VAr] for series #1. 

 

B.3. VRIG wind farm 
This subsection studies the power fluctuations of Borja 

wind farm (Spain) a wind farm composed by 26 wind 
turbines of 600 kW with variable resistance induction 
generator (VRIG) [52] with “opti-slip” control from 
VESTAS. The datalogger recorded signals either at a single 
turbine or at the substation. In either case, wind speed from 
the meteorological mast of the wind farm was also recorded. 

One-second or two-second averages were customarily 
stored. The low frequency spectrum band could have been 
compared on the basis of these data sets at the turbine and at 
the substation. The comparison of magnitudes at a single 
turbine and at the wind farm can lead to experimental 
estimation of the coherence of the fluctuations in the low 
frequency band. Due to the magnitude of this chapter, this 
work line has not been considered here. 

Waveforms of the substation were only occasionally kept 
stored. Only a data sequence corresponding to wind farm 
waveforms analyzed at grid frequency will be considered in 
this subsection.  

B.3.1. Record of 26/2/99, 13:52:53-
14:07:30 (low winds) 

The record analyzed in this subsection corresponds to date 
26/2/99 and time 13:52:53-14:07:30 (about 14:37 minutes). 
The average blade frequency in the turbines was fblade≈ 1,48 
±0.03 Hz during the interval. The wind, measured in a 
meteorological mast at 40 m above the surface with a 
propeller anemometer, was Uwind = 7,6 m/s ±2,0 m/s 
(expanded uncertainty). The main features of this time series 
are summarized in the following table and plot. 

 
TABLE XVIII: PARAMETERS OF THE VRIG WIND FARM,  

SERIES 26/2/99, 13:52:53-14:07:30 (FBLADE≈1,48 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 7,59 m/s 3614 kW 524 kVAr 

Variance 1,0 m/s 466 kW 79 kVA 

Ratio Std. 
Dev./mean 0,2 % 1,3 % 1,5% 

Mean ± 
uncertainty 

7,6 
±2,0 m/s 

3614 
±932 kW 

-524 
±158 kVAr 

r’ ~1,341 ~1,253 ~1,15 

P1’≈PSD+(1)
0,00325 

(m/s)2/Hz 129 kW2/Hz 8 kW2/Hz 

f1 ≤0,03 Hz ≤0,008 Hz ≤0,008 Hz 

f2 ∞ 11 Hz ∞ 

 

 
Fig. 220: Operation of VRIG wind farm with wind speeds around 7,6 
±2,0 m/s during 14,6 minutes. From top to bottom, time series of the real 
power P [MW] (in black), wind speed Uwind [m/s] at 40 m in the met mast (in 
red) and reactive power Q [MVAr] (in dashed green). 

B.3.2. Analysis of real power output 

In the graph of the full time series, Fig. 221, the 
oscillations due to rotor position are not evident since the 
total power is the sum of the power from 26 unsynchronized 
wind turbines minus losses in the farm network. 
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Fig. 221: Real power of a VRIG wind farm for wind speeds around 7,6 m/s 
during one minute. 

Fig. 221 and Fig. 222 shows a rich dynamic behaviour of 
the real power output, where the modulation and high 
frequency oscillations are superimposed to the fundamental 
oscillation. 
 

 
Fig. 222: Real power of a VRIG wind farm for wind speeds around 6,7 m/s 
during 20 s. 

 
Fig. 223: PSDP

+(f) parameterization of real power of a VRIG wind farm for 
wind speeds around 7,6 m/s (average power 3,6 MW) computed from Fig. 
220. 

 
Fig. 223 indicates that power spectrum is quite constant for 

frequencies smaller than 0,013 Hz. The peak at blade 
frequency fblade≈ 1,48 Hz and its 1/3 subharmonic are 
noticeable (subharmonic 1/3 is due to misalignments in the 
rotor). Other narrow peaks corresponding to harmonics of 
fundamental oscillation are very low in Fig. 223. 

Fig. 224 shows the contribution of each frequency to the 
variance of power 2

, ,P T fσ  –the area bellow f·PSDP
+(f) in a 

semi-logarithmic plot is the signal variance according to (10). 
The main contributions to power variability are:  
— Low frequencies due to wind variation (f < 0,3 Hz). 
— Blade (~1,5 Hz) and rotor frequencies (~0,5 Hz). 
— Contributions at f > 3 Hz due mainly to drive train, 

generator and blade frequency harmonics. 

 
Fig. 224: Contribution of each frequency to the variance of power computed 
from Fig. 220 (the area bellow f·PSDP

+(f) is the variance of power). 

B.3.3. Analysis of reactive power output 

The reactive power shows significant fluctuations at f 2 
0,5 Hz, as it can be seen in Fig. 225 and Fig. 226. Although 
reactive power fluctuations are, in absolute value, smaller 
than real power fluctuations, reactive power fluctuates at 
higher frequency than real power. In fact, reactive power 
fluctuations are significant up to 6 Hz due to VRIG generator 
dynamics. Beyond 8 Hz, PSDQ

+(f) decreases sharply but the 
frequency content of the reactive power is still noticeable. 
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Fig. 225: Reactive power Q [MVAr] of a VRIG wind farm corresponding to 
real power P shown in Fig. 221. 

 
Fig. 226: Reactive power Q [MVAr] of a VRIG wind farm corresponding to 
the real power of Fig. 222. 

The static relationship between P and Q can be seen in Fig. 
226. It can be inferred from this image that ΔQ ~ 0,164 ΔP, 
approximately.  

 
Fig. 227: Reactive power Q [VAr] versus real power P [W] computed from 
Fig. 220. 

The PSD of reactive power in Fig. 228 is comparable to 
the PSD of real power in Fig. 223 except in the 1-6 Hz range. 
This deviation is likely due to the dynamics of rotor current. 
Real and reactive power order is similar, but reactive power 
descends slower. 

The system order for the reactive power is r’≈1,15, a value 
between the voltage order (r’≈0,81) and the real power order 
(r’≈1,25). This discrepancy can be due to the poor fitting of 
the reactive power in Fig. 228 and the great influence of 

voltage in Q. Conversely, the behaviour of voltage is 
influenced by wind since there was other wind farms 
connected nearby. 

 

 
Fig. 228: PSDQ

+(f) of the wind computed from Fig. 220. 

B.3.4. Analysis of wind measured at the 
meteorological mast 40 m above surface 
level 

The PSDUwind
+(f) is shown in Fig. 229. Due to the 

anemometer inertia, it behaves as a low-pass filter of cut-off 
frequency around Uwind / 1 m ~ 7,6 Hz (beyond such 
frequency, some artifices appear). Notice that the length 
constant of the propeller anemometer used here (~1 m) is 
significantly smaller than the cup anemometer length constant 
used in the previous subsections (~10 m). 

Up to anemometer cut-off frequency, the slope is smooth 
and it fits well the model (184) (black and red lines in Fig. 
229 are almost superimposed up to 6 Hz). The system order is 
r’ ≈ 1,34, significantly bigger than the order r’ = 5/6 = 0,833 
corresponding to the Kaimal (11), Harris (13) and Von 
Karman (14) spectra. 

The pole is f1 1 0,03 Hz, corresponding to an integral 
length scale of the turbulence UwindA  2 〈Uwind〉/(6 a f1) ≈ 
24 m, assuming a = 1,7 according to the draft Eurocode ENV 
1991-2-4 and (11). This very low value indicates that the 
anemometer is affected by wakes. 

The scale parameter is P1’ ≈ PSDUwind
+(f = 1 Hz) ≈ 

0,00325 (m/s)2/Hz. The value of the wind variance is σwind = 
1,0 m/s, corresponding to a turbulence intensity I = 
σwind/〈Uwind〉 = (1,0 m/s) / (7,6 m/s) = 13,1 % –high since the 
wind farm was in a hill top and the met mast is surrounded by 
turbines. 
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Fig. 229: PSDUwind

+(f) of the wind computed from Fig. 220. Beyond 6 Hz, 
some artifices appear due to measuring limitations. 

B.3.5. Analysis of phase-to-phase voltage 

PSDVrs
+(f) of the phase to phase high voltage is shown in 

Fig. 230. The voltage during the series is quite variable for a 
period of 14:37 minutes, 67,98 ± 0,2 kV (extended 
uncertainty). The PSDVrs

+(f) corresponds to a system of order 
r’ ≈ 0,81, approximately. The influence of nearby generators 
and loads are similar to the contribution of the analyzed 
turbine, ΔVRS ~ (Reff ΔP +Xeff ΔQ) / 〈VRS〉. The individual 
effect of the analyzed wind farm in the voltage is difficult to 
distinguish from external influences (for example, the peak at 
0,1 Hz is not related to the wind farm)  

 
Fig. 230: PSDVrs

+(f) of the low voltage phase to phase computed from Fig. 
220. 

B.3.6. Bode magnitude plots 

The turbine can be assumed to be a system whose primary 
input is wind and its main output is real power. Even though 
considering the real turbine a linear single-input single-output 

system is an obvious oversimplification, it allows to derive a 
small signal model for accounting wind variations in power.  

When the transfer function is above the static gain 
(indicated with a horizontal red line for convenience), the 
oscillations of these frequencies in the input are considered 
amplified in the output. When the transfer function is below 
the static gain, these frequencies are considered attenuated or 
damped. 

The ratio of the spectrum of real power P  to the spectrum 
of wind Uwind is the frequency response of the real power 
respect to the wind at the met mast in Fig. 231. Wind is 
measured at the met mast with a propeller anemometer.  

Fig. 231 shows that wind oscillations in the 0,004 ~ 3 Hz 
range –excluding blade frequency– are damped in the real 
power output, P. At frequencies higher than 6 Hz, the 
measuring system introduces error in the wind measure and 
the transfer function in Fig. 231 is underestimated (at f > 6 
Hz, the sensitivity of P to Uwind may be close to the static 
gain). 

Near blade frequency, f ~ fblade , the ratio of wind to power 
fluctuation presents a peak but this is due to the tower shadow 
effect, which is not proportional to the fluctuation of the wind 
in such range. Thus, fluctuation of power at blade frequencies 
and its sub-harmonics and harmonics should be regarded as 
an additive factor (almost) insensitive to wind turbulence. 
 

 
Fig. 231: Bode magnitude plot of real power P [W] respect wind Uwind [m/s] 
(beyond 6 Hz, the transfer function is underestimated due to limitations in the 
wind measure).  

Fig. 232 shows the bode plot of the reactive power Q 
respect to the spectrum of wind, Uwind, at the met mast. Wind 
oscillations in the 0,004 ~ 0.4 Hz range are damped in the 
reactive power output, Q. However, wind fluctuations in 1-
10 Hz are amplified due to rotor current dynamics. Notice 
that tower shadow has a small effect on reactive power, 
specially compared to real power. At f > 10, the gain is 
thought to be not far from the static coefficient. 

Fig. 233 shows the bode plot of the reactive power Q 
respect to the real power P. There is a quasi-static quadratic 
relation among real and reactive power in a SCIG generator 
[160] provided the voltage and the number of connected 
capacitor banks are constant (see Fig. 227). Regardless the 
number of capacitor banks connected, the slope of the X/Y 
graphs is ΔQ ~ 0,164 ΔP. Thus, the linearized small signal 
model can be valid if real power excursion is small and 



168 Annex B: Analysis of wind power variability from measured data  

 

voltage is fairly constant. According to the bode plot in Fig. 
233, the dynamic gain is different to the static gain (0,164) in 
the frequency range 0,03 ~ 7 Hz, where rotor dynamics are 
significant. Notice that the reactive power gain decreases at 
blade frequency and its 1/3 subharmonic respect to nearby 
frequencies. 

 

 
Fig. 232: Bode magnitude plot of reactive power Q [VAr] respect wind 
Uwind [m/s] (beyond 6 Hz, the transfer function is underestimated due to 
limitations in the wind measure). 

 
Fig. 233: Bode magnitude plot of reactive power Q [VAr] respect real power 
P [W]. 

 

 
Fig. 234: Bode magnitude plot of line voltage VRS [V] respect real power P 
[W]. 

The influences of real P and reactive Q power on line 
voltage (VRS) are shown in Fig. 234 and Fig. 235, 
respectively. Since the real and reactive powers are closely 
related, both plots are cross-related. The small-signal lineal 

model for voltage is ΔVRS ~ (Reff ΔP +Xeff ΔQ) / 〈VRS〉, 
where Reff and Xeff are the effective Thévenin resistance and 
reactance seen from the voltage point of measure.  

 
Fig. 235: Bode magnitude plot of line voltage VRS [V] respect reactive power 
Q [VAr]. 

B.4. DFIG wind turbines 
This subsection studies the power fluctuations of 

Remolinos wind farm (Spain). Remolinos wind farm is in a 
cliff top (wind regime is specially turbulent [387]) and it has 
doubly fed induction generators (DFIG) from Gamesa, with 
generator speed ranging from 1220 to 1620 rpm. It is 
composed by 15 turbines of 648 kW (model G42 from 
Gamesa with 42 m rotor diameter) and 3 turbines of 660 kW 
named G47 (model G47 from Gamesa with 47 m rotor 
diameter), both of them with variable pitch [52]. The 
datalogger recorded signals either at a single turbine or at the 
substation. In either case, wind speed from the meteorological 
mast of the wind farm was also recorded. 

One-second or two-second averages were customarily 
stored. The low frequency spectrum band could have been 
compared on the basis of these data sets at the turbine and at 
the substation. The comparison of magnitudes at a single 
turbine and at the wind farm can lead to experimental 
estimation of the coherence of the fluctuations in the low 
frequency band.  

Unfortunately, waveforms at the turbine and at the 
substation were only once kept stored at grid frequency. 
These data, divided in two series will be analyzed and 
compared between the turbine and at the substation.  

B.4.1. Notes on the estimation of model 
parameters 

In the analyzed data, the estimated parameter f1 is only 4 to 
30 times the inverse of the time series duration, 1/T. 
Therefore, the estimate of the pole frequency f1 is severely 
influenced by the limited data duration. Thus, the actual 
estimate is, in fact, an upper bound limit of f1. In plain words, 
f1 should be estimated using longer data series. 

The differences in the order r’ between each subseries 
depend greatly on the weighting of the error at different 
frequencies. Thus, the uncertainty of the parameters is high 
when using only two short data runs. The differences found 
between the first and the second subseries measured at the 
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same point (either at the turbine or at the substation) are not 
noteworthy in general.  

However, when the data at the turbine and at the substation 
is compared, they are significant differences. The main 
differences between the power at a single turbine or at the 
substation consist on the partial cancellation of fluctuations 
among turbines. 

The oscillation cancellation is bigger on reactive power 
since they have more oscillations of higher frequency which 
are less related among turbines.  

The cancellation is smaller on active power oscillations 
since its variance is determined mainly by fluctuations under 
0,05 Hz. These low fluctuations are considerably correlated 
and the fact that wind turbine layout is perpendicular to the 
wind does not help to increase cancellation. 

Voltage at the turbine transformer secondary presents 
higher variability and a noticeable 0,27 Hz oscillation when 
compared to the voltage at the primary of the farm substation. 
The rotor electronic converter affects voltage at the turbine, 
but due to the partial cancellation and the filtering effect of 
transformers, this effects is highly attenuated at the 
substation. 

B.4.2. Wind turbine at medium winds, 
12/3/99, 9:52 to 10:07 and 10:07 to 
10:14 

The time series analyzed in this subseries corresponds to 
date 12/3/99. Some starting and stopping test were done, and 
data considered in this test corresponds to the portion of time 
the turbine is in continuous operation, after all the switching 
transients have faded away. After discarding the transients, 
there are two series since there is a turbine stop and a start in 
between. The time series #1 last 10:37 minutes (from 9:52:00 
to 10:02:37) and the time series #2 lasts 7:25 minutes (from 
10:07:10 to 10:14:35).  

 
Fig. 236: Operation of a DFIG 648 kW wind turbine for wind speeds around 
8,75 m/s during 10:37 minutes (series #1). From top to bottom, time series of 
the real power P [kW] (in black), wind speed Uwind [m/s] at 30 m in the met 
mast (in red, with a magnification factor x 10 respect the vertical axis) and 
reactive power Q [kVAr] (in dashed green). 

The wind, measured in a meteorological mast at 30 m 
above the surface with a propeller anemometer, was 
Uwind = 8,75 m/s ±1,94 m/s  and Uwind = 8,7 m/s ±1,48 m/s in 
the first and second series (expanded uncertainty).  

The main features of the time series from 9:52:00 to 
10:02:37 (10:37 minutes of duration) are summarized in the 
following table and plot (see Table XIX and Fig. 236). 

 
TABLE XIX: PARAMETERS OF THE 648 KW DFIG TURBINE SERIES #1, (DATE 

12/3/99, FROM 9:52:00 TO 10:02:37, FBLADE≈1,54 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 8,75 m/s 242,2 kW -16,41 kVAr 

Variance 0,97 m/s 51,2 kW 4,22 kVA 

Ratio Std. 
Dev./mean 11,7 % 2,2 % 10,4% 

Mean ± 
uncertainty 

8,75 
± 1,94 m/s 

242,2 
± 102,4 kW 

-16,41 
± 8,44 kVAr 

r’ ~ 5/3 ~1,5 ~1,1 

P1’≈PSD+(1)
0,007 

(m/s)2/Hz 1,2 kW2/Hz 0,05 kW2/Hz 

f1 10,075 Hz 10,021 Hz 10,012 Hz 

f2 ∞ 0,65 Hz 1,40 

 
The second series (from 10:07:10 to 10:14:35, see Table 

XX and Fig. 237) is quite similar to the first one.  
 
TABLE XX: PARAMETERS OF THE 648 KW DFIG TURBINE, SERIES #2, (DATE 

12/3/99, FROM 13:48:30 TO 13:52:00, FBLADE≈1,54 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 8,7 m/s 225,3 kW -15,52 kVAr 

Variance 0,74 m/s 52,0 kW 4,57 kVAr 

Ratio Std. 
Dev./mean 49,3 % 2,3 % 16,5% 

Mean ± 
uncertainty 

8,7 
± 1,48 m/s 

225,3 
± 104 kW 

-15,52 
± 9,14 kVAr 

r’ ~ 5/3 ~1,5 ~1,1 

P1’≈PSD+(1)
0,005 

(m/s)2/Hz 0,6 kW2/Hz 0,05 kW2/Hz 

f1 10,082 Hz 10,014 Hz 10,009 Hz 

f2 ∞ 0,54 Hz 1,40 Hz 
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Fig. 237: Operation of a DFIG 648 kW wind turbine for wind speeds around 
8,7 m/s during 7:27 minutes (series #2). 
 

B.4.3. Analysis of real power output 

In the full graph of the time series, Fig. 236 and Fig. 237, 
the oscillations due to rotor position cannot be seen clearly.  

In Fig. 239, the oscillation pattern is complex since 
subharmonics 1/3 and 1/2 of the blade frequency fblade are 
present. The presence of subharmonic 1/3 is very likely bound 
to misalignments in the blades or in the rotor.  

Moreover, Fig. 239 shows some characteristic levels in the 
turbine power. This suggests that that power is discretized 
into a number of levels due to the generator control (the 
generator is controlled through its rotor with a multilevel 
PWM inverter). 
 

 
Fig. 238: Detail of real power of a DFIG 648 kW wind turbine for wind 
speeds around 8,75 m/s during 1 minute in series #1. 
 

 
Fig. 239: Detail of real power of a DFIG 648 kW wind turbine for wind 
speeds around 8,75 m/s during 20 seconds in series #1. 
 

The variability in power is similar to other turbines up to 
the blade frequency, reaching its minimum at 2,1 Hz. On the 
contrary, variability at frequencies higher than 3 Hz is high 
and considerably constant (around 2-6 kW2/Hz), probably due 
to the discrete control of the power in each grid cycle. In 
other words, the power level discretization turn out into a sort 
of high frequency noise in the signal of power. 
 

 
Fig. 240: PSDP

+(f) parameterization of real power of a DFIG 648 kW wind 
turbine for time series #1. 
 

 
Fig. 241: PSDP

+(f) parameterization of real power of a DFIG 648 kW wind 
turbine for time series #2. 
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B.4.4. Analysis of reactive power output 

In fact, the scatter plots of reactive vs. real powers (Fig. 
242 and Fig. 243) show that the relationship is lineal since the 
control try to achieve a given power factor. Since unity power 
factor is desired at the power meter at the wind farm 
substation, the power factor has been power set to 0,997 
capacitive to compensate the reactive consumption of the 
transformer. 

Fig. 242 shows the original one grid cycle values of real 
and reactive powers. It is quite notorious the discretization of 
the real power. Moreover, the one-second averaged values 
shown in Fig. 243 removes the discretization, resulting into a 
good fit to the linear model (Q ≈ 2,395 – 0,0776P). 
 

 
Fig. 242: Reactive vs. real powers of a DFIG 648 kW wind turbine for series 
#1, based on the original one grid cycle values. 
 

 
Fig. 243: Previous figure, but based on averaged one-second values instead 
of the original one grid cycle values. 

Due to the almost linear relationship between the real and 
reactive power, both PSD are expected to be very similar. 
Real and reactive power shows similar behaviour at low 
frequencies, but the differences are obvious at frequencies 
higher than the blade rate (especially between 2 Hz to 5 Hz). 
Moreover, the system order r’ of real P and reactive Q power 
are 1,5 and 1,1 respectively (see Table XIX and Table XX). 

 

 
Fig. 244: PSDQ

+(f) of the reactive power in series #1. 
 

 
Fig. 245: PSDQ

+(f) of the reactive power in series #2. 
 

B.4.5. Analysis of wind measured at the 
meteorological mast 30 m above surface 
level 

The PSDUwind
+(f) estimated in series #1 and #2 are shown 

in Fig. 246 and Fig. 247, respectively. The propeller 
anemometer behaves as a low-pass filter of cut-off frequency 
around Uwind / 1 m ~ 0,1 Hz. The recorded wind speed show 
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an additional drop corresponding to a low-pass 1st order 
system from 1 Hz. Moreover, some artifices due to the digital 
treatment of the signal appear beyond 15 Hz.  

Up to anemometer cut-off frequency, the slope is smooth 
and it fits well the model (184) (black and red lines in Fig. 
246 and Fig. 247 are quite close from 0,1 to 15 Hz). The 
system order is r’ ≈ 1,67 (twice the usual Kaimal order, 5/6), 
possibly due to the increased turbulence at the top of a crest 
where the wind farm is settled. 

The pole is f1 1 0,048~0,056 Hz, but the transition is 
significantly slower than the model. The corresponding 
integral length scale of the turbulence is UwindA   2 〈Uwind〉/(6 a 
f1) ≈ 15~18 m, assuming a =1,7 according to the draft 
Eurocode ENV 1991-2-4 and (11). Since the turbulence 
length scale of this site is significantly smaller than the 
expected value and the transition at f1 is slower than the 
model (184), it is believed that the limited duration of the 
records influenced the estimated value of f1. 

The scale parameter is P1’ ≈ PSDUwind
+(f = 1 Hz) ≈ 

0,00485 (m/s)2/Hz. The value of the wind variance is σwind = 
0,74~0,97 m/s, corresponding to a turbulence intensity I = 
σwind/〈Uwind〉 = 8,5~11,1 % –low since the series corresponds 
to periods of fairly constant wind. 

 
Fig. 246: PSDUwind

+(f) of the wind corresponding to series #1. Beyond 
15 Hz, some artifices appear due to measuring limitations. 

Since wind is hardly affected by the stops and starts of the 
wind turbines, the full record (series #1 and #2 plus the time 
in between) can be used to decrease the uncertainty of 
PSDUwind

+(f) in the low frequency range. Since wind was 
stable around 8,7 m/s during the records, the wind variances 
at series #1 and at the full record are approximately the same, 
despite the record duration has tripled. 

The model (184) is not able to represent the mild decrease 
of the slope in between 0,004 Hz to 0,2 Hz. Moreover, even 
longer records would be necessary to test the slope trend at 
frequencies smaller than 0,004 Hz. Recall that the very low 

frequency spectrum is significantly influenced by weather 
evolution. 

 

 
Fig. 247: PSDUwind

+(f) of the wind corresponding to series #2. Beyond 
15 Hz, some artifices appear due to measuring limitations. 
 

 
Fig. 248: PSDUwind

+(f) of the wind corresponding to the full record (28:44 
minutes). Notice that spectrum show a slower droop at low frequency due to 
the longer record. 
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Fig. 249: PSDVrs

+(f) of the low voltage phase R to phase S corresponding to 
series #1. 

  
Fig. 250: PSDVrs

+(f) of the low voltage phase R to phase S corresponding to 
series #2. 

B.4.6. Analysis of line voltage 

PSDVrs
+(f) of the low voltage phase to phase of series #1 

and #2 are shown in Fig. 249 and Fig. 250. The voltage is 
704,24 ± 3,22 V. The slope of the voltage corresponds to a 
first order system (r’ ≈ 1) up to 0,2 Hz. The voltage contains 
significant fluctuations around 0,27 Hz and the slope of the 

voltage does not decrease at frequencies higher than 0,1 Hz 
due to the influence of the electronic converter. The 
electronic converter is also expected the cause of the voltage 
fluctuations around 22 Hz. 

B.4.7. Bode magnitude plots 

Fig. 251 shows the estimated frequency response of the 
real power respect to the wind. It is the averaged ratio of the 
spectrum of real power P to the spectrum of wind Uwind 
(measured with a propeller anemometer at the meteorological 
mast). Notice that the response above 15 Hz should not be 
considered due to the limitations in the wind measurement.  

According to Fig. 251, the static gain (i.e., gain at 
frequencies smaller than 0,09 Hz) is kΔP/ΔU ≈ 58 kW/(m/s). 
Wind fluctuations in the range 0,09 Hz < f < 1,1 Hz are 
attenuated in the real power respect the static gain (ΔP ~ 
kΔP/ΔU ΔUwind).  

Near blade frequency, f ~ fblade , the ratio of wind to power 
fluctuation is noticeably bigger than the static gain but this is 
due to the tower shadow effect, which is not proportional to 
the fluctuation of the wind in such range. Thus, fluctuation of 
power at blade frequencies and its 1/3, 1/2 and 2/3 sub-
harmonics should be regarded as an additive factor quite 
insensitive to wind turbulence. 

Wind fluctuations at f > 2 Hz are intensified in the power 
output. The origin of these power fluctuations are expected to 
be not only the turbulence, but also the discrete control of 
power. Since high frequency fluctuations are greatly 
influenced by the generator control which, in turn, is 
influenced by turbine dynamics, it cannot be stated which 
portion of the high frequency fluctuations are due to the 
generator control or to the wind turbulence. 

 
Fig. 251: Bode magnitude plot of real power P [W] respect wind Uwind [m/s] 
for series #1.  

Fig. 252 shows the bode plot of the reactive power Q 
respect to the spectrum of wind at the met mast Uwind. The 
quasi-static approximation ΔQ ~ kΔQ/ΔU ΔUwind –with the 
static gain kΔQ/ΔU ≈ 4,5 kVAr/(m/s)– is valid at f < 0,04 Hz. 
Wind fluctuations in the range 0,09 Hz < f < 1,0 Hz are 
slightly attenuated in the reactive power respect the static 
gain. But at f > 1,0 Hz, the reactive power fluctuations 
present a considerable increase due, in great extent, to the 
generator control. Thus, the influences of turbulence, 
generator control and turbine dynamics in power oscillations 
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are cross-related in Fig. 252 and the frequency response of  Q 
respect to Uwind should be considered with caution. 

 

 
Fig. 252: Bode magnitude plot of reactive power Q [VAr] respect wind 
Uwind [m/s] for series #1  (beyond 1 Hz, the transfer function is 
underestimated due to limitations in the wind measure). 

Fig. 253 shows the bode plot of the reactive power Q 
respect to the real power P and the reference quasi-static 
approximation ΔQ ~ 0,08ΔP.  

The influences of real P and reactive Q power on line 
voltage (VRS) is shown in Fig. 254 and Fig. 255. Since the 
real and reactive powers are closely related, both plots are 
cross-related.  

The small-signal lineal model for voltage is ΔVRS ~ 
(ReffΔP +Xeff ΔQ) / 〈VRS〉, where Reff and Xeff are the 
effective Thévenin resistance and reactance seen from the 
voltage point of measure. The quasi-static gains (at f < 0,2 
Hz) are kΔVrs/ΔP ≈ 0,022 V/kW and kΔVrs/ΔQ ≈ 0,27 V/kVAr of 
the real and reactive power, respectively. Thus, a very rough 
estimation of the effective impedances at 〈VRS〉 ≈ 704 V are 
Reff ~ kΔVrs/ΔP·〈VRS〉 ≈ 15 mΩ and Xeff ~ kΔVrs/ΔQ·〈VRS〉 ≈  
190 mΩ (including the cross-effect of nearby turbines). 
 

 
Fig. 253: Bode magnitude plot of reactive power Q [VAr] respect real power 
P [W] for series #1. 

 
Fig. 254: Bode magnitude plot of line voltage VRS [V] respect real power P 
[W] for series #1. 

 
Fig. 255: Bode magnitude plot of line voltage VRS [V] respect reactive power 
Q [VAr] for series #1. 

At f > 0,2 Hz, the gain increases considerably. For 
example, the notably presence of voltage fluctuations at f ~ 
0,27 Hz cannot be explained from power oscillations.  

Since active and reactive oscillation at fblade is bigger, its 
influence in voltage is supposed to be notably bigger than 
other external sources. In other words, the gain at f ~ fblade is 
supposed to have less uncertainty than at other frequencies. 
Since the gain at fblade and at very low frequencies (quasi-
static gain) are similar, the estimates of kΔVrs/ΔP and kΔVrs/ΔQ 
are supposed to be valid. Since the gain at f ~ fblade is similar 
to the quasi-static gain, voltage fluctuations at other 
frequencies can be due to external factors and to the 
electronic converter, in great extent. 

B.5. Wind farm at medium winds, 
12/3/99, 9:48 to 10:01 and 10:09 to 
10:19 

The time series analyzed in this sub-section corresponds to 
a wind farm composed by 15 x G42 and 3 x G47 turbines 
from Gamesa in 12/3/99 (simultaneously with the previous 
analysis of one of its turbines). The nominal output of the 
wind farm is 15 x 648 kW + 3 x 660 kW = 11,7 MW. Some 
starting and stopping test were done, and data considered in 
this test corresponds to the portion of time the turbines are in 
continuous operation, after all the switching transients have 
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faded away. After discarding the transients, there are two 
series since there are a turbine stops and a starts in between. 
The time series #1 last 12:51 minutes (from 9:48:09 to 
10:01:00) and the time series #2 lasts 10:27 minutes (from 
10:09:00 to 10:19:27).  

The main features of the time series from 9:48:09 to 
10:01:00 (12:51 minutes of duration) are summarized in the 
following table and plot (see Table XXI and Fig. 256). 

 
TABLE XXI: PARAMETERS OF A DFIG WIND FARM, SERIES #1, 
(DATE 12/3/99, FROM 9:48:09 TO 10:01:00, FBLADE≈1,54 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 8,85 m/s 3432 kW -47,9 kVAr 

Variance 0,95 m/s 224 kW 18,0 kVA 

Ratio Std. 
Dev./mean 10,2 % 0,7 % -4,7% 

Mean ± 
uncertainty 

8,85 
± 1,90 m/s 

3432 
± 448 kW 

-47,9 
± 36 kVAr 

r’ ~ 1,6 ~1,5 ~1,0 

P1’≈PSD+(1) 0,007 
(m/s)2/Hz 10 kW2/Hz 1 kW2/Hz 

f1 10,075 Hz 10,0125 Hz 10,0048 Hz 

f2 ∞ 0,55 Hz 10 

 
The second series (from 10:09:00 to 10:19:27, see Table 

XXII and Fig. 257) is quite similar to the first one.  
 

TABLE XXII: PARAMETERS OF A DFIG WIND FARM, SERIES #2, (DATE 

DATE 12/3/99, FROM 10:09:00 TO 10:19:27, FBLADE≈1,54 HZ) 

 Uwind [m/s] P [kW] Q [kVAr] 

Mean 8,65 m/s 2935 kW -24,3 kVAr 

Variance 0,79 m/s 273 kW 12,4 kVAr 

Ratio Std. 
Dev./mean 10,8 % 0,9 % -7,6% 

Mean ± 
uncertainty 

8,65 
± 1,68 m/s 

2935 
± 446 kW 

-24,3 
± 24,8 kVAr 

r’ ~ 1,6 ~1,3 ~1,0 

P1’≈PSD+(1) 0,007 
(m/s)2/Hz 50 kW2/Hz 1 kW2/Hz 

f1 10,082 Hz 10,0125 Hz 10,0125 Hz 

f2 ∞ 1,1 Hz 20 Hz 

 

 
Fig. 256: Operation of a DFIG wind farm for wind speeds around 8,75 m/s 
during 12:51 minutes (series #1). From top to bottom, time series of the real 
power P [MW] (in black), wind speed Uwind [m/s] at 30 m in the met mast (in 
red, with a attenuation factor x0,1 respect the vertical axis) and reactive 
power Q [MVAr] (in dashed green). 

 
Fig. 257: Operation of a DFIG wind farm for wind speeds around 8,7 m/s 
during 10:27 minutes (series #2). From top to bottom, time series of the real 
power P [MW] (in black), wind speed Uwind [m/s] at 30 m in the met mast (in 
red, with a attenuation factor x0,1 respect the vertical axis) and reactive 
power Q [MVAr] (in dashed green). 

B.5.1. Analysis of real power output 

In the full graph of the time series, Fig. 258 and Fig. 259, 
the oscillations due to rotor position cannot be seen clearly. In 
Fig. 259, three oscillations each two seconds can be spotted in 
the turbine power output. 

The oscillation pattern is complex since subharmonics 1/3 
and 1/2 of the blade frequency fblade are present. The presence 
of subharmonic 1/3 is very likely bound to misalignments in 
the blades or in the rotor.  

The typical magnitude of spikes in power has increased 
from 30 kW to 90 kW in the turbine and in the farm output, 
respectively (compare Fig. 239 and Fig. 259). These spikes 
are 4,63 % and 0,85 % of the assigned power, in the turbine 
and wind farm, respectively. More than three net spikes in the 
wind farm simultaneously are low probable. The power of a 
single V42 DFIG turbine can be characterized basically by 
three levels –normal, positive spike and negative spike– and 
thus, the statistical distribution of their sum is multinomial. 

Thus, the characteristic levels of the turbine power are 
masked in the total wind farm output by its overall trend and 
the amplitude of the spikes decrease in relative terms at the 
total farm output.  
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Fig. 258: Detail of real power (in MW) of a DFIG wind farm during 1 minute 
in series #1. 

 
Fig. 259: Detail of real power (in MW)  of a DFIG wind farm during 20 
seconds in series #2. 

 
Fig. 260: PSDP

+(f) parameterization of the real power of the DFIG wind 
farm during time series #1. 

As more turbines are aggregated, high frequency 
oscillations are damped in relative terms whereas slower 

fluctuations are due to wind evolution and they affect in a  
more evenly way to all the turbines in the wind farm. 

The standard deviation of the wind farm real power is 
between 4 to 5 times the one of the single turbine (compare 
Table XIX and Table XX to Table XXI and Table XXII). The 
square root of the number of turbines in the farm is √18 ≈ 
4,24, suggesting that the √N law for the standard deviation of 
the sum of uncorrelated random variables could be applied in 
the real power for time spans up to a few minutes. 

 
Fig. 261: PSDP

+(f) parameterization of the real power of the DFIG wind 
farm during time series #2. 

B.5.2. Analysis of reactive power output 

Fig. 243 showed a good fit of a linear model between real 
and reactive power for a single turbine. However, Fig. 262 
shows a much worse fit between reactive power and real 
power at the wind farm output. This is probably be due to the 
influence of voltage on reactive power. 

 
Fig. 262: Reactive vs. real powers of the DFIG wind farm during time series 
#1, based o the original one grid cycle values. 
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Fig. 263: PSDQ

+(f) of the reactive power in series #1. 

 
Fig. 264: PSDQ

+(f) of the reactive power in series #2. 

The PSD of reactive power at the turbine and at the farm 
substation were expected to be very similar, but the 
differences came about remarkably. The noise floor is 
remarkably lower in the wind farm, partly due to the 
cancelation of fast fluctuation and partly due to the less noisy 
voltage measure (the voltage measure at the secondary of the 
turbine is greatly influenced by its electronic converter). This 
results in f2 being around 10 times bigger at the substation 
than at the turbine. Other difference is that the peaks of the 

single turbine appear less marked at the wind farm, especially 
from 0,4 Hz to 5 Hz. 

The standard deviation of the wind farm reactive power is 
between 3 to 4 times the one of the single turbine, suggesting 
that the √N law could be also applied in the reactive power 
for time spans up to a few minutes.  

B.5.3. Analysis of wind measured at the 
meteorological mast 30 m above surface 
level 

The wind in both substation and turbine records is 
measured at the meteorological tower. Thus, its 
characteristics have been already estimated in Fig. 246 to Fig. 
248.  

B.5.4. Analysis of phase-to-phase voltage 

PSDVrs
+(f) of the low voltage phase to phase of series #1 

and #2 are shown in Fig. 265 and Fig. 266. The voltage is 
48,3 ± 0,1 kV. The slope of the voltage corresponds to a 
system of fractional order r’ ≈ 0,7 in the range from 1 mHz 
up to 8 Hz. Neither the 0,27 Hz and 22 Hz components nor 
the noise floor at f > 0,4 Hz, previously seen at the low-
voltage side of the turbine, are present at the substation 
voltage. These phenomena are thought to be closely related to 
the turbine electronic converter and they are effectively 
filtered at the substation. Moreover, since farm power is at 
least 20 times smaller than the short circuit power at the 
substation, the substation voltage is influenced by the 
surrounding network more than the wind farm itself. 

 

  
Fig. 265: PSDVrs

+(f) of the phase R to phase S substation voltage 
corresponding to series #1. 
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Fig. 266: PSDVrs

+(f) of the phase R to phase S substation voltage 
corresponding to series #2. 

B.5.5. Bode magnitude plots 

The observations made to cyclic oscillations due to wind 
shear and tower shadow in the turbine are typically valid also 
for the wind farm. Even thought fluctuations are bigger in 
absolute value at the farm substation; fluctuations tend to be 
smaller in relative terms since some degree of cancellation 
happens among turbines.  

Fig. 267 shows the estimated frequency response of the 
real power respect to the wind. It is the averaged ratio of the 
spectrum of real power P to the spectrum of wind Uwind 
(measured with a propeller anemometer at the meteorological 
mast at 30 m above the surface level). Notice that the 
response above 15 Hz should not be considered due to the 
limitations in the wind measurement.  

According to Fig. 267, the static gain (i.e., gain at 
frequencies smaller than 0,02 Hz) is kΔP/ΔU ≈ 0,32 MW/(m/s). 
Wind fluctuations in the range 0,03 Hz < f < 1,1 Hz and 
2 Hz < f < 3 Hz are attenuated in the real power respect the 
static gain (ΔP 1 kΔP/ΔU ΔUwind). The ratio of static gain at 
the substation respect the substation is slightly bigger than the 
square root of the number of wind turbines in the farm: 
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In the time span of up to some minutes, the fluctuations of 
power in the turbines of a farm are not coherent. The turbines 
experience power oscillations with some time lag and with 
some local variations. Thus, the individual oscillations are 
partially cancelled in the total for short horizons. The 
outcome is not very different from considering the power 
fluctuations independent among turbines for medium size 
wind farms during time spans shorter than a few minutes (this 

appreciation is based on a 11,7 MW wind farm with 18 
turbines aligned along a cliff top). 
 

 
Fig. 267: Bode magnitude plot of real power P [W] respect wind Uwind [m/s] 
for series #1.  

Fig. 268 shows the bode plot of the reactive power Q 
respect to the spectrum of wind at the met mast Uwind. The 
quasi-static approximation ΔQ ~ kΔQ/ΔU ΔUwind –with the 
static gain kΔQ/ΔU ≈ 21 kVAr/(m/s)– is roughly valid for f < 
0,5 Hz. Wind fluctuations in the range 0,003 Hz < f < 0,3 Hz 
are slightly attenuated in the reactive power respect the static 
gain. But at f > 0,5 Hz, the reactive power fluctuations 
present a considerable increase due, in great extent, to the 
generator control. Thus, the influences of turbulence, 
generator control and turbine dynamics in power oscillations 
are cross-related and the frequency response of  Q respect to 
Uwind should be considered with caution. 

 

 
Fig. 268: Bode magnitude plot of reactive power Q [VAr] respect wind 
Uwind [m/s] for series #1  (beyond 15 Hz, the transfer function is 
underestimated due to limitations in the wind measure). 
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Fig. 269 shows the bode plot of the reactive power Q 
respect to the real power P and the quasi-static approximation 
ΔQ ~ kΔQ/ΔP ΔP with kΔQ/ΔP ≈ 0,075 for reference. The 
reactive power surpasses the quasi-static approximation in the 
range 0,2 Hz < f < 5 Hz and the reactive power is bellow the 
quasi-static approximation at high frequencies (f > 5 Hz). If 
Fig. 269 is compared to Fig. 253, the gain at 0,2 Hz < f < 
fblade/2 has increased at the substation and the gain has 
decreased at f > 5 Hz. 
 

 
Fig. 269: Bode magnitude plot of reactive power Q [VAr] respect real power 
P [W] for series #1. 

The influences of real P and reactive Q power on line 
voltage (VRS) are shown in Fig. 270 and Fig. 271. Since the 
real and reactive powers are closely related, both plots are 
cross-related.  

The small-signal lineal model for voltage is ΔVRS ~ 
(ReffΔP +Xeff ΔQ) / 〈VRS〉 ~ (Reff kΔP/ΔU +Xeff kΔQ/ΔU) 
ΔUwind /〈VRS〉, where Reff and Xeff are the effective Thévenin 
resistance and reactance seen from the voltage point of 
measure. The quasi-static gains (at f < 0,2 Hz) are kΔVrs/ΔP ≈ 
0,3 kV/MW and kΔVrs/ΔQ ≈ 0,48 kV/MVAr of the real and 
reactive power, respectively. Thus, a very rough estimation of 
the effective impedances at 〈VRS〉 ≈ 48305 ± 103 V are Reff ~ 
kΔVrs/ΔP·〈VRS〉 ≈ 14,5 Ω and Xeff ~ kΔVrs/ΔQ·〈VRS〉 ≈  23 Ω 
(including the cross-effect of nearby turbines). 

 

 
Fig. 270: Bode magnitude plot of line voltage VRS [V] respect real power P 
[W] for series #1. 

 

 
Fig. 271: Bode magnitude plot of line voltage VRS [V] respect reactive power 
Q [VAr] for series #1. 

Since active and reactive oscillation at fblade is bigger, its 
influence in voltage is supposed to be notably bigger than 
other external sources. In other words, the gain at f ~ fblade is 
supposed to have less uncertainty than at other frequencies. 
Since the gain at fblade and at very low frequencies (quasi-
static gain) are similar, the estimates of kΔVrs/ΔP and kΔVrs/ΔQ 
are supposed to be valid. 

B.6. Comparison of PSD of a wind farm 
with respect to one of its turbines, 
12/3/99, 9:48 to 10:01 and 10:09 to 
10:19 

B.6.1. Real power 

 The similarity of the PSD at one turbine and at the 
overall output of the wind farm of 18 turbines has been tested. 
If the fluctuations at every turbine are independent (i.e. the 
turbines behaves independently one from another), then the 
PSD of the wind farm is the sum of the PSD of each turbine 
–see (168). 

Each turbine experiment different turbulence levels and 
wind averages, so a representative turbine should be selected. 
The position of the turbine inside the farm affects also at the 
time lag the wind experience fluctuations respect the wind 
farm overall. Since wind fluctuations are usually considered 
independent from time (for example, they don’t have 
characteristic shapes) and weather evolution is not considered 
in this study, the phase information has been discarded (the 
phase of an ergodic stochastic processes don’t contain 
statistical information). 

If the turbines behaves independently one from another and 
they are similar, then the PSD of the wind farm is the PSD of 
one turbine times the number of turbines in the farm. To test 
this hypothesis, the PSD of the single turbine are factored by 
the number of the turbines in the wind farm (18) and 
represented with PSD of the wind farm. In Fig. 272, the farm 
PSD is in solid black and the turbine PSD times 18 is in 
dashed green. 
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Fig. 272: PSDP

+(f) of a wind farm (in solid black) and PSDP
+(f) of one of 

its DFIG 648 kW turbines times 18 (in dashed green), for time series #1. 
Both the farm PSDP

+(f) and the scaled turbine PSDP
+(f) agree notably. 

Fig. 272 shows that Eq. (167) is fairly valid. However, the 
wind farm PSD is a bit lower than 18 times the turbine PSD, 
specially at the peaks and at f > 2fblade. On the one hand, this 
turbine experiences more cyclic oscillations, partly due to a 
misalignment of the rotor worse than the farm average. On 
the other hand, this turbine produced an average of the 1/14th 
of the wind farm power on the series #1 (see Fig. 273). This 
explain that PSD at f > 2fblade is primarily proportional to 
power output ratio (the farm PSD is 14 times the turbine 
PSD). 

 
Fig. 273: Power output of the wind farm (in solid black) and the power of the 
turbine times 14. 

The real power admittance is shown in Fig. 274. The 
admittance is the ratio of the farm spectrum to the turbine 
spectrum of real power and it can be estimated as the square 
root of the PSD ratios. The level √18 has been added in dash-
dotted red line to validate easier the Eq. (168).  

In general terms, Eq. (168) is valid: the admittance is 
approximately √18, the square root of the number of turbines 

in the farm. At f > 2fblade, the admittance is more similar to 
√14 (the square root of the farm power divided by the turbine 
power). At f < 0,02 Hz, the admittance starts drifting from 
√18, indicating that oscillations at very low frequency are 
somewhat correlated. The peak at 2 Hz < f <2,5 Hz indicates 
that the analyzed turbine has comparative less fluctuations in 
such range than the other turbines in the farm.  

 

 
Fig. 274: Admittance of the real power (ratio of the farm PSD to the turbine 
PSD). 

In short, the real power oscillations quicker than one 
minute can be considered independent among turbines of a 
wind farm. The PSD due to rotational effects scale 
proportionally to the number of the turbines. The PSD at f > 
2fblade, scale proportionally to the turbine power output ratio. 
 

B.6.2. Reactive power 

The average admittance of the reactive power is √9 = 3, 
smaller than the value of active power, √18. This indicates 
that there may be a negative correlation among reactive 
power fluctuations of the turbines. This extent cannot be 
confirmed and it could be due to some interaction with 
voltage and network reactive losses (the manufacturer did not 
inform of any special farm control to compensate fluctuations 
in some turbines with the others). 

In fact, the accurate measurement of reactive power at the 
turbine is complex: voltage and current waveforms are 
polluted with harmonics and other distortions, and voltage at 
rotor is not measured directly (it is estimated from stator 
voltage). This can explain why the admittance at f > 5Hz 
drops notably (probably, the reactive power at the wind 
turbine is overestimated and the impedances damps 
harmonics and fluctuations of frequencies near the grid 
frequency). 
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Fig. 275: PSDQ

+(f) of a wind farm (in solid black) and PSDQ
+(f) of one of 

its DFIG 648 kW turbines times 9 (in dashed green), for time series #1. 
Eventhough both the farm PSDQ

+(f) and the scaled turbine PSDQ
+(f) agree 

in general terms for reactive power, the fit is significantly worse than for real 
power. 

 

 
Fig. 276: Admittance of the reactive power (ratio of the farm PSD to the 
turbine PSD). Notice that reactive power admittance deviates from the 
average more than the real power in Fig. 274. 

B.7. Spectrogram 
This subsection is focused on the oscillations between 0.1 

and 25 Hz, which are the most influential in the flicker level. 
This range covers the fluctuations due to the blade passing the 
tower and its frequency multiples, the fast wind gusts and 
possible resonances in the machine (with mechanical or 
aerodynamical origin). 

The upper frequency limit is set because the RMS power 
values for every grid cycle or semi cycle are taken as input 
data, and the sample rate is therefore 50 or 100 Hz, 
respectively. In order to carry out a study of the high 

frequency fluctuations, instantaneous power should be taken 
as an input data. Fluctuations of higher frequency than the 
grid generate grid harmonics and inter-harmonics. The impact 
in the grid of the harmonics (f >fgrid) and the sub-harmonics (f 
<fgrid) is very different. The main disadvantage of using the 
instantaneous power instead of one or ½ grid cycle is that the 
CPU time and the memory requirements increase notably.  

The standard IEC 61400-21 establishes a procedure to 
calculate the flicker produced by a wind turbine in power 
grid, from real data, during continuous and switching 
operation. 

During switching operations (the connection and 
disconnection of the generator or capacitors), the system 
experiments transients similar to the response to a step input. 
These transients are non-stationary signals with eventual 
spread frequency components which gradually vanish after 
the transient. 

The PSD in the FOT probabilistic framework is the long 
term average of power spectrum and it characterizes the 
behaviour of stochastically stationary systems.  

In contrast, the spectrogram allows to study the spectrum 
evolution to test the stationarity of signals. Every spectrogram 
column can be thought as the power spectrum of a small 
signal sample. Therefore, the PSD in the classical stochastic 
framework is the ensemble average of the power spectrums. 
For stationary systems, both approaches are equivalent. 

The analysis of the evolution of fluctuations between 0.1 
and 25 Hz has been performed using the spectrogram of the 
real and reactive power variables.  

Apart from the Short FFT (SFFT), other methods with 
higher frequency resolution have been tested for the 
calculation of the spectrogram, as the Wigner-Ville 
distribution (WVD) and the S-method (SM) [388]. Since the 
analyzed signals present wide frequency content, the SFFT 
method is the most reliable and the amplitudes of the 
fluctuations are less affected by cross-terms.  

The WVD is the best way to observe the frequency of fast 
fluctuations, as the frequency resolution is higher. The main 
drawback of this method in this application is that the 
fluctuations are severely overestimated (i.e. for a fixed 
frequency, the measured fluctuation is higher than the real 
one due to cross frequency replicas). Therefore, the WVD 
values are only comparable with those of other different 
frequencies. Due to lack of memory, the original signal has 
been divided in 8192 samples with a 75% overlapping, in 
order to apply the WVD and then discarding the overlapping 
edges. 

The S-method has been discarded since it is severely 
affected in the analyzed signals by noise problems due to the 
presence of cross-terms. 

In a time-frequency analysis of a turbine, shown in Fig. 
277, we could see that maximum fluctuations occur at 
connexion of the generator and in second place, at connexion 
of capacitor banks (steep changes generate a broad spectrum 
of frequency components) [389].  

The best spectrogram estimation have been obtained with 
SFFT with Hanning windows of 128, 256 or 512 samples 
(approximate window gap of 2.5, 5 or 10 s, respectively) and 
a 50% overlapping. The 256 samples window provides 
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enough frequency resolution for our aims and it has a fast 
enough response in the time domain. The 50% overlapping 
has been used to increase the time axis resolution and to 
improve the estimation of the PSD module average, which 
has been obtained with the mean value of the spectrogram. 
Hanning window has been used because of its good properties 
for general purposes (other windows were tested, but results 
were similar except for the rectangular one, where the result 
was clearly worse due to spectral leakage). 

The program to compute the spectrogram can be viewed in 
Fig. 277 through Fig. 280. Even though the legends are in 
Spanish, the use is quite intuitive. The central density chart 
represents the actual spectrogram. On the right, a bar 
indicates the colour scale of the spectrogram. On the left, the 
average of the spectrogram is plotted (the average of the 
spectrogram is the PSD in stationary systems). Bellow the 
spectrogram, the temporal series is represented, where the 
connection can be noticed a bit after 14:04. The rest of the 
controls adjust the method for estimating the spectrogram. 

 
Fig. 277: Spectrogram of total power at SCIG (Squirrel Cage Induction 
Generator) of 750 kW turbine start-up. 

 
Fig. 278: Spectrogram of total power at SCIG of 750 kW turbine start-up. 
Detail of tower shadow frequencies. 

 

 
Fig. 279: Spectrogram of output power at SCIG of 750 kW during normal 
operation operating at ¿9,5 m/s?. 

 
Fig. 280: Spectrogram of total current at SCIG of 750 kW turbine start-up. 

 
Fig. 281: Spectrogram of real power of a SCIG 600 kW wind turbine for 
wind speeds around 9,5 m/s corresponding to Fig. 200. 
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Fig. 282: Spectrogram of real power of a SCIG 600 kW wind turbine for 
wind speeds around 9,5 m/s corresponding to Fig. 201. 

 

 
Fig. 283: Spectrogram of a VRIG pitch regulated wind farm operating at low 
winds in a stop and re-start time series. 

 
Fig. 284: Spectrogram of a 750 kW induction generator, stall regulation WT 
operating at 6,5 m/s. 

Conclusions 
The models developed in this thesis are based in the 

personal experience gained designing, installing and 
analyzing the records of a multipurpose data logger for wind 
turbines and wind farms. The first prototypes have been 
developed further and now it is commercially available under 
the name AIRE (Analizador Integral de Recursos 
Energéticos). 

This annex shows some examples of data analysis. The 
contributions of this examples are the analysis methodology 
and the conclusions gained from the analysis of the 
measuments shown in the annex. In fact, some effects 
observed in the data such the measured oscillations are quite 
difficult to obtain from simulations. 

The measurement system was installed in several wind 
farms between 1998 and 2000 owned by CEASA (now NEO 
Energía) and TAIM-NEG-MICON (now VESTAS). 

Borja wind farm had 27 Vestas’ turbines with variable 
pitch and wound rotor induction generators with a variable re-
sistor connected to their rotor, VRIG (generator speed vary 
from 1500 to 1560 rpm).  

Remolinos wind farm is in a cliff top and it has doubly fed 
induction generators (DFIG) from Gamesa, with generator 
speed ranging from 1220 to 1620 rpm. There are 15 x G42 
wind turbines of 648 kW (42 m rotor diameter) and 3 turbines  
G47 of 660 kW (47 m rotor diameter), both of them with 
variable pitch.  

It was also installed in Valdecuadros, a wind farm with two 
600 kW wind turbines and one 750 kW turbine and with fixed 
pitch (stall control). The utilized generators are squirrel cage 
induction generators (SCIG), fixed speed, directly connected 
to the network. The 600 kW WT has a solo generator, with 
one fixed speed (1500 to 1514 rpm). The 750 kW wind 
turbine has a secondary 200 kW generator to increase 
production at low wind by reducing rotor speed (1000-1006 
rpm versus 1500-1510 rpm). 





 

 

C.1. Blade element theory fundaments 
The aerodynamic torque can be accurately  estimated with 

specific software such as ADAMS/WT, ALCYONE, 
BLADED, DUWECS, FAST (AeroDyn), FLEX, 
FLEXLAST, GAST, HAWC, PHATAS, TWISTER, VIDYN 
and YAWDIN (see Hansen [390], Peeters [391] or Ahlström 
[392] for details). Full details of the blade and rotor geometry 
are required to compute aerodynamics with these programs. 

Sometimes, comprehensive rotor details are not available 
or the integration of full aerodynamic models in electrical 
simulation programs is not convenient. Even in those 
situations, the effect of tower shadow and shear can be 
estimated roughly provided the power coefficient is known.  

 
Fig. 285: Distribution of tangential and axial aerodynamic forces over the 
blade length. Modified from Hau [394]. 

In this section, a model based on blade element theory and 
uniform tangential load distribution over the blade length is 
derived (see tangential force distribution in Fig. 286). The 
blades are designed to operate at maximum efficiency bellow 
rated wind speed and this implies that the rotor tangential 
force per unit length is fairly constant along the blade. This 
assumption is hold except at the root blade and at the blade 

tip due to structural limitations and vortex generation, 
respectively (see aerodynamic tangential force distribution at 
9 m/s and 12 m/s in Fig. 286).  

The basics of blade element theory can be revised in the 
books of Manwell [393], Hau [394], Burton [90] or in 
Lanzafame [395]. For convenience, a simple sketch is 
presented here. The forces on the blades of a wind turbine can 
be expressed as a function of lift and drag coefficients and the 
angle of attack. The blade is assumed to be divided into 
sections (or elements) of radial length Δr.  

For low and moderate winds, the tangential force 
(projections of the lift and drag forces on the rotor disk) can 
be assumed to be fairly constant along the blade. The nose, 
the blade root and tip must be discounted to compute 
effective swept area since the tangential force in those blade 
areas is small (see Fig. 286). In Fig. 287, the considered 
effective area ranges from r=R0, a small distance (around 
20% or turbine radius) from the rotor axis, to a bit before the 
tip blade, r=R1 (around 95% or turbine radius). 

Stall usually begins at blade tip (see aerodynamic 
tangential force distribution at 24 m/s in Fig. 286). Thus, the 
approximation derived is poor at high winds unless R0 and R1 
is adjusted to account partial stall. Pitch regulated turbines 
also show non-uniform loading at high winds due to blade 
twist and R0 and R1 might be adjusted to maintain the 
accuracy.  

 
Fig. 286: Tangential load distribution over the blade length of the 
experimental WKA-60 wind turbine. Modified from Hau [394]. 

Annex C: Torque estimation from blade 
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Fig. 287: Schematic of blade elements: r, location of the element of  Δr 
depth; R, rotor radius; Ωrotor , angular velocity of rotor. 

 
The following assumptions are made along this section: 

• There is no aerodynamic interaction between 
elements since the radial speed of the air is small in 
the swept area, the solidity of the blades is low and 
the decrease of longitudinal wind speed through the 
swept area is relative small. 

• The forces on the blades are determined solely by 
the lift and drag characteristics of the airfoil shape of 
the blades. 

• The wind speed upstream the rotor is notated Uwind 
(i.e., the unperturbed wind speed). The wind speed 
in axial direction just close the rotor blades is 
Uwind,rptpr, somewhat lower than Uwind. Then the axial 
induction factor a is defined as the relative loss of 
axial wind speed across the rotor, a = (Uwind–Uwind, 

rptpr)/Uwind. 
• The wind relative to the element Urel is the air speed 

measured in a reference moving attached to the 
blade. When the incident wind only has longitudinal 
direction, the longitudinal component of Urel is (1–
a)Uwind and its tangential component is (1+a’)Ωrotorr, 
where a’ is the the tangential induction factor (see 
Fig. 292 for details). 

• To be able to compute the torque with only the 
power or torque coefficient, it will be eventually 
assumed that the efficiency of the rotor is the same 
between r=R0 and r=R1. 

Also, the usual definitions in aerodynamics are followed in 
this section: 

• Lift Flift and drag Fdrag forces are defined 
perpendicular and parallel, respectively, to an 
effective, or relative, wind (see Fig. 289 for details). 

• A blade element of depth Δr in the radial direction 
experience the following lift ΔFlift and drag ΔFdrag 
forces. Thus, the 2-D lift Cl and drag Cd coefficients 
are defined as the force perpendicular or parallel to 
direction of the oncoming airflow, respectively, per 
unit span. 
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where c is the chord of the blade at the section considered 
(the distance from the leading edge to the tailing edge). 

 
Fig. 288: Detail of airfoil nomenclature. 

 
• The tangential force ΔFT on a section of depth Δr at 

a distance r from the hub axis center is the vectorial 
sum of drag and lift forces, projected on the rotor 
plane: 

2 ( )( sin cos )tangential air rel l dF U r C C c rρ φ φΔ = + Δ½  (663) 

where φ is the angle between the local flow direction 
and the rotor plane,  

 
Fig. 289: Flow velocities and aerodynamic forces at the airfoil cross-section 
of a blade element. 
 

The torque per blade of an element placed at a distance r 
from the rotor shaft is ΔTelement = r ΔFtangential. 

In a rotor with Nblades blades, the overall shaft torque can be 
computed using differential elements dr instead of finite 
elements Δr: 
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Fig. 290:  Sketch of the angles and forces along the blades used to compute 

the rotor torque. 
 

The power in a differential blade element at radius r is 
elementdP  = rotor elementdTΩ , where element TangentialdT dF r=  is 

the blade element torque respect the rotor axis. The tangential 
force on the blade element can be derived from (663) 
assuming differential elements. Thus, the mechanical power 
due to blade element at radius r is: 

 2 ( )( sin cos )element air rotor rel l ddP U r C C c r drρ φ φ= Ω +½  (665) 

The incoming flow power of the area swept by the blade 
element, divided by the number of blades, is, for Fig. 291: 
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where ,wind longU  is the longitudinal component in the wind 
(just in case the rotor is not aligned or the wind direction 
varies along the rotor disk). 

The efficiency of the element (ratio of transferred 
mechanical power to inflow power) is the power coefficient 
of the blade element, ( '', , )PC rλ θ , but referred to an element 
of the blade instead of the whole blade: 
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The frequency of a blade passing through the tower is: 

  fblade = Nblades Ωrotor /2π.  (668) 
and the torque contribution of the blade element is: 
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Fig. 291: Geometric position of the blade element in the rotor disk. 

The power coefficient of the blade element, ( '', , )PC rλ θ , 
can be simplified assuming that the upstream wind is 
perpendicular to the swept area (see Fig. 292 for details). 
 (670) 
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where a is the axial induction factor and a’ the tangential (or 
angular) induction factor (for details, see Hansen [390] or 
Ahlström [392]). Note that the assumption that wind is 
orthogonal to the swept area is not correct near the tower and 
it will be refined later. 

 
Fig. 292: Velocities at the rotor plane with upstream wind perpendicular to 

the rotor plane. 

( '', , )PC rλ θ can be refined using the element speed '' ( )rλ . 
The element speed ratio '' ( )rλ  is the cotangent of the relative 
flow angle ' ( )rφ . When the wind is perpendicular to the 
swept area, '' ( )rλ  is:  
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The power coefficient of the blade element expressed in 
terms of the element speed ratio, the drag and lift coefficients 
and the axial induction factor is: 
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The blades of big wind turbines are twisted so that the 
attack angle is somewhat constant along the blade. The blade 
twist angle, θT, is defined relative to the blade tip (it could be 
defined otherwise). Therefore θp = θT+θ, where θ is the blade 
pitch angle at the tip. Thus, the angle of the relative wind is 
the sum of the element pitch angle θp and the angle of attack, 
φ = θp +αattack (see Fig. 290 and Fig. 292 for blade geometry). 
If the blades torsional elasticity is negligible, the twist angle 
θT depends only on the blade geometry. Then, the element 
picht θp only changes if the angle of the blade measured at its 
tip, θ, is changed by pitch actuators and, since the blades can 
be considered rigid, the element power coefficient 

( '', , )PC rλ θ  can be defined relative to the blade tip pitch 
angle θ for convenience.  

Urel 

Flow relative to the 
blade (dependent on 

radius) 

θp 

αattack 

pitch angle 
relative to 

blade elem
ent

pitch angle of the tip 
(reference pitch) 

θ 

φ 

 
Fig. 293: The pitch angle can be measured respect the element chord θp, or 

respect the blade tip chord θ. 

Full details of the blade and rotor geometry and wind field 
are required to compute aerodynamics. The efficiency of the 
element ( '', , )PC rλ θ  depends on r since structural and 
mechanical features impose limitations on the airfoil shape. 
The root of the blade has thicker chamber to increase its 
rigidity. Thus, the nose and the blade root and tip must be 
discounted from the effective area. Moreover, vortexes are 
formed at the tip of the blade due to pressure difference 
between intrados and extrados. 

However, the element power coefficient ( '', , )PC rλ θ can 
be assumed to be fairly constant along the effective portion of 
the blades. For simplicity, the efficiency is considered con-
stant in the region R0≤r≤R1 and null in the rest of the blade 
(the effective blade section starts at r=R0, a small distance 
from the shaft axis, and it finishes at r=R1, a bit shorter than 
the geometric radius of the blade R,–see Fig. 286). 

Under the previous assumption (named uniform blade 
loading), the element power coefficient ( '', , )PC rλ θ  can be 
estimated from the turbine power coefficient ( , )PC λ θ , 
expressed in conventional blade tip speed ratio and pitch 
angle at the tip. Thus, the element power coefficient is, under 
the assumption of uniform blade loading and (671): 
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Now, the torque at the element can be roughly estimated 
assuming uniform blade loading. 
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Due to the presence of the tower, the flow diverts slightly 
from the axial in an angle φwind along the blade. Moreover, 
due to wind shear, the wind is not uniform and it varies for 
each element. The unperturbed (or upstream) wind varies in 
modulo and direction along the blade i and its value at radius 
r is , ( )wind iU r . The element speed ratio ''( )i rλ  is estimated in 
(675) as the cotangent of the flow angle ' ( )i rφ  between the 
relative flow speed and the swept area (see Fig. 294 for 
details).  
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Fig. 294: Detail of velocities at the rotor plane with wind oblique to the rotor 

plane. 

In wind turbines, the power and torque coefficients are 
refered to the blade tip speed ratio. For convenience, an 
effective blade tip speed ratio '( )i rλ  will be defined from the 
element speed ratio ''( )i rλ  as: 
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The effective blade tip speed ratio '( )i rλ  is the tip speed 
ratio of the turbine in case the longitudinal component and the 
angular speed of the wind along the rotor were the same as in 
the considered blade i element. It can be expressed in terms of 
wind speed, induction factors and geometry:  (677) 
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Induction factors a and a’ depends on many features. 
However, induction factors are close to zero since the solidity 
of the turbine rotors are small. In (678), they are neglected to 
obtain a closed formula for big wind deviations. 
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 (678) 

When the turbine is oriented against the airflow, the wind 
diverts from longitudinal direction in the rotor disk only near 
the tower, where the deflection angle φwind is about some 
degrees (see Fig. 305). Realize that if upstream wind is 
perpendicular to rotor area (φwind≈ 0), the effective blade tip 
speed ratio '( )i rλ  simplifies to the usual tip speed ratio: 
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λ φ

Ω
≈ ∀ ∼  (679) 

If wind conditions vary along the blade i, the effective tip 
speed ratio ' ( )i rλ  referred to the element of blade i at radius r 
is not longer constant and (674) transforms into (680) from 
(668) and (679).  
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 (680) 

The former expression transforms, through the power and 
torque coefficient relationship ( , ) ( , )/P qC Cλ θ λ θ λ= , into: 
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Thus, the rotor torque can be computed integrating the 
contribution of the effective elements along all the blades: 
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 (682) 

Finally, the rotor torque can be conveniently computed 
integrating the torque coefficient: 

 
1

0

5 2
2 2 2

1 1 0

( ' ( ), )2

- ' ( )

blades
RN

q i
rotor air rotor

i blades iR

C r
T R r dr

R R N r

λ θ
ρ π

λ=

= Ω ∑ ∫½  (683) 

Applying the first mean value theorem for integration, the 
proposed method is similar to computing the rotor torque for 
the average operational conditions along the blades –
compare (683) with the usual formula (684). 

Under constant longitudinal and angular wind speed along 
the rotor, ' ( )i rλ  is constant and the rotor torque (683) 
transforms into the usual formula (684). 
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 (684) 
The first order small-signal approximation on λ’ in 

2( , )/qC λ θ λ , the rotor torque due to differences in wind along 
the rotor is: 
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 (685) 

With the previous approximation, the integral in (683) can 
be estimated as: 
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provided 'λ〈 〉  is the weighted average of the tip speed ratio 
computed as: 
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Notice that 1/ 'λ〈 〉  is proportional to ( )eqU ϕ  and therefore, 
(687) is a model linearized on wind speed. Finally, the rotor 
torque in terms of average tip speed ratio (687) is: 
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If wind speed variations are considerable, a better 
approximation can be obtained if the first order small small-
signal approximation is based on 1/λ’2 instead of on λ’. This 
will give a model on squared wind speed since 〈λ’-2〉 is 
proportional to 2 ( )eqU ϕ . In such case, the estimations are: 
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where the average squared inverse of the blade tip speed ratio 
is: 
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and the aerodynamic torque in the turbine is:  
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In short, the influence of variable conditions along the 
rotor can be computed averaging the effective speed tip ratio 
along each blade proportionally to its torque contribution. 
In order to account lateral/vertical flow, the angular wind 
speed is substracted or added to the angular speed of the 
blade. The radial flux is not considered, but its influence in 
the turbine torque is tiny. 



190 Wind Power Variability in the Grid – Annex C  

 

The model proprosed in this section does not account blade 
vibrations and elasticity. Neither blade added twist nor 
bending due to varying loads is analysed. Thus, the pitch of 
the blade θ is assumed to be not affected by wind variations. 

C.2. Alternative torque calculation by 
Sørensen 

A similar method to compute the torque has been 
developed by Sørensen [153]. The main difference with the 
previous model is that Sorensen linearized the wind influence 
on torque employing a sensitivity function ψ(r) of wind in 
torque. For clarity and completeness, Sorensen’s approach is 
briefly outlined in this section. The aerodynamic torque 
produced by a three bladed wind turbine immersed in a wind 
field in polar coordinates ( ),wind rU ϕ  is given as: 
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where  
( )rotorT ϕ  = aerodynamic torque for rotor angle ϕ, 

( )windM U〈 〉 = steady state blade root moment resulting from 
spatial mean wind speed windU〈 〉 ,  

R1 = radius of the rotor disk, 
R0 = radius at which blade profile begins and  
ψ(r) = influence coefficient of wind on blade root moment. 

 This equation has been determined through linearization of 
individual blade torque dependence on wind speed. The 
equivalent wind speed at rotor angle ϕ, ( )eqU ϕ , would give 
the same aerodynamic torque as the actual wind field: 
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The equivalent wind speed ( )eqU ϕ  is a representation of the 
actual spatially varying wind speed that is defined such that it 
will give the same aerodynamic torque ( )rotorT ϕ . Equating 
(692) and (693), Sorensen determined the expression for 
equivalent wind speed ( )eqU ϕ  as a weighted average across 
the blades: 
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Sørensen approach and the method proposed in this thesis 
are approximations based on linearizing simplifications. Since 
flux histeresis is not accounted, flux transitions are not 
accurately represented.  

Since torque is related to squared wind speed, the method 
from Sorensen can be optimized for torque. Therefore, the 
torque function is: 
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where ψ’(r) is the influence coefficient of aerodynamic load 
on blade root moment. Assuming uniform loading from R0 to 
R1 and average tip speed ratio 〈λ〉, ψ’(r)  can be estimated as: 
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Finally, the equivalent squared wind speed 2 ( )eqU ϕ  can be 
estimated as: (697) 
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which is independent of 〈λ〉 and θ since the factor ( , )qC λ θ〈 〉  
appears in the denominator and in the numerator –inside 
ψ’(r). 

The main advantages of the proposed method from the 
Sørensen approach are: 

• Since uniform blade loading is assummed, non 
additional sentitivity function is required. Only the 
power coefficient (or alternativelly, the torque 
coefficient) and dimensions of the turbine are 
required. 

• The average of the squared inverse of the blade tip 
speed ratio 〈λ’-2〉  is straightforward related to power 
and torque coefficients. Moreover, 〈λ’-2〉  is 
proportional to the torque. 

• The effect of tower shear has not been thoroughly 
reported in the Sørensen approach. In contrast, the 
numerical calculation (752) of  is a good tradeoff of 
accuracy and simplicity, including tower shadow and 
non-linearities in torque with a low footprint in 
simulation time.  

• Formulation has been carrefully optimized to be 
easily included in simulations of turbine control and 
electrical power systems whithout noteworthy 
foothprint in simulation times. 

• Turbine vibration modes are not considered in 
neither model. However, a method to add eventual 
ad-hoc vibravions is provided in this work.  

C.3. Modulation of torque due to wind 
shear 

The approximation (691) allows to estimate the wind shear 
from toque coefficient. The equivalent tip speed ratio can be 
estimated from wind shear model (52):  
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 (698) 

According to Fig. 295, the ground elevation is 
- cos( 2 / )bladesz H r i Nϕ π= +  for blade i = 1 to Nblades and the 

former integral can be estimated for rotor angle ϕ as: (699) 
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Fig. 295: Computation of equivalent tip speed ratio in blade element. 

 
For convenience, the equivalent tip speed ratio in function 

of rotor angle ,'
bladesNϕλ〈 〉  will be abbreviatelly notated as 

( )
bladesNλ ϕ  or even ( )λ ϕ  if there is no confusion risk. The 

integral in (699) can be computed analytically and this 
expression can be compactly expressed as: 
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where the following functions are used to obtain a compact 
notation: 

( )2 2 2
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Thus, the effective wind at a blade at angle ϕ  can be 
defined as: 
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And the overall equivalent wind at angle ϕ  along the rotor 
is: 
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For the usual parameter values, the inverse of the squared 
equivalent tip speed ratio, 2( )λ ϕ− , can be accurrately 
approximated by the constant term and the fundamental 
oscillation (limits are used to indicate that the points 0ϕ =  
or 2 / bladesNϕ π=  can be singular points): 

 2 2( ) cos( )H shear shear bladesA Nλ ϕ λ μ ϕ− − ⎡ ⎤≈ +⎣ ⎦  (708) 

where the normalized torque average and modulation due to 
shear are defined, respectively, as: 
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In accordance with (691), shearA / shearμ  is the torque 
relative modulation and torque can be approximated to a 
signal with a constant value and a superimposed sinusoidal 
oscillation:  

( )rotorT ϕ ≈   (711) 
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C.3.1. Two-bladed turbine 

In a two-bladed turbine, the equivalent tip speed ratio in 
function of rotor angle is notated as , 2'

bladesNϕλ =〈 〉 or just 2( )λ ϕ   
for short: 
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The average and amplitude of 2( )λ ϕ  are shown in Fig. 296 
and in Fig. 297, respectively. These values have been 
computed for a turbine with effective blade root 0 0.20R R=  
and effective maximum span 1 0.95R R= . Due to symmetry 

When the blades of a two bladed turbine are horizontal, 
they experience the wind at hub height and thus 

shearA + shearμ = 1, as can be deducted of Fig. 296 and Fig. 
297. In Fig. 297, negative amplitues occurs for αz < ½, 
indicating that the maximum occurs when the blades are 
horizontal. For αz > ½, the amplitues are positive, indicating 
that the maximum occurs when the blades are vertical. 
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Fig. 296: Normalized average of λ-2, μshear, in a two-bladed turbine. 
 

 
Fig. 297: Normalized modulation amplitude of λ-2, Ashear, in a two-bladed 

turbine. Negative amplitudes indicate that a torque minimum occurs instead 
of a maximum when the blade is aligned with the tower. 

C.3.2. Three-bladed turbine 

In a three-bladed turbine, the equivalent tip speed ratio is: 
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The average and amplitude of 3( )λ ϕ  are shown in Fig. 298 
and in Fig. 299, respectively. These values have been 
computed for a turbine with effective blade root 0 0.20R R=  
and effective maximum span 1 0.95R R= . Realize that in a 
three bladed turbine the shear modulation is approximately 
one tenth of the two-bladed turbine with rigid rotors. In 
practical implementations of two bladed turbines, teetered 
hub and other solutions [394, 90, 109] are used to diminish 
force modulation compared to a rigid rotor (as shown in Fig. 
296 and Fig. 297). Even with these solutions, tower and 
drivetrain loads have smaller modulations in a three bladed 
turbine, experiencing less fatigue and it is one of the reasons 
of its actual preference among manufacturers. 

 
Fig. 298: Normalized average of λ-2, μshear, in a three-bladed turbine. 

In Fig. 299, negative amplitues occurs for αz < ½, 
indicating that the maximum occurs when a blade is aligned 
with the tower (ϕ = 0). For αz > ½, the amplitues are positive, 
indicating that the maximum occurs at ϕ = 0. 

 
Fig. 299: Normalized modulation amplitude of λ-2, Ashear, in a three-bladed 
turbine. Negative amplitudes indicate that a torque minimum occurs instead 

of a maximum when the blade is aligned with the tower. 

C.3.3. Effect of rotor tilt and coning in 
the equivalent tip speed ratio  

A commercial turbine presents a tilt and a cone angle. 
Despite tilt angle can be considered constant, the coning 
depends on wind speed through the flapwise blade elasticity 
and pitch angle [396]. In fact, vibration of blades can 
introduce a stochastic behaviour in the torque. 
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The methodology presented in the former subsection can 
be easily modified to take into account tilt and coning. Tilt 
and coning effect on shear modulation is usually small. They 
can be accounted modifying the relative speed that 
experiences each blade element. 

Fig. 300 shows a sketch of the geometric model of wind 
turbine. A model based on four coordinate systems can be 
found, for example, in [390].  
 

 
Fig. 300: Wind turbine geometry described by four coordinate systems. 
Reproduced from [396]. 

Notice that the coning angle can be significantly different 
of the precone angle due to blade elasticity. For the calculus 
of tower shadow effect, a simplified model will be used 
where the effective inclination angle γ respect the vertical  
when the blade is close to the tower is αtilt + αcone  (see Fig. 
301 for geometric details). Due to precone, γ is positive for 
low wind speeds (corresponding to upstream coning as shown 
in Fig. 301) and γ can be negative (downstream coning) at 
high wind speeds due to the flapwise bending of the blades. 
Therefore, the tower shadow effect is more appreciable at full 
generation since the blade of the tip is closer to the tower and 
the torque is more dependable on the attack angle. 

 
Fig. 301: Simplified turbine geometry to compute blade element distance to 
tower axis, ρ. 

C.4. Tower shadow effect 
The tubular tower diverts wind flow producing a local 

change of wind speed modulus and direction. Its main effect 
is a swift change of the attack angle αattack and the relative 
wind speed Urel at the blade elements. The 2D potential flow 
is a suitable model of tower disturbance for upwind rotors and 
it has been previously used (see Sørensen et Al. [153]). For 
downwards rotors a turbulent wake model is required (see 
[397] for example). 

Details of application of potential flow to the stream 
disturbance around a cylinder can be found in many fluid 
mechanic books (see White [398] for example). Flow around 
a cylinder can be approached by an air sink and a source very 
close to the cylinder axis, superposed to the uniform flow 
corresponding to the unperturbed upstream wind. 

Using the cartesian coordinates with origin in the tower 
axis, as shown in Fig. 302, the stream function ψ  for this 
problem is: 
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The longitudinal component of wind is straightforward 
from the stream function ψ : 
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and the lateral component of wind is:  
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The wind field is shown in Fig. 302 and Fig. 303, where 
the stream lines (ψ constant) are plotted and the contours of 
constant speed modulo are coloured. The numbers in the 
contour lines correspond to the wind speed module relative to 
the unperturbed wind speed far away the cylinder. 

 
Fig. 302: Flow around a cylinder computed by potential flow (the 
streamlines, the lines of equal wind modulus and the cartesian coordinates 
are plotted). 

Using the reference frames shown in Fig. 301 or Fig. 302, 
the coordinate transformation from tower to blade reference 
is: 
 sin( )x d r γ= − −  (717) 

 cos( ) sin( )y r γ ϕ=  (718) 

 cos( ) cos( )z H r γ ϕ= −  (719) 

The squared modulus of wind speed below the nacelle can 
be obtained in blade coordinates applying the former 
transformations: 
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where 2 ( )windU H is the wind speed at hub heigh, 
z

α  is the 
shear exponent in (52), a is the tower radius and d’ is the 
weighted average of the distance of the blade to the tower 
axis when they are aligned: 
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Fig. 303: Position of blade element near the tower. For details on relative 
wind speed composition, see Fig. 292. 

 
Fig. 304: 3-D representation of the wind field section. 

In fact, (720) is a simplistic estimation of the wind field 
since the blade chord dimension is comparable with the tower 
radius, producing interactions between the tower and the 
blade.  
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C.4.1. Relative flow angle variation 
Δφ(ϕ) on the blade near the tower 

The tower shadow effect only appears in the blade that is 
closer to the tower, which will be zero numbered for 
convenience (therefore, the rest of blades are numbered from 
1 to Nblades-1. In this blade, the wind diverts slightly from the 
longitudinal direction in an angle φwind = 

[ ( )/ ( )]y xArcTanU z U z :  (722) 

2 2 2

2 2

2
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( ) ( )
( , )

y

x
wind

U z
ArcTan ArcTan

U z x y

x y

x y
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x yφ =
+

−−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎛ ⎞ ⎟⎜ ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎟⎟ ⎜⎜ ⎟⎜ ⎟⎜⎝ ⎠ ⎟⎜ ⎟⎜⎜⎜⎝ ⎠

=

⎟⎟

  

The expression of the wind deflection in polar coordinates 
is straightforward applying the coordinate transformation in 
(717) to (719) :  

( )( , ) sin( ), cos( )sin( )wind windr x d r y rφ ϕ φ γ γ ϕ= = − =  (723) 

The wind is not uniform and it varies for each element in 
modulo and direction. The weighted average of the wind 
deviation angle along the lowest blade at rotor position ϕ is 

 
1

0

2 2
1 0

2
( ) ( , )

R

wind wind
R

r r dr
R R

φ ϕ φ ϕ〈 〉 =
− ∫  (724) 

The integral in 〈φwind(ϕ)〉 is not analytical (or at last, too 
complex to resolve for a generic case). It can be easily 
computed numerically –since the integrand is well behaved, 
simple numerical integration formulas such as the 3/8 
Simpson’s Rule are usually accurate enough, specially if 
integration errors are compared to errors introduced by 
assumptions made in this section–. 

If a closed form is required, the wind angle deviation can 
be estimated using an average distance of the blade to the 
tower d’ and the approximation 2( ) /(1 )ArcTan x x x x≈ + ≈  
for small deviations and: (see Fig. 305 for accuracy 
comparision) 
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where: 
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3
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x x

R R
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ϕ ϕ
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⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎢ ⎥ ⎟⎜ ⎟= ⎜ ⎢ ⎥ ⎢ ⎥ ⎟⎜ ⎟⎜ ⎢ ⎥ ⎢ ⎥ ⎟⎝ ⎠⎣ ⎦ ⎣ ⎦
 (726) 

( ) ( )2 '2 2 '22 2 2 8b a d a a d+ − +=  (727) 

( ) ( )2 '2 2 '22 2 2 8c a d a a d+ + +=  (728) 

The original expression (724) –in solid red– and its 
approximation (725) –in solid lighter pink– are almost 
superposed in Fig. 305, indicating very good agreement of the 
approximation of φwind(ϕ). Thus, the approximation is a valid 
choice since its error is small comparing to the 
approximations made in aerodynamics. 

The relative flow angles φ and φ’ (with and without tower 
shadow) are depicted in Fig. 292 and Fig. 294. For clarity, 
both velocity triangles are compared in Fig. 306.  

 

 
Fig. 305: Average wind angle deviation φwind(ϕ) at the blade crossing the 
tower computed with exact expression (724) and approximation (725) in a 
turbine with R0/R = 0.2, R1/R = 0.95, a/R = 2/50, d/R = 4/50, γ = –0.02 
radians. 
 

 
Fig. 306: Detail of velocities at the rotor plane with and without rotor 
shadow. 

 
The difference in flow angle due to the presence of the 

tower can be estimated as: 
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 (729) 

The relative flow angles φ and φ’ depends on axial and 
tangential induction factors, a and a’ respectively, but they 
are close to zero. Thus, the difference in flow angle Δφ due to 
the presence of the tower can be estimated as: 

 ( ) ( )'' ''
with tower without towerArcCot rcCotAλ λφ≈ −Δ  (730) 

where λ’’ is the element speed ratio computed considering –
formula (675)– or without considering –formula (671)– the 
wind flow deviation near the tower, φwind.  
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a) Flow relative to the blade without tower shadow. 

b) Flow relative to the blade with tower shadow. 
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Then, the relative flow angle at element at radius r in blade 
i=0 (the blade near the tower) is '

0iφ = = φ + Δφ. The rest of 
the blades has the conventional flow angle '

0( )i rφ ≠ = φ = 
ArcTan(1/λ’’) computed from (671). Thus, the influence of 
tower shadow can be computed averaging the relative flow 
angle and speed tip ratio proportionally to the element 
position r and individual blade conditions for the blade that is 
closer to the tower. The average relative flow angle of the 
turbine 'φ〈 〉  is the average angle φ〈 〉 plus the average 
equivalent deviation ( )φ ϕ〈Δ 〉  on the blade near the tower: 
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∑ ∫  (731) 

The effective attack angle deviation is Δαattack ≈ Δφ, the 
variation of the relative flow angle due to the presence of the 
tower. If the blades are stiff enough, the pitch θ (defined as 
the angle of the chord respect the rotor plane in Fig. 289) is 
constant independently of the relative flow angle φ. As can be 
seen in Fig. 306, the attack angle near the tower can be 
computed as the arc cotangent of λ’ minus the pitch angle 
θ(r). 

For a megawatt class turbine operating near the rated 
speed, the relative flow angle deviation, averaged along the 
rotor, is usually under a few degrees, as can be seen in Fig. 
307. 

 
Fig. 307: Rotor-averaged relative flow angle variation Δφ (ϕ) in degrees 
computed from (729)  for the operational conditions of Fig. 308. 

C.4.2. Equivalent average squared 
inverse tip speed ratio ' 2

iλ〈 〉 

The rotor torque in terms of average squared inverse tip 
speed ratio has been derived in (691)  

 ' 25 2

' 2

1
,rotor air rotor qT R Cλρ π θ

λ
−

−
〈 〉

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜= Ω ⎟⎜ ⎟⎜ ⎟〈 〉 ⎟⎜⎝ ⎠
½  (732) 

where ' 2λ −〈 〉 is the arithmetic average among the blades. 
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i
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Each blade i can be considered operating at an average 
squared inverse tip speed ratio ' 2

iλ〈 〉 .  
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where the effective tip speed ratio ' 2( )i rλ has a specific 
formula in the blade in the lower position since it is affected 
by tower shadow 

C.4.3. Equivalent average squared 
inverse tip speed ratio ' 2

iλ〈 〉 on the blades 
not affected by tower shadow 

The effective tip speed ratio has been calculated before for 
the blades not affected by the tower shadow in (679): 
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Ω
=  (735) 

The average of the squared inverse tip speed ratio for the 
blades not affected by the tower shadow ' 2

0iλ −
≠〈 〉  has been 

computed previously in (700) as: 
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C.4.4. Equivalent average squared 
inverse tip speed ratio ' 2

iλ〈 〉 on the lowest 
blade 

The effective tip speed ratio '
0( , )i rλ ϕ=  can be estimated 

analogously to (675) in the lowest blade (numbered as i=0) 
and as the conventional tip speed ratio (679) for the rest of the 
blades. Neglecting the induction factors in (677), '

0( , )i rλ ϕ=  
is: 
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 (737) 

where ( , )xU r ϕ  can be computed from (715) and (719) and 
[ ( , )]windTan rφ ϕ  can be estimated from (722). 

The torque contribution in the lowest blade can be 
computed analogously to (674) and (682): 
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 (738) 

where ' 2
4 0( , ) ( , )if r r rϕ λ ϕ−

==  (739) 

The average squared inverse tip speed ratio in the lowest 
blade is: 
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2
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i R
f r dr

R R
λ ϕ−
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− ∫  (740) 

The integration of the function 4( , )f r ϕ  have not been 
obtained analytically and thus, the exact value of ' 2

0iλ −
=〈 〉  has 

not a closed form.  
Since analytical approximations that have been tried 

produced lengthy expressions and may introduce errors, the 
numerical integration of 4( )f r  and the fit of a function with 
rotor angle is a suitable alternative to compute the torque 
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dependence on rotor angle. However, ' 2
0iλ −

=〈 〉  can be 
estimated with enough accuracy using a simple 3/8 Simpson’s 
Rule since 4( , )f r ϕ  is a smooth function on r: 

' 2
0iλ −

=〈 〉≈   (741) 
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Since the wind deflection angle ( , )wind rφ ϕ  is relatively 
small at usual blade positions, ( , ) ( )wind windrφ ϕ φ ϕ〈 〉∼ . The 
lateral component of the wind can be negligible compared to 
the blade element speed, specially far from the blade root, 

rotorr Ω �   ,( , )sin[ ( , )]wind wind iU r rϕ φ ϕ   for r > R0. Under 
these assumptions, the effective tip speed ratio ' ( )i rλ  is 
somewhat proportional to the conventional tip speed ratio 

( )i rλ : 
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Provided φwind(ϕ,r) ≈ 〈φwind(ϕ)〉, the integral in ' 2
0iλ −

=〈 〉  can 
be computed analytically: 
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Thus, ' 2
0iλ −

=〈 〉  can be estimated as 2
0iλ−

≠〈 〉 in (736)  
multiplied by a correcting factor –to account tower shadow– 
which depends on average wind angle and average wind 
speed at blade angle ϕ:  
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C.4.5. Comparison of the accuracy of 
the approximate analytical formulas 

The computation of ' 2λ −〈 〉  is shown in Fig. 308 for the 
original numerical integral (734) and its analytical 
approximations. The approximation with the Simpson’s 3/8 
rule (741) is completely superimposed in dotted pink and it 
cannot be distinguished from the original numerical integral 
in solid red. The approximation considering the wind flow 
angle constant along the blade in (743), i.e. φwind(ϕ,r) ≈ 
〈φwind(ϕ)〉, shows some deviation just exiting the tower 
influence (dashed deep blue line in Fig. 308). 

In sum, the Simpson’s 3/8 rule (741) is an accurate 
approximation that makes unnecessary the application of 

more complex numerical integration in (740). In control 
schemes, uncoupling wind deviation  φwind(ϕ) and the tip 
speed ratio can be quite convenient. In such cases, the 
approximation (743) can be valuable. 

 

 
Fig. 308: Inverse squared blade tip ratio λ-2(ϕ) computed with exact 
expression (734) and its analytical approximations: (741) –completely 
superimposed in dotted pink– and (743) –in dashed blue–. In light blue is λ-2 
without considering tower shadow (700). Turbine with Uwind(H) = 10 m/s, R 
= 50 m, H/R = 2, R0/R = 0.2, R1/R = 0.95, a/R = 2/50, d/R = 4/50, γ = –
0.02 rad, Nblades = 3, αz = 0,2, λH = 7. 

C.4.6. Comparison of the aerodynamic 
torque accuracy from the approximate 
models 

Using the Simpson 3/8 model presented in previous section 
and (691), the torque in the slow shaft of a 1500 kW wind 
turbine with blades LM 40.3 has been computed in Fig. 309. 
The torque has been computed according to (732) with airρ  = 
1,2 kg/m3, pitch θ =0º and the same conditions than in Fig. 
308. 

 
Fig. 309: Aerodynamic torque in a 1500 kW wind turbine corresponding to 
the parameters of Fig. 308 (near rated wind speed: Uwind(H) = 10 m/s, λH = 7 
and pitch θ =0º). The dashed line, λ-2(ϕ) multiplied by a factor, has been 
added to show that fluctuations are mostly proportional bellow rated wind 
speed. 
 

At partial load, ( ),qC θ λ  varies moderately and torque 
fluctuations are mainly proportional to ' 2λ −〈 〉  (compare Fig. 
308 and Fig. 309). At full load, torque coefficient is more 
sensible to the attack angle and the variations of λ-2(ϕ) are 
amplified in torque (see Fig. 310). 
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Fig. 310: Aerodynamic torque in a 1500 kW wind turbine corresponding to 
the parameters of Fig. 308 but near cut-off speed: Uwind(H) = 20 m/s, λH = 
3,58 and pitch θ =19,5º. The dashed line is λ-2(ϕ) multiplied by a factor to 
show that torque fluctuations are not proportional to λ-2(ϕ)at full load. 

The greatest torque variations happen at high winds since 
the torque coefficient is quite sensitive to tip speed ratio λ 
variations at that operational conditions (see Fig. 301). 

 
 

 
Fig. 311: Aerodynamic torque in a 1500 kW wind turbine corresponding to 
the parameters of Fig. 308 computed near rated wind speed (solid line: 
Uwind(H) = 10 m/s, λH = 7 and pitch θ =0º corresponding to Fig. 309) and at 
cut-off wind speed (dashed line:Uwind(H) = 20 m/s, λH = 3,58 and pitch θ 
=19,5º correspondig to Fig. 310). 

 

C.5. Tower lateral and longitudinal 
bending oscillations 

The combination of the structural flexibility of the tower 
and blades, tower shadow, wind shear and the stochastic 
character of the wind can lead to the excitation of the turbine 
vibration modes (see Fig. 312). The estimation of the 
magnitude of these oscillations is out of the scope of this 
work. 

In general, these vibrations do not show a significant 
angular dependence on rotor angle. The first vibrational mode 
of the turbine corresponds to tower bending. These 
oscillations can be important, especially in floating offshore 
wind turbines.  

C.5.1. Tower longitudinal bending 

The backwards and forwards displacement of the nacelle 
produce a modulation of the equivalent lateral wind  

,wind longitudinal bendingUΔ  of rms value σ⇔ . If the nacelle 

experience a displacement of typical amplitude xΔ  and 
typical tower resonance frequency f⇔ (for usual values see 
table 12.25 in [88] –in the range of a fraction of the blade 
frequency fblade –), then the equivalent wind speed modulation 
can be characterized by its rms value σ⇔ , its average 
frequency f⇔  and its frequency bandwidth BW⇔. 
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Tower bending can be included as an additional 
contribution to the equivalent wind: 
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 (747) 

 
Fig. 312: Exciting forces and degrees of vibrational freedom of a wind 
turbine. From F. Kießling [399], page 24. 

C.5.2. Tower lateral bending 

Thiringer [186] studied the sideways movement of the 
nacelle in the turbines of the Alsvik offshore wind farm. He 
obtained a good agreement between the angular deflection of 
the cantilevered beam and the power modulation. This 
correlation depends on the generator torque characteristics 
and Thiringer assumed that it is due to the angular movement 
of the stator. Since the housing of the generator is solidly 
attached to the nacelle, the angular deflection can be 
accounted as a noise added to the generator rotor angle, 
referred to the stator. 

Notice that these vibrations also affects to the wind speed 
that experience the blade elements and thus, rotor torque. 
Lateral bending can be included in expression (747), 
eventhough their interaction nature and the sensitivity of the 
torque to tower oscillations depends on the direction. Thus, 
the totalized effective oscillation value 'σ⇔  and bandwidth 

'BW⇔  must be estimated accordingly. 
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.  
Fig. 313: Sideways oscillation of the tower. Reproduced from Thiringer 
[186]. 

C.6. Numerical integration of rotor 
torque 

C.6.1. Turbine aligned with the wind 

In previous section, a detailed parametric model has been 
derived based on the effective blade tip speed ratio λ’. This 
model is aimed to study general properties, assuming power 
or torque coefficients are smooth enough for the range of 
variation of λ’. But if the turbine is operating at a point where 

( , )qC λ θ  varies abruptly, the assumption (689) introduces a 
small error. 

Despite '
iλ  is near its nominal value Hλ  (705) in the 

blades not affected by tower shadow (i ≠ 0), it can differ 
notably in a blade crossing the tower (blade numbered as i = 
0). Since '

iλ  can vary significantly from blade to blade or the 
blades can be slightly misaligned (i.e., pitch θ  is not exactly 
the same for all blades), the torque can be computed 
individually for each blade i in order to decrease the error 
introduced by the nonlinearities in ( , )qC λ θ . Thus, the torque 
in the blade i can be estimated as: 
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where ' 2
0iλ −

=〈 〉 is computed from (741) for the lowest blade and 
' 2

0iλ −
≠〈 〉 is computed from (736) for the blades not affected by 

tower shadow.  
The torque accuracy can be increased furthermore 

integrating direcly the blade element torque (summing the 
contributions along the effective blade span): 
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If ϕ is the angle of the lowest blade (i = 0) , then '
0( , )i rλ ϕ=  

should be computed from (737) to take into account tower 
shadow:  
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The rest of the blades (i ≠ 0) do not experience tower 
shadow and '

0( , )i rλ ϕ=  is substituted in (750) for 
' 2

0( , +2 / )i bladesr i Nλ ϕ π≠ computed from (735) in 6f : 
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Since ( , )qC λ θ  do not have a simple analytical form, the 
integral (749) cannot be computed analytically. However, the 
integral (749) is well behaved and it can be computed 
numerically with simple methods such as the 3/8 Simpson’s 
Rule: 

5 2 ·i air rotorT Rρ π≈ Ω½   (752) 
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The numerical calculation of the torque in (752) is a good 
tradeoff of accuracy and simplicity, allowing the 
consideration of tower shadow and blade misalignment in 
simulations with a low footprint in simulation time. The 
integration error is small compared to errors introduced by 
assumptions made in this section and compared to the 
uncertainty of torque (or power) coefficient. 

Finally, the rotor torque is the sum of the contribution of 
each blade plus the vibrations which have not been accounted 
previously ( vibrationsT  are due mainly to tower, blade and 
drivetrain vibrations and it can be estimated from 
measurements or structural simulations): 

  1
0

Nblades
rotor vibrations i iT T T−

== + ∑  (753) 

The shear and tower shadow effects in pitch regulated 
turbines increases at full generation due to the bigger torque 
coefficient sensitivity and the blade flap-wise bending. Fig. 
314 shows an example of the influence of tower shadow on 
the rotor torque at two wind speeds. 

 
Fig. 314: Influence of tower shadow on the rotor torque at the example of the 
experimental MOD-0 two-bladed wind turbine. Taken from Hau [88] 
(originally from [400]). 

C.6.2. Turbine misaligned with respect 
average wind direction 

The effective blade tip speed ratio '
0( , )i rλ ϕ=  can be 

estimated analogously to (675) in the lower blade (i=0) and 
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with the conventional expression (679) in the rest of the 
blades. Neglecting the induction factors in the (677), 

'
0( , )i rλ ϕ=  can be estimated as: 

'
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 (754) 

The longitudinal component of the wind ( , )windU r ϕ  can be 
computed from (715) and (719). The incident flow angle due 
to tower shadow ( , )wind rφ ϕ  can be estimated from (722). 

misalignφ  is the yaw orientation error of the turbine and ϕ  is 
the blade angle respect the tower axis. 

The unperturbed effective blade tip speed ratio has been 
computed previously in (679): (755) 

'
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rotor
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R R
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λ ϕ φ φ ϕ

ϕ≠

Ω
= +   

Conclusions 
This annex has introduced an aerodynamic model to 

estimate the influence of deterministic wind component (wind 
shear and tower shadow) from the torque coefficient and the 
main properties geometry of the turbine. The model has been 

derived using blade element theory, potential flow upstream 
the tower and uniform blade loading. 

The model presented in this annex is based on blade 
element theory with constant tangent force distribution, also 
known as uniform blade loading. The tangential force 
distribution is approximately constant in the main body of the 
blade when the turbine operates at partial load (maximum 
turbine efficiency), but may introduce errors when the tip of 
the blades stalls. However, the starting of the blade stall is 
intricate and a more complex model is needed to take into 
account the hysteresis of the separation of the boundary layer 
in the blades. Since pitch controlled turbine is unusually 
operating with attached flux and the proposed method is valid 
for pitch controlled turbines. 

The aim of this model is to compute the aerodynamic 
torque at the low-speed shaft, simply enough to be included in 
the generator control or for simulating a cluster of turbines, 
and requiring only basic features such as the aerodynamic 
torque coefficient and the main constructive parameters of the 
turbine. This model can also be used to study the effect of 
mismatches in the blades (pitch errors in each blade) and 
errors in orientation of the turbine. 

Besides its computational efficiency, another advantage of 
this method is that only requires the torque coefficient and the 
main dimensions of the turbine (it does not need to know the 
airfoil section along blades). 
 
 
 



 

 

D.1. Introduction 
The wake is estimated in this document using a kinematic 

model. Kinematic models are based on self-similar velocity 
deficit profiles obtained from experimental and theoretical 
work on co-flowing jets.  

A very good overview on turbine wakes can be found in 
[401]. The wake kinematic model can be revised in [402]. 
The Risø report [403] summarize the experience in Horns 
Rev and Nysted offshore wind farms. The impact of wakes in 
turbine power output is analyzed in [404] and [405]. A 
friendly outline of the effect of turbulence and wakes in the 
farm output can be found in [406]. 

The wake expansion rate depends greatly on atmospheric 
conditions (stable, neutral or unstable atmosphere and 
turbulence) and the expansion rate is an input of the program. 
The factors influencing the expansion are not considered in 
this work and the user is expected to vary expansion rates to 
simulate different atmospheric conditions. Default values of 
the expansion rates are estimated from Horns Rev and Nysted 
offshore wind farms. 

D.2. Momentum deficit in a wake 
The wind deficit in a wake can be estimate from the 

longitudinal force experienced by the turbine, called thrust 
force FT. There is a momentum transfer FT from the wind 
flow to the turbine (see Fig. 315). The thrust force FT that 
experiment a wind turbine may be expressed as:  

 2 21

2T air wind TF R U Cρ π=  (756) 

where airρ is the density of air, 2Rπ  is the total area swept by 
the rotor, Uwind  is the original upstream wind speed and CT is 
the trust force coefficient.  

The initial wind speed reduction ΔUwind from Uwind to V, 
when passing the rotor plane, is related to CT by: (1- CT) = 
(V/Uwind)2. 

The momentum deficit in the control volume equals the 
momentum loss. However, when the wake is well developed, 
the speed deficit ΔUwind varies smoothly downwards due to 

turbulence mixing and diffusion processes (see [407] for 
more details). In the far wake, the control volume can be 
extended in the lateral and vertical dimensions. Fig. 320 
shows the axis reference used in this document. 

The following relations can be obtained from the actuator 
disk model (Fig. 316), where a is the axial induction factor of 
the disk actuator: 
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Maximum turbine efficiency is achieved with a = 1/3 
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2
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Fig. 316: Near field flow around a turbine rotor modelled as an actuator disk. 

The thrust force coefficient depends on the control strategy 

Annex D:  Wake estimation in an 

offshore wind farm 

Momentum loss = FT 

The momentum at the exit of 
the flow pipe is smaller due to 
the absorbed power of the 
turbine and the aerodynamic 
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Fig. 315: Momentum balance in a flow tube of the disk actuator.
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for the wind turbine. The control strategy for wind velocities 
below the rated wind speed is to control the rotational speed 
of the rotor in order to achieve maximum power, while the 
control strategy above the rated wind speed is to achieve 
constant power. The latter is usually obtained by rotor blade 
pitch control.  

 
Fig. 317: Thrust development of a 1.5 MW rotor depending on wind speed 
and pitch angle, rotational velocity 1.93 rad/s (blue), deterministic winds. 
Normal turbine operation is shown as red line.  Taken from A. Knauer [408]. 

 
Fig. 318: Plot of a thrust force coefficient lookup table. Taken from Knauer 
[408].  

The velocity dependent thrust coefficient CT is based on 
the thrust force relations such as shown in Fig. 317 (taken 
from [408]). Typical tabulated thrust force coefficients are 
shown in Fig. 318. The table lookup may be based on the 

instantaneous relative wind speed.  
The wind shear introduces a momentum transfer from the 

flow to the sea. This effect is usually accounted separately in 
the wind vertical profile.  

The real wind flow is approximated in this program as the 
superposition of the unperturbed flow and the wake deficit. 
The wake deficit can be estimated computing the momentum 
transfer in the flow tube of the disk actuator moving in 
longitudinal direction at speed Uwind. 

 
Fig. 319: Simplified representation of the wind turbine wake. Taken from A. 
Jiménez [407].  

If the shape of the wake is known, the speed deficit can be 
estimated applying the momentum balance to a control 
volume limited by two transversal semi planes (upstream and 
downstream planes) and the sea. Since the control volume is 
moving at a constant speed Uwind, the momentum change is 
due to the mass flow rate in the downstream semi plane. 

 ( ) ( ')
T

upstream downstreamwind wake
semiplane semiplane

Momentum deficit F

U d mass U d mass

= =

= −∫ ∫  (762) 

If the area integrals are expressed in Cartesian coordinates, 
the following relation is obtained: 

 2 2

0

( ) ( , , )x constantT air wind wakey
z

F U z U x y z dy dzρ =
−∞< <+∞

< <+∞

⎡ ⎤≈ −⎢ ⎥⎣ ⎦∫  (763) 

If the vertical profile of the unperturbed wind is neglected, 
( ) ( )wind windU z U H constant≈ = , the following relation is 

obtained: 
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∫  (764) 

If the shape of the wake deficit can be guessed from 
measured or from fluid mechanic models, then the relative 
momentum deficit ( , , )x y zδ  can be expressed as the shape 

Fig. 320: Expansion of the control volume up to two vertical semi-planes. 
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function ( , , )x y zφ  multiplied by the magnitude factor 
UwindkΔ : 
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If the shape function is chosen with unitary weight in any 
vertical plane, ,
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 (766) 

Two key parameters of the wake cross section shape are 
the mean position and its extent. For example, ( , , )x y zφ  can 
be any bivariate probability density function in the y and z 
variables, where the wake center and extent is the distribution 
mean and standard deviation.  

Laboratory test show that shape of the far wakes is a 
smooth perturbation (see [401] for example) and they can be 
approximated by bivariate Gaussians [402, 409]. Since the 
bivariate normal is curtailed to positive heights y (heights 
above the sea surface), the scale function is:  (767) 
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where H is the height of the maximum wind deficit (it can be 
approximately considered the mean height of the wake). The 
lateral extent of the wake cross section is parameterized by 
the horizontal standard deviation yσ  and the vertical extent 
of the wake is zσ . The parameters of the wake cross section 
depend on the distance x from the turbine. For downstream 
points far away the wake ( yy σ�  or zH z σ− � ), the 
bivariate can be considered null to speed up the calculi.  

The height of the wake H increases very slightly far away 
the turbine due to the sea surface (see Fig. 38, 41 and 42 in 
[401]). Therefore,  H  can be considered constant and equal to 
the hub height. If wind speed is only computed at hub height, 
the calculi can be speeded further up. 

The horizontal extent yσ  is expected to be bigger than the 
vertical extent zσ , specially in highly stratified atmospheric 
flow and low turbulence conditions. In absence of detailed 

data or other evidence, the wake is customarily considered 
with rotational symmetry ( yσ ≈ zσ ). Moreover, the wake 
extent will be considered proportional to the distance to the 
turbine in laminar flow, or equivalently, when diffusion is 
controlled by a constant ambient turbulent diffusivity. 

 
Fig. 321: Wake cross section shape ( , , )x y zφ  for yσ = zσ = 2,5 H. 

The former assumptions are consistent with the computer 
program WAsP [410], where wakes are considered as trun-
cated cones. The recommended expansion rate in WAsP for 
offshore applications is ( ) 0.04tg α = , almost half the usual 
value for on land farms.  

The wake cross section (767) presents a smooth transition 
instead a sharp transition. In the absence of more details, the 
mean quadratic radius 2r  of the rotor disk and the wake is 
expected to match at the turbine (x = 0):  (768) 
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Note: This criterion yields the same mass moment of inertia 
respect the wake axis for the disk and the wake. 

Therefore the extent parameter is ( 0) /2x Rσ = =  at the 
turbine and then, it increases linearly downstream:  
 ( ) /2 ( )x R x tg ασ = +  (769) 

When there are many turbines in a line, it has been 
observed experimentally that while the first turbine produces 
full power, there is a significant decrease of power in the 
second turbine, with practically no further loss in successive 
machines [401, 403]. The wake expansion rate depends on 
inflow turbulence, being significantly bigger in the successive 

Fig. 322: Assumed linear wake expansion at rate tg(α). 
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turbines. This can be accounted adding a sensitivity factor in 
the extent parameter:  (770) 

'( ) /2

( ) ( )
wind at turbine unperturbed wind

tg TurbInt Turb

x R

x Intα β

σ
⎡ ⎤+ −

=
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+

⎥⎦
 

where wind at turbine unperturbed windTurbInt TurbInt−  is the 
added turbulence intensity at the turbine inflow and β is the 
sensitivity factor of the expansion rate respect the turbulence 
at the inflow. 

D.2.1. Model fit to experimental 
measures 

The wake behaviour is complex and it has subjected to 
many experimental tests (a summary of them can be read in 
[401]). The wakes at the sea show some distinctive behaviour 
since the atmosphere shows often lower turbulence and 
higher stability than inland locations. The UPWIND project 
[403] studied the offshore wakes in the Horns Rev and Nysed 
wind farms. 

The offshore wind farm at Horns Rev is characterized with 
low turbulence (<8 %) and many operational hours in near 
neutral stability [411], implying very small expansion rates 
(long and narrow wakes). The turbines operating in full wake 
at 7 diameters distance from upwind turbines experience 
about 40% power loss at low winds. The major findings are 
an almost constant deficit at low winds in turbines operating 
in cascaded wakes. This can be due to an extra expansion 
when a wake crosses another turbine rotor due to the near-
field stream-line expansion occurring here. However, these 
refinements are not considered in the program. 

The Vindeby wind farm is modelled in [412] in the 
framework of the ENDOW project [413]. The turbulence 
intensity usually lies between 6% and 8% in the free flow.  

Actual wake deficit measures can be transformed into wake 
extent σ  evolution downstream. The wake expansion at very 
low turbulence typical of offshore farms is still a topic of 
research and ( )tg α  has been left as an input parameter so the 
user can analyze its impact on farm efficiency. 

In general, it is easier to estimate the relative momentum 
deficit ( , , )x y zδ  from the wind measured unperturbed and at 
a wake: 
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=  (771) 

Assuming rotational symmetry ( yσ ≈ zσ ) in the wake, the 
extent of the wake cross section radius σ can be estimated 
from the wind speed deficit solving (771). 

According to [401], the velocity deficit at the axis of the far 
wake is usually fitted to a power law formula: 
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 (772) 

where x is the downstream distance, D is the rotor diameter 
and 1<A<3 and 0,75<n<1,25 are constants. For the case of a 
turbulent wake that is diffusing with zero ambient turbulence, 
n = 2/3 and for a laminar wake, or equivalently, when 

diffusion is controlled by a constant ambient turbulent 
diffusivity, n = 1.  (773)  
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The dependence of wake radius σ with distance x from the 
turbine is obtained equating (771) and (773) and solving for 
wake radius σ: 
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 (774) 

The wake radius σ obtained solving (774) is loosely 
linearly related to the distance to the turbine. An analytical 
expression of the wake radius σ can be obtained if the error 
function is approximated, for example, to its Taylor series of 
second order around 2/3: (775) 
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D.2.2. Upstream/downstream ordering 
of turbines   

It is assumed that turbines are only affected by upstream 
turbines. Therefore, the turbines are sorted according to the 
stream flow and wakes are computed starting by the first 
turbine (where a flat wave arrives first) and sequentially 
iterate in order only considering the upstream turbines.  

The arrival time of the wind can be computed from the 
distance to a vertical plane transversal to the wind. In an 
aerial 2D view, the transversal plane is transformed into a line 
perpendicular to the wind vector windU

G
.  
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Fig. 323: Downstream distance of turbine b respect turbine a in Lagrangian 
coordinates  

The downstream distance of turbine b respect turbine a is 
a bL → = ·a b windr u→

G G , where  a br →
G  is the distance vector starting 

from a and ending in b, windu
G  is the wind vector normalized 

to unity modulo and the dot · represent the scalar product of 
wind and separation vectors. The turbine b is downstream the 
turbine a if a bL →  > 0. 
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D.2.3. Cascade estimation of the wind 
field 

The wind speed is computed sequentially since it is 
assumed that a point is only affected by upstream turbines, 
but not by downstream obstacles. The wind speed is assumed 
to be variable due to upstream wakes, but its direction is 
considered constant along the wind farm. 

The first turbine is assumed to experience the unperturbed 
wind of magnitude Uwind,0(z), a parameter of the simulation. 
Then, the squared wind modulo only considering the first 
turbine (the turbine most upstream) is the following field: 

 2 2
,1 ,0( , , ) ( ) 1 ( , , )wind windU x y z U z x y zδ⎡ ⎤= −⎣ ⎦  (776) 

The squared wind only considering the first and second 
turbine (the two turbines most upstream) is:  (777) 

2 2 2
,2 ,1 ,1 2 2( , , ) ( , , ) ( , , ) ( , , )wind wind windU x y z U x y z U x y z x y zδ= −  

where {x2,y2,H} are the coordinates of the second turbine 
hub. 

The squared wind only considering the three turbines most 
upstream) is:  (778) 

2 2 2
,3 ,2 ,2 3 3( , , ) ( , , ) ( , , ) ( , , )wind wind windU x y z U x y z U x y z x y zδ= −  

where {x3,y3,H} are the coordinates of the third turbine hub. 
This procedure is iterated up to the most downstream 

turbine, numbered n. Then , ( , , )wind nU x y z  is the estimated 
wind field accounting all turbines. Thus, this model is the 
superposition of the squared speed deficits. 

D.3. Added turbulence in a wake 
The turbulence in the wakes is needed since the expansion 

rate increases in wakes by a sensitivity factor β respect 
original turbulence in free flow (see Fig. 324). Thus, the 
procedure used in wind speed estimation can be used also for 
turbulence since turbulence at one turbine is influenced only 
by upstream turbines. 

 
Fig. 324: Expansion of cascaded wakes due to the increased turbulence 
downstream, respect the more upstream turbines in the wind farm. 
Reproduced from Risø report 1615 [403]. 

The turbulence intensity, TurbInt, is defined as the ratio of 
the standard deviation of the wind velocity in the average 
wind direction σwind, divided by the average wind velocity 

Uwind The turbulence intensity in the axis of the wake, referred 
to the inflow wind speed is, according to Crespo and 
Hernandez [401]:  (779) 
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where a is the induction factor of the turbine, TurbIntinflow is 
the turbulence intensity upstream the turbine and ΔTurbInt is 
the added turbulence intensity downstream. Crespo and 
Hernandez [401] point out that the decay of the turbulence 
intensity downstream, ΔTurbInt; is slower than the decay of 
the velocity deficit. 

The induction factor can be computed from the thrust 
coefficient Ct of the turbine at the inflow wind  inflow windU , 
considering only the upstream turbines: 

  1 1 ( )
 

2
t inflow windC U

a
− −

≈  (780) 

However, (779) only informs of the turbulence of the axis 
of the wake. The square of the turbulence can be considered 
the turbulent kinetic energy of the flow. If the energy 
associated to the chaotic movement of the flow is considered 
fairly constant downstream, then the variance of the wind 
speed is held fairly constant in transversal downstream wake 
sections. The turbulence is the outcome of many 
perturbations. If the main interactions in the wake are due to 
momentum transfers and they can be considered 
stochastically independent in some extent, then the wind 
speed variance is fairly constant downstream 

Thus, the bivariate Gaussian will be used for expressing the 
fading of the added turbulence (surplus variance of the 
downstream wind) from the wake axis.  
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This leads to a linear model on wind variance and, hence, the 
total variance is the sum of the variance of the upstream 
turbines. 
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D.3.1. Cascade estimation of the 
squared turbulence 

The wind speed average and its variance are computed 
sequentially since it is assumed that a point is only affected 
by upstream turbines, but not by downstream obstacles. Both 
average wind speed and turbulence should be computed 
jointly since the wake expansion is dependent of the 
turbulence level. 

The first turbine is assumed to experience the unperturbed 
turbulence of the free flow, σwind,0(z) = Uwind,0(z) TurbIntfree, a 
parameter of the simulation. Then, the squared turbulence 
only considering the first turbine (the turbine most upstream) 
is the following field: 
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The squared turbulence only considering the first and 
second turbine (the two turbines most upstream) is: 
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where {x2,y2,H} are the coordinates of the second turbine 
hub. 

The squared turbulence only considering the three turbines 
most upstream) is: 
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where {x3,y3,H} are the coordinates of the third turbine hub. 
This procedure is iterated up to the most downstream 

turbine, numbered n. Then , ,( , , )/ ( , , )wind n wind nx y z U x y zσ  is 
the estimated turbulence intensity accounting all turbines.  

D.3.2. Definition of the speed deficit 
and the turbulence excess in the source 
code 

One contribution of the interactive program is the easy test 
of wake models. In the absence of orography features, the 
perturbation depends on the distance to the wake axis, the 
distance downstream the turbine and the cross section of the 
wake. 

For example, the portion of the source code where the 
shape function and the increment of turbulence are defined is 
shown in Fig. 325. These definitions can be changed to test 
other wake models. 

D.4. Conclusions 
An efficient procedure has been proposed for interactively 

compute final wind field in a symbolic mathematic program. 
The principle of momentum balance has been used to derive 
the spatial shape of the wind deficit in the wake. The 
conservation of turbulent energy has lead to the shame spatial 
shape of the energy. 

For convenience, very far wakes in transversal direction 
are neglected and only wind speed at hub height is presented. 

The use of an iterative procedure makes it easy to derive 
and test different wake models. This procedure has been 
implemented in a Mathematica PlayerTM notebook to compute 
interactively the power curve of offshore wind farms. 

 
Fig. 325: Portion of source code where the shape function and the increment 

of turbulence, ( )TurbInt xΔ are defined. 
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Fig. 326: Example of calculation of wind farm wakes with the model of this annex. 
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El programa WINDFREDOM visualiza los datos de estaciones meteorológicas mundiales y compara las 
variaciones de los datos entre dos estaciones. Por conveniencia, se ha implementado como un cuaderno en el 
programa de cálculo MathematicaTM. De esta forma, se simplifica la realización de algunos cálculos y la 
interacción con el usuario. 

Para poder utilizar el programa interactivo para visualizar datos de estaciones meteorológicas mundiales, es 
necesario tener instalado en el ordenador el visor gratuito Mathematica PlayerTM o bien la versión 7 del 
programa de pago MathematicaTM. 

A continuación se explica el proceso para instalar el visor gratuito Mathematica PlayerTM. 

E.1. Instalación del programa “Mathematica Player” 
Para poder utilizar el programa interactivo, es necesario instalar el visor de los ficheros compilados con 

MathematicaTM. Este visor se puede descargar gratuitamente desde la página web del fabricante de 
MathematicaTM, http://www.wolfram.com/products/player/download.cgi 
 

Para instalar el programa, basta con pulsar dos veces el icono siguiente: 

 
La instalación es un proceso muy sencillo y tarda unos 4 minutos. Al principio, el instalador permite instalar 

un buscador de documentos de MathematicaTM, que es opcional y no es necesario para ejecutar los cálculos. 
 

E.2. Apertura del fichero de cálculos 
Los algoritmos de cálculo se encuentran en el siguiente fichero: 

 
 

Al pulsar dos veces sobre el icono se abre el visor de MathematicaTM y nos advierte que estamos abriendo un 
fichero que contiene cálculos dinámicos. Para poder utilizar los cálculos, debemos habilitar dichos cálculos 
dinámicos pulsando el botón “Enable Dynamic”. 

 
 

El visor de MathematicaTM puede avisarnos eventualmente si queremos cancelar los cálculos cuando éstos se 
ralentizan más de un minuto. Esto puede suceder en ordenadores antiguos y es suficiente con responder que 
continúe calculando. También debemos cerrar el cuadro de diálogo de bienvenida al visor de MathematicaTM que 
aparece las primeras veces que utilizamos el visor. 

Annex E:  Manual of the program 

WINDFREDOM 
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Para trabajar con los cálculos, se recomienda trabajar a pantalla completa pulsando la tecla de función “F12” 

o con el botón contextual sobre una parte blanca de la pantalla: 

 
 

E.3. Datos disponibles de estaciones meteorológicas mundiales 
El programa que se presenta a continuación está diseñado para estudiar la evolución del viento en 

emplazamientos cercanos y es parte de una tesis doctoral [414]. Para ello, el programa descarga automáticamente 
datos de las estaciones meteorológicas seleccionadas a través de Internet. Por ello, el ordenador en el que se 
utiliza debe estar conectado a Internet. Los datos utilizados se toman de organizaciones meteorológicas 
gubernamentales a través de los servidores de Wolfram Research. 

En general, los datos de las estaciones meteorológicas institucionales deben ser considerados con precaución, 
ya que no se dispone de información precisa de su emplazamiento y pueden presentar fallos de mantenimiento y 
técnicos. Además, las series de datos pueden presentar huecos y datos perdidos, lo que limita su tratamiento 
automático. 

A pesar de estas deficiencias, lógicas en una amplia red de estaciones diseñadas para la predicción del tiempo 
y muchas veces mantenidas a través de instituciones con presupuestos limitados, estos datos son valiosos para el 
desarrollo de la energía eólica. 

Las estaciones a las que se pueden acceder normalmente están situadas en emplazamientos sin calibrar y cuyas 
condiciones concretas no se suelen conocer. Muchas veces se encuentran en zonas semi-urbanas, con obstáculos 
cercanos y a alturas variadas.  

El valor de estas estaciones en la energía eólica es debido a la disponibilidad de largas series temporales de 
datos en una amplia red mundial. Estas series pueden ayudar a corregir variaciones estacionales e interanuales 
del recurso eólico. 

Botón 
contextual 

Cálculos organiza-
dos en solapas 
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Las estaciones meteorológicas instaladas en aeropuertos proporcionan datos relativamente fiables y 
habitualmente se disponen de datos cada 30 minutos. Las estaciones de institutos meteorológicos estatales 
también pueden ser una fuente útil de datos, aunque su disponibilidad suele ser más reducida y la velocidad del 
viento no suele estar tan bien monitorizada. En los estudios que necesitan registros de datos sin huecos, los 
valores no disponibles se sustituyen por la interpolación entre los datos más próximos. El programa, en la 
versión actual, no incluye ningún filtro para compensar errores en las medidas ni realiza ninguna comprobación 
adicional excepto interpolar los datos no disponibles.  

Este programa permite el análisis interactivo de las variaciones del viento en el rango de 10 días hasta las 
variaciones horarias. Las oscilaciones del viento que duran más de 10 días (por ejemplo, las estacionales) se 
pueden estudiar con las mismas herramientas, pero precisa series muy largas de datos cuya calidad es 
conveniente contrastar antes de obtener conclusiones.   

Para poder utilizar el visor gratuito de MathematicaTM, se ha eliminado la opción de grabar los datos en el 
programa. No obstante, si se dispone de una licencia del programa MathematicaTM 7, los datos que se muestran 
en el programa se pueden almacenar en un fichero de texto separado por tabuladores tecleando  el comando 
Export["fichero1.txt",availabledata, "TSV"] para la estación meteorológica de referencia y 
Export["fichero2.txt", availabledata2, "TSV"] para la estación comparada.  

A día de hoy, el programa está en fase beta y, eventualmente, puede fallar si la base de datos no dispone de 
datos requeridos de la estación meteorológica o estos son erróneos (puede haber varios datos para el mismo 
instante, datos aberrantes, velocidades de viento negativas en vez de calmas, etc.). Estos fallos en los datos 
pueden generar errores numéricos que, en algunos casos, bloquean el programa. En el peor caso, este problema 
se resuelve cerrando el programa “Mathematica Player” y/o MathKernel y realizando otro análisis, 
seleccionando otras fechas u otra estación meteorológica cuyos datos no contengan errores. Puede contribuir al 
desarrollo del programa enviando un correo a joaquin.mur@unizar.es indicando la estación meteorológica, la 
variable y el periodo que ha generado un error en el programa. Estos correos ayudarán a diseñar un filtro inicial 
que evite los errores numéricos asociados a datos erróneos. 

E.4. Solapas del programa 
El programa se ha organizado por solapas para poder acceder a la información rápidamente. El 

funcionamiento de las solapas es análogo al comportamiento de las solapas de otros programas como 
navegadores, editores de textos, etc. 

Cada solapa muestra una pantalla con información relacionada estrechamente. Las solapas actualmente 
disponibles son: 

 
Las solapas de la izquierda se utilizan para seleccionar las estaciones meteorológicas y los datos que se 

quieren comparar. Las solapas de la derecha contienen las gráficas de la comparación. 
A continuación se muestra una breve guía gráfica de la utilización más habitual del programa. 

E.4.1. Mapa de las estaciones meteorológicas cercanas 

Al abrir el fichero “EstacionesMeteorologicas.nbp”, el programa se inicializa y muestra la solapa “Map” con 
un mapa esquemático centrado en el lugar de utilización. En el centro del mapa aparece un localizador gris. El 
localizador está inicialmente en la ubicación más probable del ordenador en que se ejecuta el programa. Para 
cambiar la zona geográfica mostrada, basta con pinchar, arrastrar y soltar el localizador gris a la zona que se 
desea visualizar. 

El programa dispone de un control del número de estaciones a mostrar. Un valor muy alto de estaciones 
ralentiza la presentación de algunos resultados porque requiere descargar datos de más estaciones. Además, 
cuando movemos el centro del plano, debe esperar a recibir de internet los datos del número de estaciones más 
cercanas al localizador del centro. 

También se dispone de un control para ajustar la escala del mapa. El valor del Zoom es el número de grados 
de latitud que se muestran en pantalla. 
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E.4.2. Disponibilidad de las estaciones meteorológicas 

La solapa “Station availability” contiene una lista con la posición geográfica de las estaciones, la velocidad 
media del viento, la distancia al localizador del mapa y el rango de fechas disponibles. La velocidad del viento 
suele ser más fiable en aquellas estaciones con mayor disponibilidad de fechas, que tengan mayor velocidad 
media  o que correspondan a Aeropuertos. 

La velocidad del viento  que se muestra en la tabla corresponde a la media de la estación, sin 
corregir su valor por la altura del anemómetro o por los obstáculos cercanos. Las estaciones facilitan a la 
organización mundial de predicción la velocidad del viento en las unidades km/h y se convierten a m/s 
dividiendo por el factor 3,6. Muchas estaciones proporcionan los datos semi-horarios de velocidad sin cifras 
decimales o con errores significativos de discretización. 

El entorno alrededor de cada estación se puede observar pulsando un botón. Entonces, el programa abre en 
Google maps la imagen del satélite. La estación puede estar a unos metros del centro de la imagen del satélite 
mostrada ya que no se suelen conocer las coordenadas de las estaciones con más de 3 decimales. 

Las estaciones de los aeropuertos españoles empiezan con las siglas LE y luego siguen las siglas de la ciudad. 
Por ejemplo, LEZG corresponde aL aerepuerto Español de ZaraGoza, LEPP corresponde aL aeropuerto Español 
de PamPlona y LEVT corresponde aL aeropuerto Español de ViToria, LFBZ corresponde aL aeropuerto Francés 
de BiarriZ, etc. 

Las estaciones asociadas a la organización meteorológica mundial empiezan por WMO (correspondiente a 
Weather Meteorological Organization).  

Cada punto rosa 
corresponde a la 

localización de una 
estación meteorológica 

El localizador gris se 
utiliza para mover el 

centro del mapa. Se puede 
pinchar, arrastrar  y soltar 
en la zona del mundo que 

se quiere visualizar 

Número de grados de latitud mostrados 

Número de estaciones rosa a mostrar en el mapa 
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E.4.3. Selección de la estación meteorológica de referencia 

En esta solapa se puede visualizar un análisis de los datos facilitados por una estación meteorológica. Para 
ello, hay que elegir una estación de una lista desplegable, que corresponde al mapa y tabla mostrados 
anteriormente. Con el control “Period center” se selecciona la fecha del centro del periodo que se va a estudiar. 
Si el control deslizante está a la izquierda, se utilizarán los primeros datos disponibles y si está a la derecha 
(opción por defecto), se utilizarán los últimos datos disponibles (el último dato disponible suele corresponder a 
unas dos horas antes de la hora actual). Por tanto, los datos se podrían utilizar incluso para predicción de 
generación eólica en las próximas horas.   
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Con el control “Days” se selecciona la duración del periodo bajo estudio. Los periodos muy largos requieren 

más tiempo para descargar los datos y es más probable que contengan algún dato aberrante. 
Por defecto, los análisis se realizan con los valores de mayor frecuencia guardados en la base de datos. Si los 

datos originales contienen errores o producen gráficos con excesiva variabilidad, se pueden utilizar los 
promedios diario, semanal, mensual o anual con sólo pulsar los botones de radio “Day”, “Week”, “Month” o 
“Year” respectivamente. Los promedios se encuentran están procesados en la base de datos de la organización 
mundial meteorológica y contienen menos errores que los originales. 

La variable a estudiar se selecciona en la lista desplegable “Select a variable”. Las variables que se pueden 
demandar a la base de datos son: 

• Velocidad del viento en km/h (WindSpeed). 

• Dirección del viento en grados sexagesimales (WindDirection). 

• Racha de viento máxima en km/h (WindGusts). 

• Temperatura en grados Celsius (Temperature) 

• Presión milibárica, corregida a la altura del mar (Pressure). 

• Presión milibárica sin corregir por la altura (StationPressure). 

• Humedad relativa, de 0 a 1 (Humidity). 

• Tasa de precipitación en cm/hora (PrecipitationRate). 

• Temperatura del punto de rocío en grados Celsius (DewPoint). 

• Fracción de cielo cubierto por nubes, de 0 a 1 (CloudCoverFraction). 

• Altura en metros de las nubes estimada en 5/8 del oscurecimiento de la nube (CloudHeight). 

• Visibilidad en kilómetros (Visibility). 

• Sensación térmica de temperatura (WindChill). 
Muchas de estas variables no están disponibles en las estaciones meteorológicas. En general, cuando el 

programa no tiene más de 10 datos válidos, informa al usuario de este problema. 
Los tipos de análisis disponibles son: 



 Annex E: Manual of the program WINDFREDOM 215 

 

 
• Gráfico de la evolución de la variable en el tiempo (Time series plot). 

• Histograma (Histogram) con la frecuencia de observación de la variable meteorológica, comparado con la 

distribución estadística normal y Weibull ajustada a partir de la media y varianza de los datos. 

• Rosa de vientos (Wind rose), mostrada como un histograma del vector de viento. La velocidad se 

descompone en componentes Norte-Sur y Este-Oeste y la frecuencia de observación es dibujada en una 

cuadrícula. 

• Espectrograma (Spectrogram), que muestra la evolución del contenido frecuencial de la señal con el tiempo. 
Al pulsar el tipo de análisis, se actualiza el número de días y el centro del intervalo de análisis. 
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E) Evolución de la variable en el tiempo (Time series plot) 
El primer paso en un estudio de datos meteorológicos es visualizarlos para detectar posibles anomalías en la 

serie. Esto lo podemos realizar pulsando el botón “Time series plot”. 

 

 
Por defecto, se muestran todos los datos disponibles. Las gráficas de más de una semana resultan poco 

informativas debido a las variaciones intradía. Dependiendo del periodo de estudio, es recomendable utilizar los 
datos diarios (que ocultan las variaciones intradías) o incluso las variaciones semanales, mensuales o anuales 
(que ocultan las variaciones estacionales). 

 

 

F) Histograma (Histogram) 
Para estudiar la variación estática del viento o el potencial eólico de un emplazamiento, se utiliza la frecuencia 

de ocurrencia del viento. En bastantes emplazamientos, la distribución estadística medida se puede aproximar a 
una distribución Weibull. El histograma también se puede realizar a otras variables meteorológicas, aunque en 
esos casos, la distribución normal puede ajustarse mejor a las observaciones. 

Al igual que el dibujo de la serie temporal, el histograma se puede basar en todos los datos disponibles 
(habitualmente, valores cada media hora y horarios) o en los datos diarios. 

Al utilizar la velocidad media 
diaria, las variaciones lentas 
de la variable aparecen más 
claras y los picos de viento 

son más evidentes 

Al utilizar todos los datos disponibles, 
la gráfica de la evolución tiene tanto 
detalle que resulta poco informativa 

debido a las variaciones intradía 
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G) Rosa de vientos (Wind rose) 
La rosa de viento se calcula en este programa como el histograma del vector de viento. La velocidad se 

descompone en componentes Norte-Sur y Este-Oeste y la frecuencia de observación en cada rango de la 
cuadrícula se dibuja en forma de altura de la barra. 

Aunque este formato es menos habitual que la representación polar del viento, permite una detección más 
rápida del rango habitual del viento en cada dirección y de la frecuencia de las calmas. Habitualmente, la barra 
de mayor altura corresponde a la cuadrícula con componentes del viento nulos (calmas). 

El histograma tridimensional puede girarse pulsando sobre él y arrastrando el ratón. A veces es útil la vista de 
pájaro para visualizar mejor la orientación del viento, ya que la frecuencia de ocurrencia de cada cuadrícula está 
codificado por colores cuya luminosidad es proporcional a su frecuencia. 

Trazo grueso conti-
nuo: ajuste de una 

distribución Weibull 

Trazo discontinuo: 
Ajuste de una 

distribución normal 
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La representación más habitual de la rosa de vientos en coordenadas polares. Puede verse que ambas son 
equivalentes. 
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La vista de pájaro del histograma tridimensional proporciona una visualización simlar a la representación 
polar de la rosa de vientos. 
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H) Espectrograma (Spectrogram) 
Las fluctuaciones de una magnitud aleatoria estacionaria (cuyas propiedades no varían en el tiempo) se puede 

realizar calculando la densidad espectral de varianza o PSD (del inglés “Power Spectral Density”). La 
densidad espectral de varianza indica en qué frecuencias se reparte la varianza de la señal. Esto permite 
cuantificar que porción de la varianza de la magnitud se debe a las oscilaciones diurnas, semidiurnas y de unos 
cuantos días. 

En la práctica, las propiedades del viento y de otras variables meteorológicas cambian en función de la 
situación atmosférica. Por ello, es conveniente dividir series largas de tiempo en porciones de unos pocos días y 
observar la distribución de la varianza en la frecuencia. Esto permite constatar si se producen patrones diferentes 
a lo largo del tiempo. 

El espectrograma consiste en una representación del contenido frecuencial de la señal en función del tiempo. 
Se suele estimar aplicando la transformada de Fourier a pequeñas porciones de la serie temporal. Esto permite 
estudiar señales en el dominio del tiempo y de la frecuencia conjuntamente. Se emplea habitualmente en audio y 
en tratamiento de señales de frecuencia variable. Su uso para la energía eólica es novedoso. 

La disposición que se ha elegido para en esta aplicación consiste en: 

• el periodograma en la esquina superior derecha; 

• el recorrido intercuartil junto con la media y el cuantil 5% y 95% en la esquina inferior derecha; 

• el espectrograma, propiamente dicho, en la esquina superior derecha.. 
El espectrograma muestra las oscilaciones que contiene una señal a lo largo del tiempo. El  promedio del 

espectrograma, es decir, el promedio de las oscilaciones de la señal es el periodograma. En la página siguiente se 
muestra como ejemplo la gráfica del aeropuerto de Zaragoza. 

Se ha utilizado la escala logarítmica para la frecuencia porque se observan mejor las oscilaciones de baja 
frecuencia en las variables meteorológicas. Cuando se utiliza la escala logarítmica en la frecuencia, se suele 
representar la densidad espectral de la varianza multiplicada por la frecuencia, f·PSD, ya que así el área 
sombreada del periodograma y la oscuridad en el espectrograma representan la varianza de la señal. Es decir, los 
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puntos más oscuros del espectrograma indican que se ha producido una oscilación en el tiempo y frecuencia 
correspondiente. Las zonas blancas del espectrograma indican ausencias de la frecuencia correspondiente al eje 
vertical en el instante de tiempo indicado por el eje horizontal. 

Por ejemplo, los emplazamientos cercanos al mar suelen mostrar oscilaciones semi-diurnas (frecuencia f = 2 
ciclos/día, con 2 picos de viento y 2 periodos de menor viento por día) mientras que en la zona del valle del Ebro 
las oscilaciones intradía más habituales son de frecuencia f = 3 ciclos/día (3 picos locales de viento y 3 periodos 
de menor viento por día). 

 

 

E.4.4. Selección de la estación meteorológica a comparar 

Uno de los objetivos del programa es comparar las oscilaciones entre dos estaciones. La estación de referencia 
(Station #1) se compara con una segunda estación (Station #2) en el dominio tiempo-frecuencia utilizando el 
ratio de los espectrogramas. 

La solapa de la segunda estación es análoga a la primera, salvo que en la segunda estación (Station #2) se 
utiliza el intervalo de tiempo de análisis ajustado en la solapa en la estación de referencia (Station #1). 

La gráfica siguiente muestra el espectrograma del viento en el aeropuerto de Pamplona como variable que se 
comparará posteriormente con el viento en el aeropuerto de Zaragoza. Lo primero que salta a la vista es el pico 
tan marcado que aparece en la frecuencia unidad (oscilación diaria). En el periodograma aparece como un pico 
mientras que en el espectrograma aparece como una franja horizontal oscura mientras que el resto es más claro. 
Esto indica que, en todos los subperiodos analizados, las oscilaciones diarias han predominado. 

Si nos fijamos en la escala de las gráficas, vemos que las oscilaciones del resto de frecuencias tienen un valor 
comparable en Pamplona y Zaragoza. Esto se observará mejor en la solapa de ratio de espectrogramas. 
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El cuantil del 5% es negativo en algunos periodos, indicando un error de medida sistemático que no se puede 
corregir al no tener más información de la estación. 

 

E.4.5. Periodograma y ratio entre espectrogramas 

Para señales determinísticas, se suele calcular la función de transferencia entre las dos magnitudes dividiendo 
el espectro de las señales. Utilizando la teoría clásica de sistemas lineales invariantes en el tiempo, las variables 
meteorológicas se podrían aproximar, a lo sumo, a un sistema multidimensional donde, en vez de utilizar una 
función de transferencia, habría que utilizar una matriz de funciones de transferencia y en donde las 
incertidumbres de modelado y medida se considerarían ruido. 

Un primer paso sería calcular el ratio de los espectros de la señal de salida (magnitud seleccionada en la 
segunda estación) respecto a la señal de entrada (magnitud seleccionada en la estación principal). En la práctica, 
este ratio es variable tanto en módulo como en fase y se representa en una gráfica de intensidad análoga a la 
utilizada para el espectrograma. 

El programa permite seleccionar variables distintas para cada estación meteorológica, e incluso se puede 
seleccionar la misma estación en la solapa Station #1 y Station #2 para comparar las oscilaciones de distintas 
variables meteorológicas en una misma estación. 
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En la gráfica anterior, se puede ver que las estaciones están separadas 133 km y que la velocidad media del 

viento en el la estación de Pamplona es mucho menor que en Zaragoza (0,44 m/s respecto 3.58 m/s). Esto 
también se observa en la gráfica temporal de la señal (la línea roja, correspondiente a la mediana de la velocidad 
en Zaragoza, estación #1 o de referencia, está por encima de la mediana de la velocidad en Pamplona, estación 
#2 o secundaria). Se han añadido los recorridos intercuartiles (cuantiles 25% y 75%) a la grafica temporal del 
viento. 

El hecho de que las velocidades de viento de Pamplona sean negativas durante las calmas hace que los 
resultados de la comparación deban tomarse con prudencia. Al no disponer de más datos sobre las estaciones, no 
se conoce si el anemómetro de Pamplona está en una posición relativamente más protegida del viento que el de 
Zaragoza. No obstante, el aeropuerto de Pamplona está rodeado de montañas y es lógico que la velocidad media 
sea menor allí.  

Las oscilaciones por debajo de la unidad o con colores claros indican que las oscilaciones tienen mayor 
magnitud en la estación #1 o de referencia , mientras que las oscilaciones por encima de 1 o colores oscuros 
indican que las oscilaciones han sido más acusadas en la estación #2 o secundaria. En la gráfica anterior se puede 
observar que las oscilaciones diarias son mayores en la estación2 (zona oscura horizontal correspondiente a 
frecuencia f = 1 ciclo/día). El resto de frecuencias muestra alternancias en sentido horizontal entre zonas claras y 
oscuras, indicando que el ratio entre la magnitud de las oscilaciones es relativamente variable. 

Median and quar-
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E.4.6. Coherencia entre dos series temporales 

En el caso hipotético que la serie temporal medida en una estación fuese igual a la medida en la otra estación 
multiplicada por una constante y sumada una desviación constante, el coeficiente de correlación sería la unidad. 
Si el valor instantáneo medido en una estación fuese independiente del medido en la otra estación, entonces el 
coeficiente de correlación sería nulo. 

En la práctica, las oscilaciones que se observan en una estación se reflejan parcialmente y con un cierto retraso 
o adelanto en la otra. Como hay una relación temporal entre las señales, es preferible utilizar la función de 
correlación normalizada entre las dos señales, en vez del simple coeficiente de correlación. 

Una de las técnicas más utilizadas para señales estacionarias es la coherencia, que muestra el coeficiente de 
correlación entre las oscilaciones de una cierta frecuencia entre las dos señales. Es de esperar que las 
fluctuaciones lentas sean bastante coherentes puesto que los cambios meteorológicos afecten amplias zonas 
geográficas. Por otra parte, las variaciones diurnas y semidiurnas están relacionadas en amplias zonas debido a la 
relación que existe con la radiación solar. Dado que las oscilaciones tienen magnitud y fase, la coherencia 

#1,#2γ
G es una magnitud compleja que tiene un módulo entre 0 y 1 y un desfase, que representa el retraso 

(ángulos positivos) o el adelanto (ángulos negativos) de las oscilaciones en la segunda magnitud respecto la de 
referencia. Se puede demostrar que la coherencia es la transformada de Fourier de la función de correlación entre 
las señales normalizada. 

La coherencia a una determinada frecuencia f es nula si las señales presentan oscilaciones a la frecuencia f de 
magnitud independiente entre sí o con un desfase totalmente aleatorio, o bien con una relación totalmente no 
lineal entre los fasores. El argumento de la coherencia corresponde al desfase promedio ϕ entre las oscilaciones 
de frecuencia f (el retraso o adelanto promedio τ se obtiene dividiendo el desfase ϕ en radianes por la frecuencia 
angular ω = 2πf ). 

I) Relación entre la fase y módulo de la coherencia 
Existen dos diferencias principales entre el ratio entre espectrogramas y el módulo de la coherencia: 

• El módulo de la coherencia está normalizado entre 0 y 1. 

• Ambas magnitudes pueden exhibir oscilaciones de una cierta frecuencia f pero en donde el retraso o adelanto 

entre ellas no sea constante. En ese caso, el ratio entre espectrogramas mostraría la relación entre las magnitud 

promedio de las oscilaciones, pero la coherencia sería nula. Esta discrepancia entre ratio de espectrograma y 

módulo de la coherencia es típica de la relación no lineal y compleja de la atmósfera. 
Si las perturbaciones que se observan en una estación, se experimentan con un cierto retraso o adelanto τ = 

ϕ /(2πf) constante en el tiempo (el periodo que cuesta viajar la perturbación). Esta hipótesis de turbulencia 
congelada o de Taylor implica que la fase de la coherencia sea ϕ = 2πf τ. Bajo esta hipótesis, el desfase es un 
valor determinístico y proporcional a la frecuencia y, por tanto, la coherencia será la unidad. 

En la práctica, las perturbaciones evolucionan mientras se transmiten en la atmósfera y por ello la coherencia 
de las señales es menor de la unidad. 

E.4.7. Fase de la coherencia entre dos estaciones (desfase entre los 
espectros) 

La fase de la coherencia indica el retraso medio τ entre las oscilaciones de cada serie temporal de frecuencia f. 
La fase se suele plegar al rango [-π,+π] o [0,2π] por conveniencia, pero el retraso o adelanto entre las 
oscilaciones pueden exceder un periodo de oscilación (τ > 1/f ).  

En tal caso, la fase puede exceder del rango [-π,+π] o [0,2π] y es importante desplegar la frecuencia para 
obtener una estimación real del retraso entre oscilaciones utilizando la fórmula τ = ϕ /(2πf). Los algoritmos 
básicos detectan saltos entre dos líneas espectrales de más de π radianes, pero en presencia de ruido y fenómenos 
no lineales es conveniente utilizar métodos más robustos. Para estimar la fase real del espectrograma se pueden 
utilizar algoritmos 2-D como los que se utilizan en tratamiento de imágenes (ver [415]). 

La gráfica siguiente muestra el desfase entre los espectros estimado a la derecha y la fase de la coherencia a la 
izquierda. Por conveniencia se ha añadido los cuartiles de las dos señales en la parte inferior. 

La estimación de la fase a bajas frecuencias no presenta problemas de estabilidad, ya que las señales muestran 
retrasos menores que el periodo de la oscilación. Estas oscilaciones lentas se observan con una diferencia de 
tiempo aproximadamente constante entre estaciones y para dichas oscilaciones la hipótesis de Taylor es 
aproximadamente válida. 
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Las oscilaciones intradía sí presentan retrasos significativamente mayores al periodo de la oscilación y la fase 
está muy replegada. Por tanto, es difícil estimar con precisión el número de pliegues de la fase para frecuencias 
mayores a 2 ciclos/día (oscilaciones más rápidas que las semidiurnas). El gráfico de intensidad muestra la 
elevada variabilidad de la fase de las oscilaciones intradía. Esta variabilidad indica que las fluctuaciones rápidas 
pueden ocurrir  antes en cualquiera de las dos estaciones, sin una relación temporal simple. Para dichas 
oscilaciones rápidas, la hipótesis de Taylor no es válida y estas fluctuaciones se pueden considerar locales y 
esencialmente independientes entre las dos estaciones. 
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E.4.8. Módulo de la coherencia entre dos estaciones 

El módulo de la coherencia es muy informativo. La coherencia a la frecuencia f  de las señales no es constante 
en el tiempo. En el gráfico de la página siguiente se puede ver zonas oscuras, que indican que se ha observado en 
ambas estaciones fluctuaciones significativas en el instante y frecuencia correspondiente. Las zonas blancas 
indican que no se han observado fluctuaciones significativas de las características correspondientes a las 
coordenadas en los ejes tiempo-frecuencia en, al menos, una de las dos estaciones. 

 
Un ejemplo de la información que se puede obtener del módulo de la coherencia es la gráfica de la siguiente 

página. La gráfica muestra que las fluctuaciones lentas muestran una fuerte correlación (coherencia cerca de la 
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unidad) hasta una frecuencia cerca de 0,3 ciclos/día entre los aeropuertos de Zaragoza y Pamplona. Entre 0,3 
ciclos/día y 0,7 ciclos día, la coherencia disminuye hasta un valor de 0,2. Sin embargo, aumenta súbitamente 
para fluctuaciones diarias (f = 1 ciclo/día) debido a que la dinámica atmosférica y el calentamiento debido a la 
radiación solar relaciona las oscilaciones diarias entre emplazamientos lejanos. Este fenómeno también ocurre 
con las oscilaciones de frecuencia f = 3 ciclos/día (3 picos locales de viento y 3 periodos de menor viento por 
día) y otras frecuencias armónicas debido a que la modulación diaria del viento no es totalmente senoidal. 

Exceptuando las frecuencias armónicas, las oscilaciones intradía están poco correladas y esto se puede deber a 
que las oscilaciones rápidas tienen una extensión geográfica significativamente menor que la distancia entre las 
estaciones meteorológicas (133 km). 

E.5. Resumen de la comparación entre las estaciones 
La gráfica de la página siguiente muestra un resumen de la coherencia entre las estaciones y lapso promedio 

entre las fluctuaciones. En las estaciones de Pamplona y Zaragoza, separadas 133 km, el módulo de la 
coherencia, salvo la frecuencia diurna y sus armónicos, se puede aproximar por un modelo fraccionario que 
decae con orden 0,81 ≈ 5/6. Es decir, la tendencia de la coherencia se comporta de forma parecida a los espectros 
habituales del viento (Kaimal, Von Karman,...), que decaen con orden 5/6.  

La tendencia de la coherencia se reduce a la mitad cerca de la frecuencia diaria, lo que indica que al agregar la 
generación eólica de los alrededores de Pamplona y de Zaragoza se produce, en promedio, un filtrado de las 
oscilaciones de frecuencias intradiarias no armónicas, con orden 0,81 (un filtrado menor que el que se esperaría 
de un filtro paso bajo de primer orden). No obstante, el comportamiento real se aleja significativamente del 
promedio en instantes concretos, tal como se ha visto en el análisis tiempo-frecuencia del viento. 

El retraso entre la observación de una fluctuación en una estación y otra no es constante. Esto es una pequeña 
muestra de la complejidad de la predicción meteorológica. El retraso entre las observaciones depende 
grandemente de la dirección del viento, que no se ha considerado en esta comparación. Las estaciones 
meteorológicas se encuentran alineadas, en gran medida, con las dos direcciones de viento predominante (cierzo 
y bochorno). Por tanto, las conclusiones que se obtienen del retraso deben tomarse como valores medios, 
representativos de la dirección del viento más habitual (cierzo). Con bochorno, la diferencia de tiempo puede ser 
a la inversa, ya que los dos vientos predominantes tienen direcciones prácticamente opuestas. 

Las oscilaciones que duran varios días se suelen presentar con un día de retraso (oscilaciones de 5 días de 
periodo o f ~ 0,2 ciclos/día) o con un día de antelación (rango de frecuencias 0,3 ciclos/día <f < 1,5 ciclos/día).  

A partir de 1,5 ciclos/día (fluctuaciones intradiarias), el módulo de la coherencia tiene un valor alrededor de 
0,3 o menor y, debido a la baja coherencia, la estimación de la fase tiene mucha incertidumbre, dependiendo en 
exceso del algoritmo utilizado y de los datos suministrados. En todo caso, retraso de hasta 10 días para 
fluctuaciones intradiarias no son verosímiles y no se puede concluir ningún patrón temporal con las herramientas 
utilizadas. 
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El programa EQWIGUST genera rachas de viento equivalente a partir del espectro de ese proceso. El 

programa tiene varias solapas en las cuales se seleccionan los parámetros del viento que se quiere analizar. A 
continuación se presentan las secciones del programa. 

Para poder utilizar el programa interactivo para visualizar datos de estaciones meteorológicas mundiales, es 
necesario tener instalado en el ordenador el visor gratuito Mathematica PlayerTM o bien la versión 7 del 
programa de pago MathematicaTM. El proceso para instalar el visor gratuito Mathematica PlayerTM se puede 
consultar en el anexo B  

F.1. Espectro del viento equivalente 
En esta pestaña se caracteriza el viento en el emplazamiento a estudiar. Un proceso normal está caracterizado 

totalmente por el espectro, por lo que este apartado consiste en fijar el tipo de espectro a utilizar (Kaimal, 
Karman, Davenport,…) y sus parámetros asociados. En general, los parámetros originales de cada espectro se 
han convertido a la nomenclatura utilizada en la norma IEC 61400-1. En vez de las longitudes de escala 
utilizadas en los espectros de Kaimal, Karman, Davenport,… se ha utilizado la escala espacial de la turbulencia 
Λ1. La turbulencia se obtiene multiplicando el viento a la altura de la turbina por la intensidad de turbulencia. 

 
 

Cuando en el programa se escoge aplicar el filtro rotórico, el espectro del viento se filtra para representar la 
diversidad espacial en el área rotórica. Actualmente, el programa aplica un filtro paso-bajo de primer orden, pero 
en un futuro próximo se habilitará la selección de un filtro de primer (el referido por la literatura y que implica 
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un promediado a lo largo de las palas) o de segundo orden (más de acuerdo con los datos experimentales 
obtenidos y que representaría un filtrado a lo ancho del área barrida). 

F.2. Generación de serie aleatoria de viento equivalente 
En esta pestaña se sintetizan rachas de viento equivalente sin imponer ninguna condición especial. Es decir, 

correspondería a un intervalo cualquiera de los que se miden con un anemómetro. 
Los controles sirven para ajustar la transformación del proceso normal, la duración de la muestra sintetizada, 

el paso de discretización temporal. El control del número de muestra aleatoria sirve para generar rachas distintas. 
 

 

F.3. Forma promedio de racha tipo pico 
La forma de una racha pico, en un proceso normal, no depende de su amplitud. Por ello resulta interesante 

analizar dicha racha y sus parámetros (duración típica, rampa de subida y bajada, energía contenida en la 
racha,...).  

La solapa de la forma media de la racha pico indica no sólo cómo es la racha, sino que da la frecuencia 
estimada de ocurrencia. Esta frecuencia es bastante fiable para rachas convencionales, pero puede presentar 
errores importantes para rachas extremas, las que se producen menos de una vez a la semana. Además, el 
proceso es simétrico en el tiempo (la racha tiene la misma forma si se visualiza cámara adelante o atrás). Sin 
embargo, medidas experimentales indican que la rampa de subida es más pronunciada y la de bajada es más 
tendida. 

Una característica interesante a citar es que la racha de viento equivalente tiene una forma bastante menos 
picuda que la del viento convencional. Si no se hubiera elegido aplicar el filtro rotórico, la racha correspondería 
a viento convencional y su forma sería considerablemente más impulsiva. Esto se debe a que el espectro del 
viento equivalente tiene un menor contenido de frecuencias altas (la frecuencia de corte en una turbina 
multimegawatio es del orden de algunas centésimas de hercio). 

La norma IEC 61400-1, sobre la seguridad estructural de las turbinas, recomienda utilizar una racha tipo pico 
que se parece bastante a la racha de viento equivalente mostrada en la figura anterior. Las rachas medidas en 
campo son más impulsivas, pero la norma utiliza implícitamente una racha de viento equivalente para analizar la 
seguridad estructural de la máquina. 
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F.4. Generación de racha tipo pico aleatoria 
En esta solapa se muestra una muestra aleatoria de una ráfaga pico, superpuesta a la forma promedio 

más/menos la desviación estándar del viento. El control del número de muestra aleatoria sirve para generar 
rachas distintas. De esta forma se puede comprobar la variabilidad en la forma de las rachas. 

En la figura siguiente se puede observar que aunque la amplitud de la racha es de 1 m/s respecto la media de la 
racha (10 m/s), el recorrido del viento es de 1,7 m/s. Esto se debe a que el periodo utilizado para generar la racha 
es de solo tres veces la duración media de la misma. 

 

 
 

F.5. Generación de racha tipo rampa aleatoria 
En esta solapa se muestra una muestra aleatoria de una ráfaga tipo rampa, superpuesta a la forma promedio 

más/menos la desviación estándar del viento. La rampa de la racha se define por un intervalo de tiempo Δt y el 
salto de velocidad, Δv. 
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La forma de la racha depende de la rampa de la racha, Δv/Δt. Es decir, la racha tiene una duración típica para 
cada rampa. Además, la solapa da información adicional sobre la misma 

El control del número de muestra aleatoria sirve para generar rachas distintas. De esta forma se puede 
comprobar la variabilidad en la forma de las rachas. 

En la figura siguiente se puede observar que aunque se ha seleccionado una rampa de duración Δt= 1 s y 
amplitud Δv.= 0,25 m/s, la duración típica es del orden de unos 10 s. 

la amplitud de la racha es de 1 m/s respecto la media de la racha (10 m/s), el recorrido del viento es de 1,7 
m/s. Esto se debe a que el periodo utilizado para generar la racha es de solo tres veces la duración media de la 
misma. 
 

 
 

 
 

Forma promedio 
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G.1. Frequently Used Symbols and 
Abbreviations 

G.1.1. General Acronyms 

ACF = Auto correlation function (of a random signal) 
ACVF = Auto covariance function (of a random signal) 
CCF = Cross correlation function (of two random signals) 
CDF = Cumulative Density Function (of a random signal) 

( , )N μ σ^  = Complex Normal Distribution of mean μ and 
standard deviation σ. 

CPSD = Cross Power Spectral Density (of two random 
signals) 

CRV = Complex Random Variable 
CTMC = Continuous Time Markov Chain 
DAQ = Digital Acquisition Board 
DFIG = Doubly Fed Induction Generator 
DFT = Discrete Fourier Transform 
DTMC = Discrete Time Markov Chain 
FFT = Fast Fourier Transform 
FMC = Fuzzy Markov Chain 
FOT = Fraction-Of-Time probability framework 
HMM = Hidden Markov Chain 
IDFT = Inverse Discrete Fourier Transform  
LV = Low Voltage 
MC = Markov Chain 
MCA = Markov Chain approximation 
MCMC = Monte Carlo Markov Chain 
MCS  = Monte Carlo Simulation 
MDP = Markov Decision Process 
MV = Medium Voltage 
PCC = Point of Common Coupling 
PDE = Partial Differential Equation 
PDF =Probability Density Function 
PMF = Probability Mass Function 
PSD = Power Spectral Density (of a random signal) 

stP  = Short Time Flicker Emission Level 
RMS = Root Mean Squared (value of a signal) 
RV = Random Variable 
SDE = Stochastic Differential Equation 
SCR = The short circuit ratio is the ratio of the short circuit 

power at the point of common coupling of the grid, Sk,PCC, 
to the installed wind power, N·Sn in a cluster of N turbines 

SCIG = Squirrel Cage Induction Generator 
Sn = Assigned power of a wind turbine 
SOC = State Of Charge (of a battery) 
VRIG = Variable Resistance Induction Generator 
WF = Wind Farm 
WMO = World Meteorological Organization 
WT =Wind Turbine 

G.1.2. Aerodynamic variables and 
functions 

a = axial induction factor at the blade element. 
a’ = the tangential (or angular) induction factor at the blade 

element.  

( , )PC λ θ  = turbine power coefficient. 
( , )qC λ θ  = turbine torque coefficient = ( , ) /PC λ θ λ  

AUwind = integral length scale of the turbulence. 
λ = R Ωrotor/Ueq= blade tip speed ratio (dimensionless blade 

speed). 
''( )i rλ  = element speed ratio = cotangent of the relative flow 

angle at the blade element  (see Fig. 294 for details). 
' ( )i rλ  = effective blade tip speed ratio. 

〈λ’〉 = mean equivalent blade tip speed ratio. 
〈λ’2〉 = mean equivalent squared inverse of blade tip speed 

ratio. 
Nblades = number of blades in the turbine. 
θ = blade pitch angle. 
Ωrotor = is the rotor angular speed in rad/s. 

( )UeqPSD f+  = dimensionless one-sided power spectral density 
of equivalent wind Ueq. 

airρ = air density in kg/m3. 
Trotor = turbine torque in N·m. 
ΔTrotor = turbine torque deviation from its mean in N·m. 
τfzc = lag of the first zero-crossing of ACF(τ). 
TUwind = integral time scale of the turbulence. 

windU = longitudinalU = longitudinal component of the wind 
measured in m/s with an ideal anemometer at hub height 
and unperturbed by the presence of any wind turbines. 

verticalU = vertical component of the wind in m/s. 
lateralU = lateral component of the wind in m/s. 

Ueq = 3

2 
( , )

rotor

air q

T
R Cρ π θ λ

= equivalent wind in m/s. 

ΔUeq = Ueq– 〈Ueq〉 = equivalent turbulence in m/s. 
2 2 2( )eq eq eqU U UΔ = − = effective quadratic turbulence in 

m2/s2. 
( )

wind
U t�  ≡ dUwind(t)/dt = Instantaneous air accelearation 
 

G.1.3. Power output variables and 
functions 

The main variables and parameters are listed bellow in 
order of appearance. 

( )farmP t  = real power output of wind farm at time t. 
( )farmQ t  = reactive power output of wind farm at time t. 

f = frequency in Hertzs.  
j = 1− = the imaginary unit. 
w = 2πf = angular frequency in rad/s. 
R = rotor radius in m. 

( )farmP f
JG

 = phasor component of wind farm power output at 
frequency f. 

( )turbine iP f
JG

 = phasor component of wind turbine number i at 
frequency f. 

1( )P f
JG

= phasor component of power output at frequency f 
from one turbine. 
( )NP f

JG
= phasor component of power output at frequency f 

from a turbine cluster with N turbines. 
2

( )farmP f
JG

= 2 ( )farmP f = PSD of the farm power output at 
frequency f. 

Annex G: Symbols and Nomenclature 
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2
( )turbine iP f

JG
= 2 ( )turbine iP f = PSD of the turbine number 

i at frequency f. 
( )J f = 2 2( ) / ( )farm turbineP f P f  = admittance at frequency 

f of the wind farm power. 
,i jϕ /3 = angle difference between blades of turbines i and j  
(in a three bladed rotor). 

G.1.4. Model parameters 

r = system order of the considered signal (i.e., half the slope 
trend of PSD in a double logarithmic plot). 

1
2
n

P
P

= overall fluctuation level of the turbine (i.e., the PSD 
trend line at 1 Hz) in p.u. units. 

0P = squared average of tower shadow power oscillation 
relative to 1P . 

0f = mean tower shadow frequency. 
2P = squared noise level on power output relative to 1P . 
nP = nominal power of the turbine. 

N = number of equivalent turbines in the farm. 
f1 = cut-off PSD frequency or frequency where PSD starts 

dropping with slope 2r in a double logarithmic plot 
(f1 ≤0,02 Hz). 

f2 = 21/τ = high pass PSD frequency or minimum frequency 
where PSD remains approximately constant (f2 ≥10 Hz). 

fblade = frequency of blade crossing the tower (in a three 
bladed turbine fblade = 3 Ωrotor /2π and for megawatt 
turbines, 0,5 Hz ≤ fblade ≤ 2 Hz). 

σblade
2 = contribution of wind shear and tower shadow to 

power variance. 
1τ  = 1/f1 = characteristic time associated with the PSD cut-

off frequency = zero of the transfer function modeling the 
power output of wind farms or turbines (without sign). 

2τ  = 1/ f2= characteristic time associated with PSD noise 
floor = root of rational transfer function modeling the 
power output of wind farms or turbines (without sign). 

G.1.5. Markov Decision Processes 

aij[k] = probability of having observed a transition from state i 
to j at instant k. 

βcl = confidence level. 
βsun = altitude angle of the sun 
γi = Centroid of state i. 

1 2[ , ,..., ]mγ γ γ γ=
G F  is the vector of the state centroids. 

π = [π1, π2, …, πm]F = the stationary distribution of the 
Markov chain. 

ϕi = Mode of ( )Pr | [ ]istate kx   
λi = eigenvalue of P, numbered in decreasing absolute order 

(|λi| ≥ |λi+1|) starting from λ1 = 1. 
Fi = observed occurrences of state i 
Fij  = observed transitions from state i to j 
l = number of observed samples of y[k]. 
m = number of states of the Markov chain. 
P = [pij]s×s = transition matrix of a ergodic Markov chain. 
P[k] =

1 2 3 1 2 31 2 3 , ,Pr( |k)Pr( |k)Pr( |k) |n n n n n nn n nΣ Σ Σ P  = basic 
transition matrix at instant k. 

pij = forward transition probabilities from state i to state j of 
the Markov chain. 

P�  = [ ijp� ]s×s = backward transition probabilities. 
ˆ ˆ[ ]ijp=P s×s = estimate of transition probability of the 

Markov chain. 

1 2 3, ,|n n nP  = basic transition matrix given the season n1, type of 
day n2 and hour period n3. 

season(n1,k) = Pr(Seasonal Pattern= n1 |k) = Probability 
that the behaviour of the system corresponds to the 
seasonal pattern numbered as n1 at instant k. 

hourlyPeriod(n3,k) = Pr(hour classification= n3 |k) = 
Probability that the behaviour of the system corresponds 
to the intraday pattern numbered as n3 at instant k. 

weekDay(n2,k) = Pr(Type of day= n2 |k) = Probability that 
the behaviour of the system corresponds to the weekly 
pattern numbered as n2 at instant k. 

s[k] = number of the most likely state of the Markov chain at 
instant k.  

Λ = the diagonal matrix whose diagonal elements are the 
corresponding eigenvalues (i.e. Λii = λi). 

VL = the square (m x m) matrix whose ith row is the basis of 
the left eigenvector L

iv
G of P, normalized with unity sum of 

vector components:   P = VL
–1Λ VL

T. 
VR = the square (m x m) matrix whose ith column is the basis 

of the right eigenvector R
iv
G of P:   P = VR

TΛ (VR
T) –1. 

[ ]kv
G

=[v1[k], v2[k], …, vm[k]] = vector of wind farm power 
output in the canonical basis of left eigenvectors of  P̂  at 
instant k.  

y(t)= observed variable in the continuous time domain. 
Recall that ( = )y t k tΔ =y[k] 

y[k]= observation at instant k (for instance, the moving 
average computed during tΔ  period of the wind or solar 
power output).  

〈y〉 = mean of observations y[k]. 
ŷ[ ]k = estimated observation at instant k. 
(̂ )y t = estimation of the periodically observed variable y[k] in 

the continuous time domain. Recall that ( = )y t k tΔ� =y[k] 
y[ ]k� = kernel scale factor used to estimate (̂ )y t .  
[ ]tx
G

=x(t)=[x1(t), x2(t), …, xm(t)] = vector of estimated 
probability (or membership degree) of Markov state in 
continuous time domain. Recall that x( t k t= Δ )=x[k]. 

[ ]kx
G

=x[k]=[x1[k], x2[k], …, xm[k]] = vector of probability (or 
membership degree) of each state of the Markov chain at 
instant k.  

z(t)= instantaneous wind farm power output in continuous 
time domain. Recall that  ( ) ( ) /t

t ty t z t dt t−Δ= ∫ Δ  
u[k]= most likely state for the observation y[k]. 
z[k]=[z1[x[k]], z2[x[k]], …, zm[x[k]]] = output of the fuzzy 

classification representing the state probability at instant 
k. 

G.2. Nomenclature 
G.2.1. General conventions 

The utility of a mathematical notation is proportional to the 
amount of information it condenses. Thus, notation has been 
intended to be as simple, uniform and consistent with 
specialized literature conventions as possible, with the aim of 
making this thesis to be as easy to read as possible. 

Lower-case symbols normally denote instantaneous values, 
sampled random variables, Fourier series coefficients and 
vectors. Upper-case symbols normally denote phasors, 
spectral phasor densities, statistical distributions and 
matrixes.  

Vector, as x, and matrices, as M, are denoted in bold face 
whereas their elements are in italic lowercase with indexes 
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subscripted, as mij or xi. When confusion among the whole 
vector/matrix and its elements can arise, the vector/matrix has 
been eventually remarked with an arrow on top.  

Complex variables and phasors have been remarked with 
an arrow on top, as in S

JG
, and their modulus is indicated with 

single vertical bars, as in S
JG

. Arrows have been used to 
emphasize the vectorial meaning of phasors, which condense 
in a complex number the amplitude and lag from the time 
reference of an almost ciclostationary process. Special care 
has been taken to notice complex stochastic variables to avoid 
applying definitions or properties which are valid only for 
real random variables, instead of the extended generalized 
versions valid also for complex random variables. 

Re(·) and Im(·) state for the real and imaginary part of a 
complex number. When Re is eventually used to refer to the 
Reynolds number of a flow, it is clearly stated in the text. 

Probability is denoted by Pr(·) to avoid confusion with real 
power, P. Average values are denoted by angle brackets ·  
and estimated elements are stressed with the circumflex 
accent, as σ̂ , when it is necessary to distinguish real and 
estimated parameters, as σ . 

G.2.2. Nomenclature in frequency 
domain 

In the literature, apparent and complex power and power 
spectral density, both are denoted by the letter S. Since this 
thesis is focused on the grid, S and S

JG
 stand for apparent and 

complex power respectively unless otherwise stated in the 
text. Hence, power spectral density is referred as PSD(f). 

When the context is sufficiently clear and there is no 
misleading risk, indexes or explicit functional dependences 
have been dropped to clarify expressions. Moreover, the 
phasor modulus is also notated removing the simple vertical 
bars and the top arrow, S S≡

JG
, for the sake of simplicity 

when there is no confusion risk. 

a) General Fourier Conventions 
The usual conventions in signal theory and stochastic 

processes have been used for Fourier Transforms. 
On the one hand, complex Fourier coefficients and two-

sided spectrums are preferred in signal processing theory and 
its algorithms because the notation and computer codes are 
simpler. In brief, two-sided spectrums are best suited for 
calculus. Spectral calculus are based on two-sided spectrums, 
complex Fourier coefficients and regular frequency f 
measured in Hertzs, which are the default convention in this 
work. 

On the other hand, negative frequencies can be valid 
mathematically, but not physically. Peak (i.e. amplitude) or 
rms phasors are used for analyzing data. Phasors in peak –
when x(t) is an instantaneous value– or rms units –when x(t) 
is an rms value– are employed. The charts only show positive 
frequencies to be crisper since Fourier transform of a real 
signal has Hermitian symmetry. Since no negative 
frequencies are shown at those graphs, one-sided magnitudes 
are represented unless otherwise stated. In brief, one-sided 
spectrums are used for visualizing data. 

One-sided spectrums are used just only in plots and in a 
few more convenient cases. To avoid ambiguities, whichever 

a one-side value is used, it is noticed with a plus exponent, as 
in ( )X f+

G
, indicating that only non-negative frequencies must 

be considered. Even though using two-sided spectrums in 
definitions and calculations and using one-sided spectrums in 
plots might seem a notational inconsistency, this decision is 
quite pragmatic since only the positive frequencies are 
customarily represented in Electrical Engineering and 
Meteorology. 

The two-sided magnitudes considered in this work are 
hermitic since all the signals are real. The two-sided ( )X f

G
and 

one-sided ( )X f+
G

 magnitudes have been defined so that its 
integral in the corresponding (one or two sided) frequency 
domain is the same. This notation agrees with usual 
conventions for Fourier coefficients and power spectral 
densities since most signals in this work are either stochastic 
or periodic. This convention implies that a 2 factor is applied 
to plot the one-sided magnitudes from the two-sided 
variables: 

 ( ) 2 ( )X f X f+ ≡
G G

 ∀f >0 (786) 

 (0) (0)X X+ ≡
G G

 (DC term or ( )x t ) (787) 

 ( ) 0X f+ ≡
G

       ∀f <0 (788) 

The former definitions (786) to (788) has the advantage 
that the same formulas are valid for one and two sided 
variables. Notice that in some areas of signal theory the 2 
factor is not applied and congruently, factors which depends 
on the considered frequency domain (one or two side) must 
be included in the calculus. 

In practice, the continuous signals are discretized to be 
measured and they have finite duration, usually from time 
origin up to time T. Although the general theoretic treatment 
is continuous, special care has been taken so that final 
expressions can be applied straightforward to real 
measurements, just replacing continuous Fourier transforms 
and integrals by their discrete counterparts. Integrals must be 
interpreted as sums with an eventual factor due to the sum 
step. Infinite integrating limits must be limited to the data 
boundaries. Notice also that anti-aliasing filtering, window 
tapering and padding are customarily applied to real data for 
adjusting leakage (or picket fence effect), spectral resolution 
and uncertainty of the estimates, although it might be 
eventually omitted in the text. 

b) Scaling Fourier Transforms to obtain spectral 
measures not dependent on data length 

The Fourier transform of a periodic signal is proportional 
to the number of cycles considered in the transform. Hence, 
the Fourier coefficients, which are basically the Fourier 
transform of the discretized signal divided by signal length, 
are customarily used because they are the component 
amplitudes, irrespective of the number of cycles considered. 

In a stochastic signal, the Fourier transform is customarily 
divided by √T since its squared absolute value is, in average, 
the PSD(f) independently of signal duration –PSD(f) is a 
measure of signal variance at frequency f–. 

In signals which vanish to zero except in a limited domain, 
it is customary to use the Fourier transform without scaling 
since its squared absolute value is considered to be its energy 
at frequency f. 
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Notice that the type of signal (energy-bounded pulse, 
periodic signal or stochastic process) should be stated (using a 
subscript or in the text) to know which scaling factor applied 
to the Fourier transform. If nothing is stated, then 

( )X f
G

should be interpreted just as the Fourier transform of the 
signal divided by √T  as in (791). 

c) Conventions for pulses. 
If x(t) is a signal of finite energy defined in 0 ≤ t ≤ T, then 

its frecuencial content is characterized through its Fourier 
transform, denoted by F: 

 { }2  

0
( ) ( ) ( )

T
j f tX f x t e dt x tπ−= =∫

G
F F  (789) 

Whenever the sample duration T of the original time series 
should be noticed, the notation ( )X f

G
F  may be replaced by 

, ( )TX f
G
F . 
The units of ( )X f

G
F  are the same than the ones of x(t) per 

Hertz. If the signal is padded with zeroes at its domain 
extremes, ( )X f

G
F  does not vary. If the pulse is symmetric 

respect time origin, then the Fourier transform is real. 

d) Conventions for periodic signals 
If x(t) is a periodic signal of period T, its Fourier transform 

is a modulated Dirac comb. The complex Fourier coefficient 
of order k, 

k
X
G

, is the conventional Fourier transform of the 
signal during one or several periods, scaled by the sample 
duration, at harmonic frequency /f k T= : (790) 

{ }2 /

0

1 1 1
( ) ( ) ( / )

T j t k T
kX x t e dt x t X f k T

T T T
π−= = = =∫

G G
FF   

The units of kX
G

 is the same than x(t). The Fourier 
coefficients are notated with the k subscript to distinguish 
them from the Fourier transform of stochastic signals or 
bounded-energy pulses. The amplitude of the fluctuation of 
harmonic k is * 2k k kX X X−+ =

G G G
 in peak values and its 

initial phase is [ ]kArg X
G

, independently of signal period T.  
The complex Fourier coefficient kX

G
 can include signal 

duration in the subscript, as in /k TX
G

, to indicate the sample 
duration T from where the Fourier coeficients has been 
estimated. 

e) Conventions for stochastic processes 
The power of a stochastic signal in any frequency band 

does no statistically depend on signal duration T. But its 
Fourier coefficients corresponding to a given frequency f = 
k/T decreases inversely proportionally to √T (for a Gaussian 
signal). Thus, a √T factor is preferred in stochastic processes 
to obtain a spectral measure whose mean does not depend on 
signal duration T.  

The Fourier transform of a stochastic signal in time domain 
x(t) of length T, divided by √T is notated as ( )X fσ

G
:  (791) 

{ }2  

0

1 1 1
( ) ( ) ( ) ( )

T j f tX f x t e dt x t X f
T T T

π
σ

−≡ = =∫
G G

FF   

Fortunately, the definition (791) has the advantage that the 
variance of ( )X fσ

G
 is the two-sided power spectral density, 

2
,| ( )|TX fσ

G
= ( )xPSD f , which is independent of the sample 

length and it characterizes the process [416].  

( )X fσ

G
 will be referred as stochastic spectral phasor density 

or just (stochastic) phasor for short. The units of ( )X fσ

G
 are 

the same than the ones of x(t) per square root of Hertz. 
The scale factor of , ( )TX fσ

G
 is between the conventional 

Fourier transform, used for pulses and signals of bounded 
energy, and the Fourier coefficients, used for pure periodic 
signals.  

f) Power spectral density ( )xPSD f , cross power 
spectral density ( )xyCPSD f

JJJJJJG
and squared 

complex coherence 2 ( )xy fγ
G

 
The power spectral density ( )xPSD f  and the cross power 

spectral density ( )xyCPSD f
JJJJJJG

 of stochastic processes x(t) and 
y(t) are formally defined in the fraction-of-time (FOT) 
probability framework [417] as the limiting average of power 
density for long data sets.  (792) 

2  
, , 0

1
( ) lim ( ) lim ( )

T j f t
TT T

X f X f x t e dt
T

π
σ σ

−
∞ →∞ →∞

≡ = ∫
G G

 

 
2

2  2
,0

1
( ) lim ( ) lim | ( )|

T j f t
x TT T

PSD f x t e dt X f
T

π
σ

−

→∞ →∞
≡ =∫

G
 (793) 

*
2 2

0 0

( )

1
lim ( ) ( )

xy

T Tj f t j f t

T

CPSD f

x t e dt y t e dt
T

π π− −

→∞

≡

⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜≡ ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠∫ ∫

JJJJJJG

 (794) 

In fact, the use of very long samples for the estimation of 
spectral measures would encompass inevitably very complex 
and non-stationary meteorological phenomena. For the 
processes to be tractable, they are assumed to be wide-sense 
stationary. Thus, the weather characteristics and the wind 
turbine operational points should remain fairly constant in 
each data series. Hence, this limits the applicable time 
horizon of this approach, making impractical the former 
definitions.  

Fortunately, they can be alternatively defined as the 
ensemble average estimates from data sets of finite duration 
[418, 419] according to the classical stochastic-process 
framework. 

 , ,( ) ( )TX f X fσ σ∞ =
G G

 (795) 

 2
,( ) | ( )|x TPSD f X fσ=

G
 (796) 

 *
, ,( ) ( ) ( )xy T TCPSD f X f Y fσ σ=

JJJJJJG G G
 (797) 

The previous definitions stresses the meaning of ( )xPSD f  
as the average of many experimental power spectrums, 

2| ( )|X fσ

G
, and ( )xyCPSD f

JJJJJJG
 as the average of many 

experimental cross spectrums, *( ) ( )X f Y fσ σ

G G
 for some 

operational conditions. They are applicable in wind energy 
providing the spectral averages are computed while the 
system behaviour do not change significantly. In fact, 

, ( )TX fσ

G
, 2

,| ( )|TX fσ

G
 and *

, ,( ) ( )T TX f Y fσ σ

G G
 should be 

estimated for each significantly different operational mode of 
the system. The determination of the operational conditions to 
be considered for a given representation precision is out of 
the scope of this thesis and it is a future line of work [46]. 

To avoid confusions, the one-sided power spectral density 
is denoted by PSDx

+(f) to distinguish from the two-sided 
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power spectral density, PSDx(f), and their units are the same 
than x2(t) per Hertz. 

If x(t) is a normal process, then ( )X fσ

G
 is a complex 

Gaussian variable [420] of zero mean and variance ( )xPSD f . 
Moreover, the modulus of , ( )TX fσ

G
 is a Rayleigh random 

variable of mean: 

 | ( )|X fσ

G
= 4 ( )xPSD fπ = 0,886 ( )xPSD f  (798) 

The modulus of ( )xyCPSD f
JJJJJJG

 is the spectral analogue of the 
absolute value of the covariance and its phase is the average 
angle lag between signals x(t) and y(t) at frequency f.  For 
instance, if input current and voltage in a circuit are stochastic 
signals, the ( )viCPSD f

JJJJJJG
 is just the average complex power at 

frequency f. 
The cross power spectral density is also referred as “cross-

spectral density”. The terms “cross-power spectrum” or 
“cross-spectrum” are eluded to avoid ambiguities in the 
normalizing factors. Unlike the variance spectrum, 

( )xyCPSD f
JJJJJJG

 has both real and imaginary parts, which are 
called respectively the cospectrum, Re ( )xyCPSD f⎡ ⎤

⎢ ⎥⎣ ⎦
JJJJJJG

, and the 
quadrature spectrum, Im ( )xyCPSD f⎡ ⎤

⎢ ⎥⎣ ⎦
JJJJJJG

. 
For a wide-sense stationary process and according to the 

Wiener-Khinchine theorem, the Fourier transform of the 
autocorrelation function ( )xACF τ  and the cross-correlation 
function ( )xyCCF τ are ( )xPSD f  and ( )xyCPSD f

JJJJJJG
, 

respectively. 
The complex coherence ( )xy fγ

G  is the ( )xyCPSD f
JJJJJJG

 
normalized by the root of the PSD of signals x(t)  and y(t) 
and it is the spectral analogue to the regression correlation 
coefficient. The modulus of the coherence, | ( )| ( )xy xyf fγ γ≡

G , 
is a number between 0 and 1 that indicates the correlation of 
amplitudes in the signals x(t) and y(t) at frequency f. Unity 
coherence indicates perfect correlation of amplitudes at 
frequency f  and zero indicates that the amplitudes at 
frequency f are independent random variables. 

The argument of ( )xy fγ
G  gives information of the phase 

delay of the signal y(t) respect x(t) at frequency f. Usually, 
the squared complex coherence 2 ( )xy fγ

G
 is preferred to the 

“root” coherence ( )xy fγ
G  since its properties are determined 

easier. The squared complex coherence 2 ( )xy fγ
G

 can be 
computed as:  (799) 

2** *
2

2 2

( ) ( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )

xy

xy
x y

X f Y f Y f X f CPSD f
f

PSD f PSD fX f Y f

σ σ σ σ

σ σ

γ = =

JJJJJJGG G G G
G

G G  

since ( )xyCPSD f
JJJJJJG

= *( ) ( )X f Y fσ σ〈 〉
G G

= * *( ) ( )Y f X fσ σ〈 〉
G G

=
*
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The coherence ( )xy fγ
G  is undefined at frequencies where 

the PSD are null. In general, the estimates of ( )xyCPSD f
JJJJJJG

 
have lower relative uncertainty than the estimates of ( )xy fγ

G , 
specially if ( )xPSD f  or ( )yPSD f  is close to zero. 

G.2.3. Convention for indicating the 
typical range of magnitudes 

The expanded uncertainty, aka k = 2 or twice the standard 
deviation, is used to indicate range variation of stochastic 
magnitudes unless otherwise is stated. For example, the value 
Uwind = 6.7 m/s ±1,86 m/s indicates a fluctuating wind speed 
of mean 〈Uwind〉 = 6.7 m/s and standard deviation σUwind = 
(1,86 m/s)/2 = 0,93 m/s. 

G.2.4. Nomenclature in Markov 
Decision Processes 

When a variable is discretized, values in continuous time 
are noted in italics to distinguish from their discretized 
counterparts. In general, temporal sequences of values are 
indicated as  instant dependent, as P[k], just to avoid 
confusing with vector or matrix element indexing (in fact, 
P[k] can be interpreted formally as a tensor with indexes i, j 
and k). Arguments of functions are indicated by parentheses 
(·) while square brackets [·]are preferred for indicating index 
number. Square brackets [·] are also used to indicate a vector, 
matrix or tensor composed by the inner elements. Probability 
is denoted by Pr(·) to avoid confusion with transition 
probability matrix. Average values are denoted by angle 
brackets ·  and estimated elements are stressed with the 
circumflex accent, as P̂ .  

When the context is sufficiently clear and there is no risk 
of misleading, indexes or explicit functional dependences 
have been dropped to clarify expressions. 

G.2.5. Convention for indicating the 
typical range of magnitudes 

The expanded uncertainty, aka k = 2 or twice the standard 
deviation, is used to indicate range variation of stochastic 
magnitudes unless otherwise is stated. For example, the value 
Uwind = 6.7 m/s ±1,86 m/s indicates a fluctuating wind speed 
of mean 〈Uwind〉 = 6.7 m/s and standard deviation σUwind = 
(1,86 m/s)/2 = 0,93 m/s. 
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Grid Integration of Wind Power

American Wind Energy Association (AWEA) 

Bonneville Power Administration Power Business Line Wind Power 

Danish Wind Industry Association 

●     Wind Power Crash Course for Kids  By Danish Wind Energy Association 
●     Guided Tour on Wind Energy By Danish Wind Energy Association

The Database of State Incentives for Renewable Energy (DSIRE) . 

Wind and Hydropower Technologies Program 

National Wind Coordinating Committee (NWCC) 

National Wind Technology Center 

Renewable Energy Policy Project: Wind Web Site 

Sandia National Laboratory Wind Energy Technology 

●     Sandia National Laboratory Wind Energy Technolog links

Utility Wind Interest Group (UWIG) 

●     Utility Wind Interest Group (UWIG) Links . 

Wind Energy in California 

http://www.windygrid.org/
 (1 de 2) [19/04/2011 19:42:02]

http://www.awea.org/
http://www.bpa.gov/Power/PGC/wind/wind.shtml
http://www.windpower.org/en/
http://guidedtour.windpower.org/en/kids/intro/index.htm
http://guidedtour.windpower.org/en/tour.htm
http://www.dsireusa.org/links/index.cfm?CurrentPageID=4&EE=1&RE=1
http://www.eere.energy.gov/windandhydro/
http://www.nationalwind.org/
http://www.nrel.gov/wind/nwtc.html
http://www.repp.org/wind/index.html
http://www.sandia.gov/wind/
http://windpower.sandia.gov/links.htm
http://www.uwig.org/
http://www.uwig.org/windlinks.htm
http://www.energy.ca.gov/wind/index.html


Grid Integration of Wind Power

Wind Power Can Produce One Third of the World's Electricity by 2050 - By Greenpeace 

Wind Powering America 

WindPower Monthly 

wind-works.org by Paul Gipe 

www.windturbines.net 
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http://www.greenpeace.org/usa/press-center/releases2/wind-power-can-produce-one-thi
http://www.windpoweringamerica.gov/
http://www.windpower-monthly.com/
http://www.wind-works.org/articles/index.html
http://www.windturbines.net/
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